Effects of Alfaxalone Or Propofol on Giant-Breed Dog Neonates Viability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
268 Part 522—Implantation Or Injectable Dosage Form
§ 520.2645 21 CFR Ch. I (4–1–18 Edition) (ii) Indications for use. For the control 522.82 Aminopropazine. of American foulbrood (Paenibacillus 522.84 Beta-aminopropionitrile. larvae). 522.88 Amoxicillin. 522.90 Ampicillin injectable dosage forms. (iii) Limitations. The drug should be 522.90a Ampicillin trihydrate suspension. fed early in the spring or fall and con- 522.90b Ampicillin trihydrate powder for in- sumed by the bees before the main jection. honey flow begins, to avoid contamina- 522.90c Ampicillin sodium. tion of production honey. Complete 522.144 Arsenamide. treatments at least 4 weeks before 522.147 Atipamezole. main honey flow. 522.150 Azaperone. 522.161 Betamethasone. [40 FR 13838, Mar. 27, 1975, as amended at 50 522.163 Betamethasone dipropionate and FR 49841, Dec. 5, 1985; 59 FR 14365, Mar. 28, betamethasone sodium phosphate aque- 1994; 62 FR 39443, July 23, 1997; 68 FR 24879, ous suspension. May 9, 2003; 70 FR 69439, Nov. 16, 2005; 73 FR 522.167 Betamethasone sodium phosphate 76946, Dec. 18, 2008; 75 FR 76259, Dec. 8, 2010; and betamethasone acetate. 76 FR 59024, Sept. 23, 2011; 77 FR 29217, May 522.204 Boldenone. 17, 2012; 79 FR 37620, July 2, 2014; 79 FR 53136, 522.224 Bupivacaine. Sept. 8, 2014; 79 FR 64116, Oct. 28, 2014; 80 FR 522.230 Buprenorphine. 34278, June 16, 2015; 81 FR 48702, July 26, 2016] 522.234 Butamisole. 522.246 Butorphanol. § 520.2645 Tylvalosin. 522.275 N-Butylscopolammonium. 522.300 Carfentanil. (a) Specifications. Granules containing 522.304 Carprofen. 62.5 percent tylvalosin (w/w) as 522.311 Cefovecin. -
Alfadolone Acetate (BANM, Rinnm) 362: 1749–57
1780 General Anaesthetics blood, then to the brain; recovery is a function of the zolam, and other anaesthetics such as etomidate, propofol, ful if the patient’s cooperation is required, as conscious- removal of the anaesthetic from the brain. With inject- or ketamine. Small doses of short-acting opioids, for ex- ness soon returns once the nitrous oxide is stopped. The able anaesthetics their activity is similarly dependent ample alfentanil, fentanyl, or remifentanil, given before or neuroleptic most commonly employed was droperidol and on their ability to penetrate the blood/brain barrier and at induction allow the use of smaller induction doses of it was usually used with fentanyl although other opioids recovery in turn is governed by their redistribution and some drugs used for anaesthesia, and this technique is par- have also been used. These procedures have since evolved ticularly suitable for poor-risk patients. into conscious sedation and monitored anaesthetic care excretion. The potency of inhalational anaesthetics is After induction, muscle relaxation with a rapidly acting techniques employing newer drugs. often expressed in terms of minimum alveolar concen- depolarising neuromuscular blocker such as suxamethoni- Ketamine used alone can produce a state of dissociative trations, known as MAC values. The MAC of an um aids intubation of the patient. Longer acting, compet- anaesthesia similar to that of neuroleptanalgesia in which anaesthetic is the concentration at 1 atmosphere that itive neuromuscular blockers may then be given to allow the patient may appear to be awake but is unconscious. will produce immobility in 50% of subjects exposed to procedures such as abdominal surgery to be carried out un- Marked analgesia and amnesia are produced, but there a noxious stimulus. -
G Genito Urinary System and Sex Hormones
WHO/EMP/RHT/TSN/2018.2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Learning clinical pharmacology with the use of INNs and their stems. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.2). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. -
Pharmacology – Inhalant Anesthetics
Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers. -
