Effect of Stoichiometric Ratio on the Interfacial Polymerization Of

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Stoichiometric Ratio on the Interfacial Polymerization Of Effect of stoichiometric ratio on the interfacial polymerization of polyamides Why worry about polymer science? John Droske Polymer Education "Approximately 50% of all chemists will work with polymers at some time in their careers," says John Droske, professor of chemistry at the University of Wisconsin–Stevens Point and director of the POLYED National Information Center for Polymer Education. "Because polymer science touches on many areas, it is important for chemists to be trained in polymer science." The POLYED has been working with a National Science Foundation grant to develop materials for polymer chemistry courses at the undergraduate level. http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN &node_id=1188&content_id=CTP_003399&use_sec=true&sec_url_var=region1 Students should be exposed to the principles of macromolecules across foundation areas, which could then serve as the basis for deeper exploration through in depth course work or degree tracks ACS Guidelines for Undergraduate Professional Education in Chemistry http://portal.acs.org/portal/fileFetch/C/WPCP_008491/pdf/WPCP_0084 91.pdf What is a polymer (a.k.a macromolecule)? Poly-mer Two latin roots: πολυ (poly)? µεροζ (meros)? Polymers are everywhere (and we did not come up with the concept) Examples from nature: Examples from synthetic chemistry: http://pslc.ws/macrog.htm Commodity (most commonly used) recyclable plastics (Who is PETE?) Step growth polymerization The “polymer revolution” Wallace Carothers 1896-1937 B.S. Chemistry, Tarkio College, 1920 1930: Neoprene Ph.D. U. Illinois, 1924 1930: Polyesters Organic chemistry Instructor 1934: Polyamides Harvard U., 1926-1928 1935: Nylon Dupont’s Central Research & Development (1928-1937) 1938: Teflon (then 3 Ph.D. scientists and $20K, now 1959: Spandex(Lycra) >1500 Ph.D. level scientists and 1965: Tyvek $1.3Billion 1967: Nomex 1971: Kevlar Step growth polymerization The “polymer revolution” Wallace Carothers 1896-1937 B.S. Chemistry, Tarkio College, 1920 1930: Neoprene Ph.D. U. Illinois, 1924 1930: Polyesters Organic chemistry Instructor 1934: Polyamides Harvard U., 1926-1928 1935: Nylon Dupont’s Central Research & Development (1928-1937) 1938: Teflon (then 3 Ph.D. scientists and $20K, now 1959: Spandex(Lycra) >1500 Ph.D. level scientists and 1965: Tyvek $1.3Billion 1967: Nomex 1971: Kevlar spandex neoprene Polyamides Tyvek Nylon 6 PET Nylon 6,6 Step growth polymerization Polyamides Commercial applications Fibers, Engineering plastics. Clothing, films, food packaging, tapes (audio, video), steel and aluminum replacement for autoparts and electrical appliances, toys, power tools, sporting equipment Nylon 6+ Nylon 6/6 : 90% of polyamide fiber market Cotton is now only 25% of U.S. fiber market, the remaining 75% consists of PET, Nylon and Rayon fibers. Step growth polymerization Polyamides Experimental conditions a) Solution b) Bulk (melt) c) Interfacial polymerization Step growth polymerization Polyamides Experimental conditions a) Solution b) Bulk (melt) c) Interfacial polymerization Step growth polymerization Synthesis of polyamides by interfacial polymerization Stoichiometry: From the greek words stoicheion (element) and metron (measure). For chemical purposes it is the study of the proportions at with elements and molecules react Goal for this experiment: Evaluate the effect of stoichiometric ratio on the amount of isolated polyamide. Step growth polymerization Synthesis of polyamides by interfacial polymerization Procedure: a)Add solution of diamine (in 5% aq.KOH) b) Add solution of diacid chloride (in cyclohexane) c) Pull fiber from the interface until no more polymer is formed d)Stir the mixture to mix the organic and aqueous phases. e)Collect all the polymer formed and weight it. f) Compare the amount of isolated polymer with the amount expected according to the amount of added (limiting) reagents. .
