Comparison of Effectiveness Disinfection of 2%

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Effectiveness Disinfection of 2% ORIGINAL RESEARCH Journal of Dentomaxillofacial Science (J Dentomaxillofac Sci ) December 2018, Volume 3, Number 3: 169-171 P-ISSN.2503-0817, E-ISSN.2503-0825 Comparison of effectiveness disinfection of 2% Original Research glutaraldehyde and 4.8% chloroxylenol on tooth extraction instruments in the Department of Oral CrossMark http://dx.doi.org/10.15562/jdmfs.v3i2.794 Maxillofacial Surgery, Faculty of Dentistry, University of North Sumatera Month: December Ahyar Riza,* Isnandar, Indra B. Siregar, Bernard Volume No.: 3 Abstract Objective: To compare disinfecting effectiveness of 2% glutaraldehyde while the control group was treated with 4.8% chloroxylenol. Each Issue: 2 and 4.8% chloroxylenol on tooth extraction instruments at the instrument was pre-cleaned using a brush, water and soap for both Department of Oral Surgery, Faculty of Dentistry, University of North groups underwent the disinfection process. Sumatera. Results: The results were statistically analyzed using Mann-Whitney Material and Methods: This was an experimental study with post- Test. The comparison between glutaraldehyde and chloroxylenol First page No.: 147 test only control group design approach. Purposive technique is showed a significant difference to the total bacteria count on applied to collect samples which are lower molar extraction forceps. In instrument after disinfection (p=0.014 < 0.05). this study, sample were divided into 2 groups and each consisting of 18 Conclusion: 2% glutaraldehyde was more effective than 4.8% P-ISSN.2503-0817 instruments. The treatment group was treated with 2% glutaraldehyde chloroxylenol at disinfecting lower molar extraction forceps. Keyword: Disinfection, Glutaraldehyde, Chloroxylenol, Forceps E-ISSN.2503-0825 Cite this Article: Riza A, Siregar IB, Isnandar, Bernard. 2018. Comparison of effectiveness disinfection of 2% glutaraldehyde and 4.8% chloroxylenol on tooth extraction instruments in the Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of North Sumatera. Journal of Dentomaxillofacial Science 3(3): 169-171. DOI: 10.15562/jdmfs.v3i3.794 Department of Oral and Maxillofa- Introduction glutaraldehyde is able to decontaminate all pliers cial Surgery, Faculty of Dentistry, (100%), where as ethyl alcohol and water with soap University of North Sumatera, Based on RISKESDAS 2013, Indonesian citizens 4 Medan, Indonesia are unable to decontaminate all pliers in the study. have DMF-T index of 4.6 with the biggest A study about disinfection effectiveness on x-ray component of missing teeth with score of 2.9, equipment and accessories showed 4.8% chlorox- which means that each of Indonesian citizen has 1 ylenol and 2% dichloroxylenol have the same effi- approximately three teeth that are extracted. An cacy which is fail to decontaminate 4.9% of the total extraction procedure is high-risk for the transmission sample.7 of infection because there is contact with blood This study aimed to compare disinfecting and saliva of patients either directly or indirectly 2 effectiveness of 2% glutaraldehyde and 4.8% chlorox- through contaminated instruments. ylenol on tooth extraction instruments that are Infection control can be done to reduce cross- categorized as critical items, items that are high-risk contamination, such as disinfecting reusable instru- of causing infection because it penetrates to sterile ments. Disinfection is divided into three categories tissues located under skin or mucosa membrane.3 which are high-level disinfection, intermediate level, and low level. High-level disinfection can eliminate all types of microorganism except spores. Material and Methods * Corresponding to: Ahyar Riza, Glutaraldehyde and chloroxylenol are disinfec- This study is an experimental with post-only control Department of Oral and Maxillofacial tants that are widely used in the field of dentistry. Surgery, Faculty of Dentistry, group design approach. Sampling method used