(12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Identificación Computacional De Nuevos Compuestos Líderes Con Actividad Analgésica
IDENTIFICACIÓN COMPUTACIONAL DE NUEVOS COMPUESTOS LÍDERES CON ACTIVIDAD ANALGÉSICA Autor: Earmin Shangoo. Tutores: Dr. Yovani Marrero Ponce MSc. Arelys López Sacerio Lic. Gerardo Maikel Casañola Martín “Año 49 de la Revolución Cubana” Curso 2006-2007 PENSAMIENTO “For all flesh is as grass, and all the glory of man as the flower of grass. The grass withereth, and the flower thereof falleth away: But the word of the Lord endureth for ever.” 1 Peter1:24,25. “Todo carne es como hierba y toda la gloria del hombre como flor de la hierba; la hierba se seca y la flor se cae, mas la palabra del Señor permanece para siempre.” 1 Pedro 1:24,25. DEDICATORIA For all my friends and family, especially my daughter, Naarah Melani Nerissa Athanase and my husband, Jeremiah Wayn Athanase, with love and admiration. “I have fought a good fight, I have finished my course…” 2Tim 4:7. Con mucho cariño y admiración, a todas mis amigos y mi familia en particular a mi hija, Naarah Melani Nerissa Athanase y mi esposo, Jeremiah Wayn Athanase. “He peleada la buena batalla, he acabado la carrera…” 2Ti 4:7 AGRADECIMIENTOS For me it is an enormous pleasure to be able to express my sincere gratefulness to all those people that in one way or another has helped me to successfully culminate my studies and this work. I would especially like to thank God because without him I am nothing; to my family for their faith, support, love and patience; to my tutors especially Arelys for their attention, dedication and orientation during this work; to all the professors of the career that made possible with their patient, constant and opportune help my formation as a pharmaceutical professional; to my friends, in particular to Solange and Harun; to all thank you. -
TARIF DES DOUANES - ANNEXE 99 - I
TARIF DES DOUANES - ANNEXE 99 - i Chapitre 99 DISPOSITIONS DE CLASSIFICATION SPÉCIALE - COMMERCIALES Notes. 1. Les dispositions du présent Chapitre ne sont pas régies par la règle de spécificité de la Règle générale interprétative 3 a). 2. Les marchandises qui peuvent être classées dans les dispositions du Chapitre 99, sont classées dans le Chapitre 98 si elles peuvent également être classées dans ce chapitre. 3. Les marchandises peuvent être classées dans un numéro tarifaire du présent Chapitre et peuvent bénéficier des taux de droits de douane du tarif de la nation la plus favorisée ou du tarif de préférence prévus au présent Chapitre qui s’appliquent à ces marchandises selon le traitement tarifaire applicable selon le pays d’origine, mais ce classement est subordonné au classement préalable de celles-ci dans un numéro tarifaire des Chapitres 1 à 97 et à l’observation des conditions prévues par les textes d’application qui leurs sont applicables. 4. Les termes utilisés dans ce Chapitre et dans les Chapitres 1 à 97 s’entendent au sens de ces derniers Chapitres. Émis 1 janvier 2018 99 - 1 TARIF DES DOUANES - ANNEXE Numéro Unité Tarif de la Tarif de préférence SS Dénomination des marchandises tarifaire de mes. N.P.F. applicable 9901.00.00 Articles et matières devant servir à la fabrication ou à la réparation des En fr. TPAC, TPMD, TPG, produits suivants devant être utilisés dans la pêche commerciale ou TÉU, TM, TMÉU, TACI, dans la récolte commerciale de plantes aquatiques : TC, TCR, TI, TN, TSL, TP, TCOL, TJ, TPA, Appâts artificiels; TNH, TKR, TCUE, TUA : En fr. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
Genetically Modified Baculoviruses for Pest
INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7. -
)&F1y3x PHARMACEUTICAL APPENDIX to THE
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE -
Alfadolone Acetate (BANM, Rinnm) 362: 1749–57
1780 General Anaesthetics blood, then to the brain; recovery is a function of the zolam, and other anaesthetics such as etomidate, propofol, ful if the patient’s cooperation is required, as conscious- removal of the anaesthetic from the brain. With inject- or ketamine. Small doses of short-acting opioids, for ex- ness soon returns once the nitrous oxide is stopped. The able anaesthetics their activity is similarly dependent ample alfentanil, fentanyl, or remifentanil, given before or neuroleptic most commonly employed was droperidol and on their ability to penetrate the blood/brain barrier and at induction allow the use of smaller induction doses of it was usually used with fentanyl although other opioids recovery in turn is governed by their redistribution and some drugs used for anaesthesia, and this technique is par- have also been used. These procedures have since evolved ticularly suitable for poor-risk patients. into conscious sedation and monitored anaesthetic care excretion. The potency of inhalational anaesthetics is After induction, muscle relaxation with a rapidly acting techniques employing newer drugs. often expressed in terms of minimum alveolar concen- depolarising neuromuscular blocker such as suxamethoni- Ketamine used alone can produce a state of dissociative trations, known as MAC values. The MAC of an um aids intubation of the patient. Longer acting, compet- anaesthesia similar to that of neuroleptanalgesia in which anaesthetic is the concentration at 1 atmosphere that itive neuromuscular blockers may then be given to allow the patient may appear to be awake but is unconscious. will produce immobility in 50% of subjects exposed to procedures such as abdominal surgery to be carried out un- Marked analgesia and amnesia are produced, but there a noxious stimulus. -
G Genito Urinary System and Sex Hormones