Recommended publications
  • BLUE HEN CHEMIST University of Delaware, Department of Chemistry and Biochemistry Annual Alumni Newsletter Number 41 August 2014 John L
    BLUE HEN CHEMIST University of Delaware, Department of Chemistry and Biochemistry Annual Alumni Newsletter NUMBER 41 AUGUST 2014 JOHN L. BURMEISTER, EDITOR ON THE COVER THREE Newly Renovated Organic Laboratories! # 3 8 - P AGE I BLU E H E N C H E MIST ON THE COVER One of the three newly-renovated Organic Chemistry teaching laboratories (QDH 302) is shown. Work on the labs (QDH 112, 318, 320) started on May, 2013 and was completed in February of this year. The refurbishment of the labs was a crucial step in the ongoing revision of the Organic Chemistry laboratory curricula. The additional fume hoods allow each student to conduct experiments individually while minimizing their exposure to chemical reagents. The transparent glass construction helps teaching assistants observe students while they work. The hoods are equipped with inert-gas lines, which can allow the students to work with air-sensitive compounds and learn advanced laboratory techniques. The hoods are also equipped with vacuum lines, which obviate the need for water aspirators and dramatically reduce the labs' water usage. The lab design also allows for instrumentation modules to be swapped in and out according to the needs of the experiment. Carts are designed to house instruments such as gas chromatographs and infrared spectrometers as well as any necessary computer equipment. These carts can then be wheeled into docking areas that have been fitted with the necessary inert gas and electrical lines. The design expands the range of possible instrumentation the students can use while occupying a small footprint of lab space. The labs also feature large flat screen monitors, wireless internet, and computer connectivitiy that will enable the use of multimedia demonstrations and tablet computing.
    [Show full text]
  • Company Update Company
    October 30, 2017 OUTPERFORM Indorama Ventures (IVL TB) Share Price: Bt45.75 Target Price: Bt55.0 (+20.2%) Company Update Company Ready to take it all . 65% of newly acquired BOPET is HVA, underscoring healthy EBITDA margins in FY18F onward . M&G’s bankruptcy is an opportunity for IVL to gain more market share in North America . OUTPERFORM, raised TP to Bt55/sh; share price weakness upon weak 3Q17 results is an opportunity to buy IVL could become a major player of BOPET Early this month, IVL signed a share purchase agreement with DuPont Teijin Films (DTF) to acquire 100% stake in their PET film business. This marks an important step for IVL to diversify into PET film used in packaging, industrial, electrical, imaging, and magnetic media. 65% of Naphat CHANTARASEREKUL DTF’s products is ‘thick’ film, which commands the same EBITDA 662 - 659 7000 ext 5000 margin as IVL’s HVA portfolio of automotive and hygiene products. DTF [email protected] COMPANY RESEARCH | RESEARCH COMPANY is a leading producer of biaxially oriented Polyethylene Terephthalate (BOPET) and Polyethylene Naphthalate (PEN). Their business Key Data comprises of eight production assets in the US, Europe, and China with 12-mth High/Low (Bt) 46.5 / 28.25 global innovation center in UK with annual capacity of 277k tons. PET Market capital (Btm/US$m) 239,957/ 7,205 film uses the same feedstock as PET but the market is small at 4.1m ton 3m avg Turnover (Btm/US$m) 747.8 / 22.5 consumption p.a. We are optimistic IVL could become a major player in Free Float (%) 29.5 this market.