in University of North Sumatera, Glutaraldehyde is a high-level disinfectant, whereas this study is purposive sampling and used lower 3,4 Medan, Indonesia chloroxylenol is a intermediate level disinfectant. molar extraction forceps in the Department of Oral [email protected] Glutaraldehyde works by changing the synthesis of Maxillofacial Surgery, Faculty of Dentistry, proteins, DNA and RNA of microorganisms, while University of North Sumatera as sample. In this chloroxylenol change the cell wall and enzyme study, samples are divided into two groups, the Received: 26 August 2018 5,6 Revised: 17 November 2018 inactivation of microorganisms. treatment group and control group, that consist of Accepted: 29 November 2018 A study about the disinfection effective- 18 instruments each. A 2% glutaraldehyde solution Available Online 1 December 2018 ness on orthodontic pliers showed that only 2% http://jdmfs.org © 2018 JDMFS. Published by Faculty of Dentistry, Hasanuddin University. All rights reserved. 169 ORIGINAL RESEARCH was used in the treatment group and a 4.8% The sample solutions were diluted to 10-3 and chloroxylenol solution was used in the control cultivated on an agar plate and incubated for group. 24 hours. The number of bacterial colonies formed Previously used lower molar extraction forceps on the agar plate were counted using bacteria were first cleaned with a brush, water and soap colony counter. From the bacteria colonized on to eliminate visible blood and saliva on the plate count agarose was taken to make pure culture forceps before disinfection. The forceps were then of the colony on nutrient agar and incubated for immersed into a container that contained 250 mL 24 hours. Pure culture was used to observe the of disinfectant solution for 1 hour for both groups. gram type of the bacteria. Data processing was The forceps were removed from disinfectant, rinsed done with computerized analysis using Mann- with sterile aquades and dried with sterile gauze. Whitney test. The beak of forceps were immersed in 50 mL of saline for 5 minutes and the container was closed Results tightly and sent to a microbiology laboratory for bacterial cultivation and colony bacteria count. This study showed that out of 36 lower molar extraction forceps, 18 were disinfected using Table 1 Total plate count after disinfection 2% glutaraldehyde and 18 were disinfected with Total Plate Count (103 CFU/mL) 4.8% chloroxylenol. Out of 18 forceps disin- No 2% glutaraldehyde 4.8% chloroxylenol fected using 2% glutaraldehyde, 1 (5.56%) was still contaminated by bacterial colonies formed 1 0 0 on the agar plate which is 8.103 CFU/mL. Out of 2 0 0 18 forceps disinfected using 4.8% chloroxylenol, 3 0 0 7 (38.89%) samples were still contaminated with 3 4 0 168 the maximum score of 812.10 CFU/mL table 1. The mean results of each group obtained are 5 0 0 444.44±1.885.62 CFU/mL for treatment group 6 0 812 and 82.500±196.043 CFU/mL for control group 7 0 158 table 2. The Shapiro-Wilk test was conducted to 8 0 22 determine the normality of data and the result 9 0 0 was not distributed normally, and then the Mann- Whitney test is used table 3. 10 0 234 The Mann-Whitney test was conducted to 11 0 0 determine whether there are significant differences 12 0 1 between disinfecting lower molar extraction forceps 13 8 0 using 2% glutaraldehyde and 4.8% chloroxylenol. 14 0 0 The result of Mann-Whitney test between the treat- ment group and control group resulted in a p-value 15 0 0 of 0.014 that was <0.05 table 3. This result showed 16 0 0 that there was a significant difference in the number 17 0 90 of bacterial colonies between the glutaraldehyde 18 0 0 and chloroxylenol post disinfection. Besides the number of bacterial colonies, this study also observed the gram type of bacteria remaining on Table 2 Mean result of total plate count of two groups the sample and found that all the contaminated Mean Standard deviation samples were gram-negative bacteria. Group Sample (CFU/mL) (CFU/mL) 2% glutaraldehyde 18 444.44 1.885.62 Discussion 