(12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO). -
The Cardiorespiratory and Anesthetic Effects of Clinical and Supraclinical
THE CARDIORESPIRATORY AND ANESTHETIC EFFECTS OF CLINICAL AND SUPRA CLINICAL DOSES OF ALF AXALONE IN CYCLODEXTRAN IN CATS AND DOGS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Laura L. Nelson, B.S., D.V.M. * * * * * The Ohio State University 2007 Dissertation Committee: Professor Jonathan Dyce, Adviser Professor William W. Muir III Professor Shane Bateman If I have seen further, it is by standing on the shoulders of giants. lmac Ne1vton (1642-1727) Copyright by Laura L. Nelson 2007 11 ABSTRACT The anesthetic properties of steroid hormones were first identified in 1941, leading to the development of neurosteroids as clinical anesthetics. CT-1341 was developed in the early 1970’s, featuring a combination of two neurosteroids (alfaxalone and alphadolone) solubilized in Cremophor EL®, a polyethylated castor oil derivative that allows hydrophobic compounds to be carried in aqueous solution as micelles. Though also possessing anesthetic properties, alphadolone was included principally to improve the solubility of alfaxalone. CT-1341, marketed as Althesin® and Saffan®, was characterized by smooth anesthetic induction and recovery in many species, a wide therapeutic range, and no cumulative effects with repeated administration. Its cardiorespiratory effects in humans and cats were generally mild. However, it induced severe hypersensitivity reactions in dogs, with similar reactions occasionally occurring in cats and humans. The hypersensitivity reactions associated with this formulation were linked to Cremophor EL®, leading to the discontinuation of Althesin® and some other Cremophor®-containing anesthetics. More recently, alternate vehicles for hydrophobic drugs have been developed, including cyclodextrins. -
Intravenous Alfaxalone Anaesthesia in Two Squamate Species: Eublepharis Macularius and Morelia Spilota Cheynei
INTRAVENOUS ALFAXALONE ANAESTHESIA IN TWO SQUAMATE SPECIES: EUBLEPHARIS MACULARIUS AND MORELIA SPILOTA CHEYNEI Tesi per il XXIX Ciclo del Dottorato in Scienze Veterinarie, Curriculum Scienze Cliniche Veterinarie Dipartimento di Scienze Veterinarie, Universita’ degli Studi di Messina Tutor: Prof. Filippo Spadola Cotutor: Prof. Zdenek Knotek Dr. Manuel Morici Sommario L’anestesia negli Squamati è una costante sfida della medicina e chirurgia dei rettili. Le differenze morfo-fisiologiche di questi taxa, rendono difficilmente applicabile i comuni concetti di anestesiologia veterinaria usati con successo negli altri animali da compagnia. Diversi protocolli anestetici sono stati utilizzati, sia per l’induzione che per il mantenimento, sia negli ofidi che nei sauri, ma con risultati variabili. Di fatti la maggior parte dei protocolli risultano in induzione o recuperi troppo brevi o troppo lunghi. L’obbiettivo di questa tesi dottorale è di valutare l’efficacia di un anestetico steroideo (alfaxalone), somministrato per via endovenosa in due specie di squamati usati come modello: il geco leopardo (Eublepharis macularius) e il pitone tappeto (Morelia spilota cheynei). Due metodi di somministrazione endovenosa (vena giugulare nei gechi e vena caudale nei serpenti) sono stati analizzati e descritti, usando un dosaggio di anestetico di 5 mg/kg in 20 gechi leopardo, e di 10 mg/kg in 10 pitoni tappeto. Nei gechi il tempo di induzione, il tempo di perdita del tono mandibolare, l’intervallo di anestesia chirurgica e il recupero completo sono stati rispettivamente di 27.5 ± 30.7 secondi, 1.3 ± 1.4 minuti, 12.5 ± 2.2 minuti and 18.8 ± 12.1 minuti. Nei pitoni tappeto, il tempo di induzione, la perdita di sensazione, il tempo di inserimento del tubo endotracheale, l’intervallo di anestesia chirurgica e il recupero sono stati rispettivamente di 3.1±0.8 minuti, 5.6±0.7 minuti, 6.9±0.9 minuti, 18.8±4.7 minuti, e 36.7±11.4 minuti. -