    [Show full text]
  • FL.Datasheet Kevlar® Distribution Program.Indd
    MOVING HIGH PERFORMANCE FIBERS FORWARD KEVLAR® DISTRIBUTION PROGRAM FIBERS PROCESSES PRODUCTS WHY FIBER-LINE® DUPONTFIBER TM OPTICAL DISTRIBUTION CABLES PROGRAM? Key Features FIBER-LINE® values its relationships with both its customers and • Purchase small quantities of Kevlar® suppliers. Over the past several years, FIBER-LINE® and DuPontTM have Para-Aramid formed a strong partnership based upon the synergies between both • Many deniers & types available organizations. • Customize your Kevlar® solution with FIBER-LINE® performance adding processes FIBER-LINE®’s ability to add value to the already attractive properties of both Kevlar® Para-Aramid & Nomex® Meta-Aramid creates more opportunity in the market place to provide solution driven products to a diverse range of markets. Because FIBER-LINE® already processes so many different types and deniers of both Kevlar® & Nomex®, FIBER-LINE® have been authorized by DuPontTM to distribute small quantities of these fibers to an ever- growing customer base. Through this program, we hope to introduce businesses of all sizes to the benefit of aramid fibers. Contact us today for small order quantity orders. Available Deniers 200, 380, 400, 750AP, 800AP, 1000, 1000AP, 1420, 1500, 1500AP, 1500BK(Black), 2160, 2250, 2840, 3000, 7100. MOVING HIGH PERFORMANCE FIBERS FORWARD KEVLAR® PARA-ARAMID (HM) BARE FIBER PERFORMANCE Chemical Chemical Chemical Abrasion Yarn on Yarn Ultraviolet (UV) Flame Resistance Resistance Resistance Resistance Abrasion Resistance Resistance (Acid) (Alkali) (Organic Solvent) P O X P P P P CHEMICAL COMPATIBILITY Chemical Resistance to Acid: Degrades in Formic, Hydrochloric, and Sodium Hydroxide acid. Chemical Resistance to Alkali: Strong alkalis will attack at high temperature or concentration. Chemical Resistance to Organic Solvent: Degrades moderately in Carbon Tetrachloride and Ethylene Glycol/Water.
    [Show full text]
  • 1 DANIELA R. RADU, Ph.D
    DANIELA R. RADU, Ph.D. Associate Professor, Mechanical and Materials Engineering, College of Engineering and Computing Florida International University, 10555 West Flagler Street, Miami, FL 33174 Tel. (O): (305) 348-4506 | Email: [email protected] EDUCATION Ph.D. in Chemistry (2004) Iowa State University, Ames, IA, USA Advisor: Professor Victor S.-Y. Lin M.S. in Chemistry (1996) “Babes-Bolyai” University, Cluj-Napoca, Romania Advisor: Professor Paul S. Agachi B.S. in Chemical Engineering (1994) “Babes-Bolyai” University, Cluj-Napoca, Romania Thesis Advisor: Professor Paul S. Agachi PROFESSIONAL EXPERIENCE Associate Professor with Tenure Department of Mechanical and Materials Engineering Florida International University, Miami, FL 33174 August 2018 – Present Associate Dean College of Mathematics, Natural Sciences and Technology January 2018 – July 2018 Delaware State University, Dover, DE Associate Professor with Tenure Department of Chemistry, Delaware State University, Dover, DE August 2017 – July 2018 Affiliated Professor Department of Materials Science and Engineering, University of Delaware October 2015 – Present Newark, DE Assistant Professor, Tenure-Track Department of Chemistry, Delaware State University, Dover, DE January 2013 – July2017 Senior Research Scientist DuPont CR&D, Experimental Station, Wilmington, DE August 2010 – December 2012 Research Scientist DuPont Central Research and Development, Experimental Station October 2007 – July 2010 Wilmington, DE Postdoctoral Research Fellow The Scripps Research Institute, La Jolla, CA
    [Show full text]
  • Exploring the Influence of Entropy on Dynamic Macromolecular Ligation