4.8% chloroxylenol 18 82.500 196.043 The disinfectants tested in this study were 2% glutaraldehyde and 4.8% chloroxylenol. Glutaral- Table 3 Normality test and statistical test of two groups dehyde has been used widely as high-level Mean ± Standard P-value P-value disinfectant for over 30 years because of its Group Deviation (CFU/mL) (Shapiro-Wilk) (Mann Whitney) favourable materials compatibility, cheaper cost and immersion time is longer. Chloroxylenol is 2% glutaraldehyde 444.44 ± 1.885.62 0.000 0.014 also widely used in the household and in medical 4.8% chloroxylenol 82.500 ± 196.043 0.000 field as antiseptic and disinfectant as well as a surface/environmental 170 Journal of Dentomaxillofacial Science (J Dentomaxillofac Sci ) December 2018; 3(3): 169-171 | doi: 10.15562/jdmfs.v3i3.794 ORIGINAL RESEARCH surface/environmental cleaner.8,9 The Spaulding Conclusion classification describes three instrument/risk categories (critical, semi-critical and non-critical), According to the results presented above, it can be each of which has specific reprocessing require- concluded that 2% glutaraldehyde is more effective ments. According to the Spaulding classification, at disinfecting lower molar extraction forceps than lower molar extraction forceps are classified as 4.8% chloroxylenol, therefore 2% glutaraldehyde critical items, objects that enter sterile tissue or is recommended to be used for disinfecting lower vascular system should be sterile because any molar extraction forceps. microbial contamination could result in disease transmission.3,10 Acknowledgment The result from the 13th glutaraldehyde (G13) The government of the study country and the sample group was 8.103 CFU/mL, where this is the World Health Organization did not influence this only sample that still contaminated after disinfec- analysis nor the decision to publish these findings. tion with glutaraldehyde. This may be caused by The study did not receive any financial support. some factors, such as patient oral hygiene status and pathological findings such as severe caries, periodontal disease, pulp necrosis or abscess Conflict of Interest during tooth extraction.
Recommended publications
  • EH&S COVID-19 Chemical Disinfectant Safety Information
    COVID-19 CHEMICAL DISINFECTANT SAFETY INFORMATION Updated June 24, 2020 The COVID-19 pandemic has caused an increase in the number of disinfection products used throughout UW departments. This document provides general information about EPA-registered disinfectants, such as potential health hazards and personal protective equipment recommendations, for the commonly used disinfectants at the UW. Chemical Disinfectant Base / Category Products Potential Hazards Controls ● Ethyl alcohol Highly flammable and could form explosive Disposable nitrile gloves Alcohols ● ● vapor/air mixtures. ● Use in well-ventilated areas away from o Clorox 4 in One Disinfecting Spray Ready-to-Use ● May react violently with strong oxidants. ignition sources ● Alcohols may de-fat the skin and cause ● Wear long sleeve shirt and pants ● Isopropyl alcohol dermatitis. ● Closed toe shoes o Isopropyl Alcohol Antiseptic ● Inhalation of concentrated alcohol vapor 75% Topical Solution, MM may cause irritation of the respiratory tract (Ready to Use) and effects on the central nervous system. o Opti-Cide Surface Wipes o Powell PII Disinfectant Wipes o Super Sani Cloth Germicidal Wipe 201 Hall Health Center, Box 354400, Seattle, WA 98195-4400 206.543.7262 ᅵ fax 206.543.3351ᅵ www.ehs.washington.edu ● Formaldehyde Formaldehyde in gas form is extremely Disposable nitrile gloves for Aldehydes ● ● flammable. It forms explosive mixtures with concentrations 10% or less ● Paraformaldehyde air. ● Medium or heavyweight nitrile, neoprene, ● Glutaraldehyde ● It should only be used in well-ventilated natural rubber, or PVC gloves for ● Ortho-phthalaldehyde (OPA) areas. concentrated solutions ● The chemicals are irritating, toxic to humans ● Protective clothing to minimize skin upon contact or inhalation of high contact concentrations.