WHO/EMP/RHT/TSN/2018.2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Learning clinical pharmacology with the use of INNs and their stems. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.2). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. -
PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
Preparation and Chiral HPLC Separation of the Enantiomeric Forms of Natural Prostaglandins
Article Preparation and Chiral HPLC Separation of the Enantiomeric Forms of Natural Prostaglandins Márton Enesei 1,2,László Takács 2, Enik˝oTormási 3, Adrienn Tóthné Rácz 3, Zita Róka 3, Mihály Kádár 3 and Zsuzsanna Kardos 2,* 1 Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, M˝uegyetemrakpart 3, 1111 Budapest, Hungary; [email protected] 2 CHINOIN, a member of Sanofi Group, PG Development, Tó utca 1-5, 1045 Budapest, Hungary; laszlo.takacs@sanofi.com 3 CHINOIN, a member of Sanofi Group, PG Analytics, Tó utca 1-5, 1045 Budapest, Hungary; robertne.tormasi@sanofi.com (E.T.); adrienn.tothneracz@sanofi.com (A.T.R.); zita.roka@sanofi.com (Z.R.); mihaly.kadar@sanofi.com (M.K.) * Correspondence: zsuzsanna.kardos@sanofi.com Received: 15 June 2020; Accepted: 10 August 2020; Published: 18 August 2020 Abstract: Four enantiomeric forms of natural prostaglandins, ent-PGF α (( )-1), ent-PGE ((+)-2) 2 − 2 ent-PGF α (( )-3), and ent-PGE ((+)-4) have been synthetized in gram scale by Corey synthesis used 1 − 1 in the prostaglandin plants of CHINOIN, Budapest. Chiral HPLC methods have been developed to separate the enantiomeric pairs. Enantiomers of natural prostaglandins can be used as analytical standards to verify the enantiopurity of synthetic prostaglandins, or as biomarkers to study oxidation processes in vivo. Keywords: preparation; ent-PGF2α; ent-PGF1α; ent-PGE2; ent-PGE1; chiral HPLC; enantiomeric separation; mirror images; enantiopurity 1. Introduction Interest in the field of prostaglandins has been steadily growing since the basic work of Bergström Samuelsson, and Vane [1–3]. Their discoveries revealed the structure, the enzyme-controlled biochemical synthesis from arachidonic acid, and the main physiological effects of prostaglandins as well as their related substances. -
Pharmaceutical Appendix to the Harmonized Tariff Schedule
Harmonized Tariff Schedule of the United States (2019) Revision 13 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2019) Revision 13 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
Drugs Influencing Cognitive Function
Indian J Physiol Phannacol 1994; 38(4) : 241-251 RE\llEW ARTICLE DRUGS INFLUENCING COGNITIVE FUNCTION ALICE KURUYILLA* AND YASUNDARA DEYI Department ofPharmacology. Christian Medical College. Vellore - 632 002 DRUGS INFLUENCING COGNITIVE FUNCTION cerebrovascular disorders with dementias and reversible dementias. Drugs can inOuence cognitive function in several different ways. The cognitrve enhancers or nootropics Primary degenerative disorders include the have become a major issue in drug development during subgroups senile dementia of the Alzheimer's type the last decade. Nootropics arc defined as drugs that (SDAT), Alzheimer's disease, Picks disease and generally increase neuron metabolic activity, improve Huntington's chorea (4). Alzheimer's disease usually cognitive and ,'igilance level and are said to have occurs in individuals past 70 years old and appears to antidemcntia effect (I). These drugs are essential for be in part genetically determin'd (5). the treatment of geriatric disorders like Alzheimer's which have become one of the major problems socially Pathophysiology oj Alzheimer's disease : and medically. Considerable evidence has been gathered Extensive research in the recent years has made major in the last decade to support the observation that advances in understanding the pathogenesis of children with epilepsy have morc learning difficulties Alzheimer's disease (6). The hallmark lesions of than age matched controls (2, 3). Anti-epileptic drugs Alzheimer's disease are neuritic plaques and are useful in controlling the frequency and duration of neurofibrillary tangles. Two amyloid proteins seizures. These drugs can also be the source of side accumulate in Alzheimer's disease, these arc beta effects including cognitive impairment. -
Discovery, Synthesis and Structure-Activity Relationship Study
Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Fall 12-18-2020 Antiparasitic Peptide from the Ocean: Discovery, Synthesis and Structure-Activity Relationship Study Kh Tanvir Ahmed Follow this and additional works at: https://dsc.duq.edu/etd Part of the Medicinal Chemistry and Pharmaceutics Commons Recommended Citation Ahmed, K. (2020). Antiparasitic Peptide from the Ocean: Discovery, Synthesis and Structure-Activity Relationship Study (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1924 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. ANTIPARASITIC PEPTIDE FROM THE OCEAN: DISCOVERY, SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIP STUDY A Thesis Submitted to the Graduate School of Pharmaceutical Sciences Duquesne University In partial fulfillment of the requirements for the degree of Master of Science By Kh Tanvir Ahmed December 2020 Copyright by Kh Tanvir Ahmed 2020 ANTIPARASITIC PEPTIDE FROM THE OCEAN: DISCOVERY, SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIP STUDY By Kh Tanvir Ahmed Approved August 21, 2020 ________________________________ ________________________________ Kevin J. Tidgewell, Ph.D. Aleem Gangjee, Ph.D. Associate Professor of Medicinal Professor of Medicinal Chemistry Chemistry (Committee Member) (Committee Chair) ________________________________ ________________________________