    Exploring the Influence of Entropy on Dynamic Macromolecular Ligation Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der KIT-Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Dipl.-Chem. Kai Pahnke aus Nagold, Deutschland KIT-Dekan: Prof. Dr. Willem M. Klopper Referent: Prof. Dr. Christopher Barner-Kowollik Korreferent: Prof. Dr. Manfred Wilhelm Tag der mündlichen Prüfung: 22.07.2016 Die vorliegende Arbeite wurde im Zeitraum von Februar 2013 bis Juni 2016 im Rahmen einer Kollaboration zwischen dem KIT und der Evonik Industries AG unter der Betreuung von Prof. Dr. Christopher Barner-Kowollik durchgeführt Only entropy comes easy. Anton Chekhov ABSTRACT The present thesis reports a novel, expedient linker species as well as previously unforeseen effects of physical molecular parameters on reaction entropy and thus equilibria with extensive implications on diverse fields of research via the study of dynamic ligation chemistries, especially in the realm of macromolecular chemistry. A set of experiments investigating the influence of different physical molecular parameters on reaction or association equilibria is designed. Initially, previous findings of a mass dependant effect on the reaction entropy – resulting in a more pronounced debonding of heavier or longer species – are reproduced and expanded to other dynamic ligation techniques as well as further characterization methods, now including a rapid and catalyst- free Diels–Alder reaction. The effects are evidenced via high temperature nuclear magnetic resonance spectroscopy (HT NMR) as well as temperature dependent size exclusion chromatography (TD SEC) and verified via quantum chemical ab initio calculations. Next, the impact of chain mobility on entropic reaction parameters and thus the overall bonding behavior is explored via the thermoreversible ligation of chains of similar mass and length, comprising isomeric butyl side-chain substituents with differing steric demands.
    [Show full text]
  • Polymers: a Historical Perspective
    Journal & Proceedings of the Royal Society of New South Wales, vol. 152, part 2, 2019, pp. 242–250. ISSN 0035-9173/19/020242-09 Polymers: a historical perspective Robert Burford, FRSN Emeritus Professor, School of Chemical Engineering, UNSW Sydney Email: [email protected] Abstract This commissioned paper outlines the emergence of new forms of synthetics and plastics as our under- standing of polymer chemistry has advanced. Synopsis phenols and styrene are “polymerised” to olymers have been ubiquitous since form thermosets,1 including phenol for- simple gaseous molecules began to form maldehyde “Bakelite” thermosets, but are P 2 life-giving organic structures many millions also present in thermoplastics including of years ago. Today, we rely upon proteins polystyrene and related materials such as comprising twenty amino acids, as well as styrene acrylonitrile (SAN) and ABS.3 The DNA and RNA with many fewer nucleic manufacture of Bakelite is often viewed as acids. Similarly, many fibres and plants the birth of the synthetic polymer industry. comprise carbohydrate polymers: we and The enormous growth both in diversity and other animals use these and protein-based volume of thermoplastics is a feature of the polymers for our diet. Hence, organic earth’s 20th century, dismissively called the “plastics surface has an enormous diversity of natu- age.” Again, important but sometimes ser- rally occurring polymers, sometimes called endipitous discoveries are a feature of this macromolecules. period, but the associated large-scale produc- Today, these continue to feed and clothe tion introduced multinational corporations us, and much more, but the beginning of originating mainly in Europe, the US and man-made materials might be considered Japan.