    [Show full text]
  • Comparative Analysis of Chlorhexidine Gluconate, Povidone Iodine and Chloroxylenol As Scrubbing Solution
    British Journal of Pharmacology and Toxicology 1(2): 93-95, 2010 ISSN: 2044-2467 © Maxwell Scientific Organization, 2010 Submitted date: May 20, 2010 Accepted date: August 21, 2010 Published date: November 15, 2010 Comparative Analysis of Chlorhexidine Gluconate, Povidone Iodine and Chloroxylenol as Scrubbing Solution 1A.S. Yakubu, 1A.A. Abubakar, 2M.D. Salihu, 1A. Jibril and 1I. Isah 1Department of Veterinary Medicine, Surgery and Theriogenology 2Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University, Sokoto Abstract: The study was carried out to determine the efficacy of stock concentration of the commonly used disinfectant as scrub solution for surgical site in goats. The evaluation of efficacy and safety of commercially available disinfectant and antiseptic (0.3% Chlorhexidine gluconate, 0.4% Chloroxylenol and 4% Povidone iodine) as scrub solution for surgical site, using stock concentration was assessed in thirty (30) Red Sokoto goats undergoing non elective surgical procedures at Usmanu Danfodiyo University, Veterinary Teaching Hospital and Zonal Veterinary Clinic, Sokoto. Colony counting was used to quantify skin bacteria Colony Forming Unit (CFU) at surgical site before and after skin preparation. Reduction of CFU before and after preparation was significant with all the three disinfectants compared (p<0.05) and the result shows that Povidone iodine and Chloroxylenol to be less effecacious than Chlorhexidine gluconate when mean colony forming unit after two minute of preparing the surgical sites.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0004156A1 Mellstedt Et Al
    US 2014.0004156A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0004156A1 Mellstedt et al. (43) Pub. Date: Jan. 2, 2014 (54) BOLOGICAL INHIBITORS OF ROR1 Publication Classification CAPABLE OF INDUCING CELL, DEATH (51) Int. C. (76) Inventors: Hakan Mellstedt, Stockholm (SE): C07K 6/28 (2006.01) Hodjattallah Rabbani, Stockholm (SE); CI2N IS/II3 (2006.01) Ingrid Teige, Lund (SE) (52) U.S. C. CPC ............ C07K 16/28 (2013.01); CI2N 15/1138 (21) Appl. No.: 13/516,925 (2013.01) USPC ...... 424/400; 530/387.9; 536/24.5:536/23.1; (22) PCT Filed: Dec. 10, 2010 435/320.1; 435/325; 435/375; 424/139.1; (86). PCT No.: PCT/EP2010/007524 514/44. A:536/23.53; 435/331 S371 (c)(1), (57) ABSTRACT (2), (4) Date: Mar. 1, 2013 The invention relates to antibodies and siRNA molecules for (30) Foreign Application Priority Data inducing cell death by the specific binding of ROR1, domains thereof of nucleotide molecules encoding ROR1. There are Dec. 18, 2009 (GB) ................................... O922143.3 also provided methods involving and uses of the antibodies Jun. 3, 2010 (GB) ................................... 1OO93O7.8 and siRNA molecules of the invention. Patent Application Publication Jan. 2, 2014 Sheet 1 of 25 US 2014/0004156A1 L/S.*L/SdXL|-WLIXCRIO6] N Patent Application Publication Jan. 2, 2014 Sheet 2 of 25 US 2014/0004156A1 a bi-saw exit-8 ext: xx x: i. s: s x 8. : xxx xx . ex* x8. gri syst {{..} : twic s yxi-xxii. 33. 8 M. : : ised-east x 8. Patent Application Publication Jan.
    [Show full text]
  • Disinfection of Tonometers a Report by the American Academy of Ophthalmology
    Ophthalmic Technology Assessment Disinfection of Tonometers A Report by the American Academy of Ophthalmology Anna K. Junk, MD,1 Philip P. Chen, MD,2 Shan C. Lin, MD,3 Kouros Nouri-Mahdavi, MD,4 Sunita Radhakrishnan, MD,5 Kuldev Singh, MD, MPH,6 Teresa C. Chen, MD7 Objective: To examine the efficacy of various disinfection methods for reusable tonometer prisms in eye care and to highlight how disinfectants can damage tonometer tips and cause subsequent patient harm. Methods: Literature searches were conducted last in October 2016 in the PubMed and the Cochrane Library databases for original research investigations. Reviews, non-English language articles, nonophthalmology articles, surveys, and case reports were excluded. Results: The searches initially yielded 64 unique citations. After exclusion criteria were applied, 10 labo- ratory studies remained for this review. Nine of the 10 studies used tonometer prisms and 1 used steel discs. The infectious agents covered in this assessment include adenovirus 8 and 19, herpes simplex virus (HSV) 1 and 2, human immunodeficiency virus 1, hepatitis C virus, enterovirus 70, and variant Creutzfeldt-Jakob disease. All 4 studies of adenovirus 8 concluded that after sodium hypochlorite (dilute bleach) disinfection, the virus was undetectable, but only 2 of the 4 studies found that 70% isopropyl alcohol (e.g., alcohol wipes or soaks) eradicated all viable virus. All 3 HSV studies concluded that both sodium hypochlorite and 70% isopropyl alcohol eliminated HSV. Ethanol, 70% isopropyl alcohol, dilute bleach, and mechanical cleaning all lack the ability to remove cellular debris completely, which is necessary to prevent prion transmission. Therefore, single-use tonometer tips or disposable tonometer covers should be considered when treating patients with suspected prion disease.
    [Show full text]
  • Nomination Background: N-(3-Chloroallyl)Hexaminium Chloride
    • NATIONAL TOXICOLOGY PROGRAM EXECUTIVE SUMMARY OF SAFETY AND TOXICITY INFORMATION N-(3-CHLOROALLYL)HEXAMINIUM CHLORIDE CAS Number 4080-31-3 July 16, 1991 Submitted to: NATIONAL TOXICOLOGY PROGRAM Submitted by: Arthur D. Little, Inc. Chemical Evaluation Committee Draft Report • • TABLE OF CONTENTS Page L NOMINATION HISTORY AND REVIEW .................... 1 II. CHEMICAL AND PHYSICAL DATA ....................... 3 III. PRODUCTION/USE ................................... 5 IV. EXPOSURE/REGULATORY STATUS...................... .10 V. TOXICOLOGICAL EFFECTS ........................... .11 VI. STRUCTURE ACTIVITY RELATIONSHIPS ..................48 VII. REFERENCES ..................................... : . ......... 49 APPENDIX I, ON-LINE DATA BASES SEARCHED ............ .53 APPENDIX II, SAFETY INFORMATION.................... .54 1 ,, .• • • OVERVJEWl Nomination History: N-(3-Chloroallyl)hexaminium chloride was originally nominated for carcinogenicity testing by the National Cancer Institute (NCI) in 1980 with moderate priority. In March 1980, the Chemical Evaluation Committee (CEC) recommended carcinogenicity testing. Due to budgetary cutbacks in 1982, this compound was reevaluated and recommended for in vitro cytogenetics and chemical disposition testing by the CEC, and was selected for chemical disposition testing by the Executive Committee. The renomination of this chemical in 1984 by the NCI was based on potentialfor significant human exposure and concern that it may be carcinogenic due to structural considerations. This recent nomination was
    [Show full text]
  • Chemical Disinfectants | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC 3/19/20, 14:52
    Chemical Disinfectants | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC 3/19/20, 14:52 Infection Control Chemical Disinfectants Guideline for Disinfection and Sterilization in Healthcare Facilities (2008) Alcohol Overview. In the healthcare setting, “alcohol” refers to two water-soluble chemical compounds—ethyl alcohol and isopropyl alcohol —that have generally underrated germicidal characteristics 482. FDA has not cleared any liquid chemical sterilant or high- level disinfectant with alcohol as the main active ingredient. These alcohols are rapidly bactericidal rather than bacteriostatic against vegetative forms of bacteria; they also are tuberculocidal, fungicidal, and virucidal but do not destroy bacterial spores. Their cidal activity drops sharply when diluted below 50% concentration, and the optimum bactericidal concentration is 60%–90% solutions in water (volume/volume) 483, 484. Mode of Action. The most feasible explanation for the antimicrobial action of alcohol is denaturation of proteins. This mechanism is supported by the observation that absolute ethyl alcohol, a dehydrating agent, is less bactericidal than mixtures of alcohol and water because proteins are denatured more quickly in the presence of water 484, 485. Protein denaturation also is consistent with observations that alcohol destroys the dehydrogenases of Escherichia coli 486, and that ethyl alcohol increases the lag phase of Enterobacter aerogenes 487 and that the lag phase e!ect could be reversed by adding certain amino acids. The bacteriostatic action was believed caused by inhibition of the production of metabolites essential for rapid cell division. Microbicidal Activity. Methyl alcohol (methanol) has the weakest bactericidal action of the alcohols and thus seldom is used in healthcare 488. The bactericidal activity of various concentrations of ethyl alcohol (ethanol) was examined against a variety of microorganisms in exposure periods ranging from 10 seconds to 1 hour 483.