    [Show full text]
  • Microstructure and Properties of Polytetrafluoroethylene Composites
    coatings Article Microstructure and Properties of Polytetrafluoroethylene Composites Modified by Carbon Materials and Aramid Fibers Fubao Zhang *, Jiaqiao Zhang , Yu Zhu, Xingxing Wang and Yuyang Jin School of Mechanical Engineering, Nantong University, Nantong 226019, China; [email protected] (J.Z.); [email protected] (Y.Z.); [email protected] (X.W.); [email protected] (Y.J.) * Correspondence: [email protected]; Tel.: +86-13646288919 Received: 12 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: Polytetrafluoroethylene (PTFE) is polymerized by tetrafluoroethylene, which has high corrosion resistance, self-lubrication and high temperature resistance. However, due to the large expansion coefficient, high temperature will gradually weaken the intermolecular bonding force of PTFE, which will lead to the enhancement of permeation absorption and the limitation of the application range of fluoroplastics. In order to improve the performance of PTFE, the modified polytetrafluoroethylene, filled by carbon materials and aramid fiber with different scales, is prepared through the compression and sintering. Moreover, the mechanical properties and wear resistance of the prepared composite materials are tested. In addition, the influence of different types of filler materials and contents on the properties of PTFE is studied. According to the experiment results, the addition of carbon fibers with different scales reduces the tensile and impact properties of the composite materials, but the elastic modulus and wear resistance are significantly improved. Among them, the wear rate of 7 µm carbon fiber modified PTFE has decreased by 70%, and the elastic modulus has increased by 70%. The addition of aramid fiber filler significantly reduces the tensile and impact properties of the composite, but its elastic modulus and wear resistance are significantly improved.
    [Show full text]
  • Syn Thetic Slings 87
    87 Synthetic Slings Synthetic Synthetic Slings Synthetic lifting slings are slings made with materials—yarns, webbing, rope, etc.—that are woven from synthetic or man-made fibers. Background Carbon steel was the dominant raw material used in rigging slings throughout the 19th and most of the 20th centuries. However, slings fabricated from synthetic fibers steadily gained popularity through the later half of the 20th century. Since the turn of the century, many industries and applications—such as aircraft construction and maintenance, aerospace, power generation, etc.— have moved entirely to the use of lightweight, high- strength synthetic slings, fabricated with the latest generation of synthetic fibers. Modern synthetic lifting slings have their origins in the development of the first true synthetic fiber in 1935 by Wallace Carothers of DuPont. DuPont marketers christened this fiber nylon, a made-up name derived from the “on” suffix of cotton and the arbitrary letters “nyl” that simply “sounded good” together. Nylon is a thermoplastic polymer made of repeating molecular units linked by amide bonds, and is often referred to as polyamide. It was the first commercially successful synthetic polymer. In the rigging industry, nylon has found wide use as the fiber of choice for inexpensive, light weight lifting slings fabricated from flat nylon webbing. Numerous other synthetic fibers have been developed since nylon was introduced, and many of these fibers—most notably polyesters—are woven or spun into materials used to fabricate a wide range of synthetic rigging types. Experience with nylon and polyester processing and manufacturing led to the development of aromatic © 2015 Yarbrough Cable Service, LLC Pride.
    [Show full text]
  • 2 0 0 1 a N N U a L R E P O
    2001 ANNUAL REPORT DuPont at 200 In 2002, DuPont celebrates its 200th anniversary. The company that began as a small, family firm on the banks of Delaware’s Brandywine River is today a global enterprise operating in 70 countries around the world. From a manufacturer of one main product – black powder for guns and blasting – DuPont grew through a remarkable series of scientific leaps into a supplier of some of the world’s most advanced materials, services and technologies. Much of what we take for granted in the look, feel, and utility of modern life was brought to the marketplace as a result of DuPont discoveries, the genius of DuPont scientists and engineers, and the hard work of DuPont employees in plants and offices, year in and year out. Along the way, there have been some exceptional constants. The company’s core values of safety, health and the environment, ethics, and respect for people have evolved to meet the challenges and opportunities of each era, but as they are lived today they would be easily recognizable to our founder. The central role of science as the means for gaining competitive advantage and creating value for customers and shareholders has been consistent. It would be familiar to any employee plucked at random from any decade of the company’s existence. Yet nothing has contributed more to the success of DuPont than its ability to transform itself in order to grow. Whether moving into high explosives in the latter 19th century, into chemicals and polymers in the 20th century, or into biotechnology and other integrated sciences today, DuPont has always embraced change as a means to grow.