    [Show full text]
  • Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008
    Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 William A. Rutala, Ph.D., M.P.H.1,2, David J. Weber, M.D., M.P.H.1,2, and the Healthcare Infection Control Practices Advisory Committee (HICPAC)3 1Hospital Epidemiology University of North Carolina Health Care System Chapel Hill, NC 27514 2Division of Infectious Diseases University of North Carolina School of Medicine Chapel Hill, NC 27599-7030 1 Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 3HICPAC Members Robert A. Weinstein, MD (Chair) Cook County Hospital Chicago, IL Jane D. Siegel, MD (Co-Chair) University of Texas Southwestern Medical Center Dallas, TX Michele L. Pearson, MD (Executive Secretary) Centers for Disease Control and Prevention Atlanta, GA Raymond Y.W. Chinn, MD Sharp Memorial Hospital San Diego, CA Alfred DeMaria, Jr, MD Massachusetts Department of Public Health Jamaica Plain, MA James T. Lee, MD, PhD University of Minnesota Minneapolis, MN William A. Rutala, PhD, MPH University of North Carolina Health Care System Chapel Hill, NC William E. Scheckler, MD University of Wisconsin Madison, WI Beth H. Stover, RN Kosair Children’s Hospital Louisville, KY Marjorie A. Underwood, RN, BSN CIC Mt. Diablo Medical Center Concord, CA This guideline discusses use of products by healthcare personnel in healthcare settings such as hospitals, ambulatory care and home care; the recommendations are not intended for consumer use of the products discussed. 2
    [Show full text]
  • FACT SHEET Chemical Disinfectants
    FACT SHEET Chemical Disinfectants In the laboratory setting, chemical disinfection is the most common method employed to decontaminate surfaces and disinfect waste liquids. In most laboratories, dilutions of household bleach is the preferred method but there are many alternatives that may be considered and could be more appropriate for some agents or situations. There are numerous commercially available products that have been approved by the Environmental Protection Agency (EPA). EPA Registered Sterilizers, Tuberculocides, and Antimicrobial Products Against Certain Human Public Health Bacteria and Viruses can be found at https://www.epa.gov/pesticide- registration/selected-epa-registered-disinfectants Most EPA-registered disinfectants have a 10-minute label claim. However, OEHS Biosafety recommends a 15-20 minute contact time for disinfection/decontamination. General Considerations Prior to using a chemical disinfectant always consult the manufacturer’s instructions to determine the efficacy of the disinfectant against the biohazards in your lab and be sure to allow for sufficient contact time. In addition, consult the Safety Data Sheet for information regarding hazards, the appropriate protective equipment for handling the disinfectant and disposal of disinfected treated materials. Federal law requires all applicable label instructions on EPA-registered products to be followed (e.g., use-dilution, shelf life, storage, material compatibility, safe use, and disposal). Do not attempt to use a chemical disinfectant for a purpose it was not designed for. • When choosing a disinfectant consider the following: • The microorganisms present • The item to be disinfected or surface(s) • Corrosivity or hazards associated with the chemicals in the disinfectant • Ease of use 1. Organism Sensitivity and Resistant Organisms The innate characteristics of microorganisms often determine its sensitivity to chemical disinfection (Table 1).
    [Show full text]
  • Evaluation of Glutaraldehyde, Chloramine-T, Bronopol, Incimaxx
    re Rese tu arc ul h c & a u D Grasteau et al., J Aquac Res Development 2015, 6:12 q e A v f e l o o l p a http://dx.doi.org/10.4172/2155-9546.1000382 m Aquaculture n r e u n o t J ISSN: 2155-9546 Research & Development Research Article Article OpenOpen Access Access Evaluation of Glutaraldehyde, Chloramine-T, Bronopol, Incimaxx Aquatic® and Hydrogen Peroxide as Biocides against Flavobacterium psychrophilum for Sanitization of Rainbow Trout Eyed Eggs Alexandra Grasteau1, Thomas Guiraud1, Patrick Daniel2, Ségolène Calvez3, Valérie Chesneau4 and Michel Le Hénaff1* 1Bordeaux University, CNRS UMR EPOC, Talence, France 2Laboratoire des Pyrénées et des Landes, Mont de Marsan, France 3LUNAM University, Oniris, UMR INRA BioEpAR, Nantes, France 4Groupement de Défense Sanitaire Aquacole d'Aquitaine, Mont de Marsan, France Abstract The effective conditions of glutaraldehyde, chloramine-T, bronopol, Incimaxx Aquatic® and hydrogen peroxide as some biocides commonly used by the aquaculture industry were investigated against F. psychrophilum in sanitization of rainbow trout eyed eggs. Bacteriostatic tests as well as bactericidal tests using ethidium monoazide bromide PCR assays were conducted in vitro on Flavobacterium psychrophilum while impacts of chemical treatments were studied in vivo on 240 [°C × days] rainbow trout eyed eggs. A 20-min contact time with bronopol (up to 2,000 ppm), chloramine-T (up to 1,200 ppm), glutaraldehyde (up to 1,500 ppm), hydrogen peroxide (up to 1,500 ppm) or with Incimaxx Aquatic® (up to 185 ppm, eq. peracetic acid) was effective against F. psychrophilum and did not affect the eyed eggs/fry viability.
    [Show full text]
  • Guideline for Use of High Level Disinfectants & Sterilants For
    Guideline for Use of High Level Disinfectants & Sterilants for Reprocessing Flexible Gastrointestinal Endoscopes Guideline for Use of High Level Disinfectants & Sterilants for Reprocessing Flex. Gastrointestinal Endoscopes Acknowledgements Copyright © 2013. Society of Gastroenterology Nurses and Associates, Inc. (SGNA). First published 1998, 2003, 2006, 2007, 2010 & 2013. This document was prepared and written by the SGNA Practice Committee and adopted by the SGNA Board of Directors. It is published as a service to SGNA members. SGNA Practice Committee 2013-14 Michelle R. Juan, MSN, RN, CGRN - Chair Ann Herrin, BSN, RN, CGRN - Co-chair Catherine Concert, DNP, RN, FNP-BC, CGRN Judy Lindsay, MA, BSN, RN, CGRN Midolie Loyola, MSN, RN, CGRN Beja Mlinarich, BSN, RN, CAPA Marilee Schmelzer, PhD, RN Sharon Yorde, BSN, RN, CGRN Kristine Barman, BSN, RN, CGRN Cynthia M. Friis, Med, BSN, RN-BC Reprints are available for purchase from SGNA Headquarters. To order, contact: Department of Membership Services Society of Gastroenterology Nurses and Associates, Inc. 330 North Wabash Chicago, IL 60611-4267 Tel: (800) 245-SGNA or (312) 321-5165 Fax: (312) 673-6694 Online: www.SGNA.org Email: [email protected] Disclaimer The Society of Gastroenterology Nurses and Associates, Inc. (SGNA) presents this guideline for use in developing institutional policies, procedures, and/or protocols. Information contained in this guideline is based on current published data and current practice at the time of publication. The Society of Gastroenterology Nurses and Associates, Inc. assumes no responsibility for the practices or recommendations of any member or other practitioner, or for the policies and practices of any practice setting. Nurses and associates function within the limits of state licensure, state nurse practice act, and/or institutional policy.