    [Show full text]
  • THE HISTORY of POLYMERS : the ORIGINS and the GROWTH of a SCIENCE Part II
    THE HISTORY OF POLYMERS : THE ORIGINS AND THE GROWTH OF A SCIENCE Part II Dr. S. Sivaram, National Chemical Laboratory, Pune-411 008, INDIA National Chemical Laboratory Tel : 0091 20 2589 2614 Pune Fax : 0091 20 2589 2615 Email : [email protected] Visit us at : http://www.ncl-india.org February 18, 2012 WALLACE CAROTHERS AND THE BIRTH OF RATIONAL POLYMER SYNTHESIS With Julian Hill, extends the reaction to adipic acid and hexamethylene diamine, a polyamide forming reaction , leading to the first synthesis of Nylon-66 in 1934. Nylon-66 goes into production in 1939 Develops a theoretical understanding of the polycondensation reaction relating the average degree of polymerization to fractional conversions ( Carother`s Equation) Carothers had been troubled by periods of mental depression since his youth. Despite his success with nylon, he felt that he had not accomplished much and had run out of ideas ?? His unhappiness was compounded by the death of his sister, Isobel, and on the evening of April 28, 1937 he checked into a Philadelphia hotel room and committed suicide by drinking A young man joins a cocktail of lemon juice laced with potassium cyanide Carothers at DuPont in 1934 who will go on to make history His daughter, Jane, was born seven months later on November 27, 1937. SUMMARY OF LECTURE : PART I • The tale of two Hermanns : Staudinger and Mark • The link between Mark and Pauling: the “Nature of the Chemical Bond” and the origins of the structural chemistry • Wallace Carothers and the birth of rational polymer synthesis: realization that large macromolecules can be derived using the same laws of chemistry that define small molecules • Paul Flory and the dawn of the physical chemistry of polymers Polymers were considered largely an empirical, instinctive and intuitive discipline till the mid twenties.
    [Show full text]
  • Wallace Hume Carothers Letters to Frances Gelvin Spencer 2435
    Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 This finding aid was produced using ArchivesSpace on September 26, 2021. Description is written in: English. Describing Archives: A Content Standard Manuscripts and Archives PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 Table of Contents Summary Information .................................................................................................................................... 3 Biographical Note .......................................................................................................................................... 3 Scope and Contents ........................................................................................................................................ 4 Administrative Information ............................................................................................................................ 4 Related Materials ........................................................................................................................................... 5 Controlled Access Headings .......................................................................................................................... 5 - Page 2 - Wallace Hume Carothers letters to Frances Gelvin Spencer 2435 Summary Information Repository: Manuscripts and Archives Creator - crp: Carothers, Wallace Hume, 1896-1937 Creator - rcp: Spencer, Frances
    [Show full text]
  • Wilmington Serving the Greater Delaware Valley • for Adults 50 and Older •
    5827OsherWilmCat_S16_Layout 1 12/2/15 9:09 AM Page 1 SPRING 2016 | February 8 – May 13 Wilmington Serving the greater Delaware Valley • For adults 50 and older • Reignite your passion for learning Everyday Guide Japanese Chat Room Sea Coasts 14 to Wine 27 31 www.lifelonglearning.udel.edu/wilm 5827OsherWilmCat_S16_Layout 1 12/2/15 9:09 AM Page 2 5827OsherWilmCat_S16_Layout 1 12/2/15 9:09 AM Page 3 Osher Lifelong Learning Institute at the University of Delaware in Wilmington Quick Reference Membership Registration ........................................51, 53 Refunds ........................................................11 Membership Benefits................................3 Volunteering................................15, 52, 54 Gifts................................................................21 About us Council............................................................2 Committees ..................................................2 Staff ..................................................................2 About Lifelong Learning Where we’re located The Osher Lifelong Learning Institute at the University of Delaware in Wilmington is a membership organization for adults 50 and over to enjoy classes, teach, Directions....................................................56 exchange ideas and travel together. The program provides opportunities for intellectual development, cultural stimulation, personal growth and social interaction Parking ..................................................55, 56 in an academic cooperative run by its members,
    [Show full text]