    [Show full text]
  • Disinfection and Sterilization
    Disinfection and Sterilization William A. Rutala, Ph.D., M.P.H. University of North Carolina (UNC) Health Care System and UNC at Chapel Hill, NC Disinfection and Sterilization z HICPAC Guideline z Provide overview of disinfection and sterilization principles z Emerging pathogens and prions z Current Research Clostridium difficile Ophthalmic equipment (applanation tonometers) Infrared coagulation Microfiber mops Computer keyboards QUAT absorption Failure to follow disinfection/sterilization principles and patient exposures 1 disinfectionandsterilization.org Disinfection and Sterilization in Healthcare Facilities WA Rutala, DJ Weber, and HICPAC, “In press” z Overview Last CDC guideline in 1985 274 pages (>130 pages preamble, 21 pages recommendations, glossary of terms, tables/figures, >1000 references) Evidence-based guideline Cleared by HICPAC February 2003 Reviewed by OMB Publication in December 2006 2 Efficacy of Disinfection/Sterilization Influencing Factors Cleaning of the object Organic and inorganic load present Type and level of microbial contamination Concentration of and exposure time to disinfectant/sterilant Nature of the object Temperature and relative humidity 3 Disinfection and Sterilization EH Spaulding believed that how an object will be disinfected depended on the object’s intended use. CRITICAL - objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile. SEMICRITICAL - objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms but high numbers of bacterial spores. NONCRITICAL -objects that touch only intact skin require low-level disinfection. 4 Processing “Critical” Patient Care Objects Classification: Critical objects enter normally sterile tissue or vascular system, or through which blood flows.
    [Show full text]
  • Paul-Ehrlich-Institut Bundesinstitut Für Impfstoffe Und Biomedizinische Arzneimittel Federal Institute for Vaccines and Biomedicines
    Paul-Ehrlich-Institut Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel Federal Institute for Vaccines and Biomedicines PAUL-EHRLICH-INSTITUT Paul-Ehrlich-Straße 51-59 D-63225 Langen MUTUAL RECOGNITION PROCEDURE MUMS PRODUCT PUBLICLY AVAILABLE ASSESSMENT REPORT FOR A VETERINARY MEDICINAL PRODUCT CLOSTRIPORC A Clostridium perfringens type A – toxoid vaccine, for pigs (pregnant sows and gilts) 1/14 Clostriporc A DE/V/0262/001/MR IDT Mutual Recognition Procedure Public assessment report ______________________________________________________________________ PRODUCT SUMMARY EU Procedure number DE/V/0262/001/MR Name, strength and Clostriporc A pharmaceutical form Clostridium perfringens type A – toxoid vaccine, for pigs (pregnant sows and gilts) Suspension for injection for subcutaneous use Applicant IDT Biologika GmbH Am Pharmapark 06861 Dessau-Roßlau Germany Active substance(s) One vaccine dose (2 ml) contains: Immunologically active substance Clostridium perfringens type A toxoids: alpha toxoid min. 125 rU*/ ml beta2 toxoid min. 770 rU* /ml * toxoid content in relative units per ml, determined in ELISA against an internal standard Adjuvant Montanide Gel 37.4-51.5 mmol/l titratable acrylate units Excipients Thiomersal 0.2 mg ATC Vetcode QI09AB12 Target species pigs (pregnant sows and gilts) Indication for use For the passive immunisation of piglets by active immunisation of pregnant sows and gilts to reduce clinical signs during the first days of life caused by Clostridium perfringens type A expressing alpha and beta2 toxins. This protection was proven in a challenge test with toxins on sucklers on the first day of life. Serological data show that neutralising antibodies are present up to the 4th week after birth. 2/14 Clostriporc A DE/V/0262/001/MR IDT Mutual Recognition Procedure Public assessment report ______________________________________________________________________ Summary of Product Characteristics 1.
    [Show full text]