240 Part 522—Implantation Or Injectable Dosage Form
§ 520.2645 21 CFR Ch. I (4–1–14 Edition) feed; and for the control of porcine pro- (3) Limitations. Federal law restricts liferative enteropathies (PPE, ileitis) this drug to use by or on the order of a associated with Lawsonia intracellularis licensed veterinarian. when followed immediately by tylosin [77 FR 55415, Sept. 10, 2012] phosphate medicated feed. (B) For the treatment and control of PART 522—IMPLANTATION OR swine dysentery associated with Brachyspira hyodysenteriae. INJECTABLE DOSAGE FORM NEW (iii) Limitations. Prepare a fresh solu- ANIMAL DRUGS tion daily. Do not administer within 48 Sec. hours of slaughter. As indicated in 522.23 Acepromazine. paragraph (d)(3)(ii)(A) of this section, 522.52 Alfaxalone. follow with tylosin phosphate medi- 522.56 Amikacin. cated feed as in § 558.625(f)(1)(vi)(c) of 522.62 Aminopentamide. this chapter. 522.82 Aminopropazine. (4) Honey bees—(i) Amount. Mix 200 522.84 Beta-aminopropionitrile. milligrams tylosin in 20 grams confec- 522.88 Amoxicillin. 522.90 Ampicillin injectable dosage forms. tioners’/powdered sugar. Use imme- 522.90a Ampicillin trihydrate suspension. diately. Apply (dust) this mixture over 522.90b Ampicillin trihydrate powder for in- the top bars of the brood chamber once jection. weekly for 3 weeks. 522.90c Ampicillin sodium. (ii) Indications for use. For the control 522.144 Arsenamide. of American foulbrood (Paenibacillus 522.147 Atipamezole. 522.150 Azaperone. larvae). 522.161 Betamethasone. (iii) Limitations. The drug should be 522.163 Betamethasone dipropionate and fed early in the spring or fall and con- betamethasone sodium phosphate aque- sumed by the bees before the main ous suspension. -
Anesthesia During Gestation and Its Effects on Newborn
Scientific Works. Series C. Veterinary Medicine. Vol. LXIII (1) ISSN 2065-1295; ISSN 2343-9394 (CD-ROM); ISSN 2067-3663 (Online); ISSN-L 2065-1295 increased cardiac work, and decreased an endotheliochorial and zonary type of peripheral vascular resistance. Other changes placenta (Miglino et al., 2006; Furukawa et al., ANESTHESIA DURING GESTATION AND ITS EFFECTS are respiratory, represented by decreased FRC, 2014). Most anesthetics cross the placenta and ON NEWBORN VIABILITY decreased total lung volume, increased minute the blood-brain barrier of the fetus. The ventilation and oxygen consumption, and permeability of the placenta differs depending Andra DEGAN, Dragoș BÎRȚOIU, Alexandru ȘONEA, Ruxandra COSTEA decreased PaCO2 (Ryan, Wagner, 2006; on type of placenta and the physicochemical Lemke, 2007; Branson, 2007). Dams and properties of the drugs. The endotheliochorial University of Agronomic Science and Veterinary Medicine, Faculty of Veterinary Medicine fetuses have an increased metabolic demand, placenta present in canines allows close Bucharest, 59 Marasti Blvd., District 1, Bucharest, Romania leading to a maternal blood volume increases maternal-fetal contact which facilitates the of approximately 40%. Plasma volume increase passive passage of drugs. Placental transfer of Corresponding author email: [email protected] is proportionally greater than the increase in drugs can occur by several mechanisms; by far, erythrocytes, leading to hemodilution and the most important is simple diffusion. Abstract: relative anemia (Seymour, 1999; Pascoe, Diffusion across the placenta is determined by During the gestation period, canine females go through physiological changes which can influence the way the Moon, 2001). A greater number of fetuses will molecular weight, the degree to which the drug anesthetics are absorbed, metabolized and excreted. -
Alfaxan® User Guide
Repeatable. Reliable. Relax. Alfaxan® User Guide Pre-anaesthetic assessment to recovery PRE-ANAESTHETIC ASSESSMENT INDUCTION TRANSITION Full clinical examination Draw up the full dose of Alfaxan® Connect to appropriate breathing system 2 mg/kg (0.2 mL/kg) for dogs CHECK FOR... LOOK OUT Suitable for anaesthesia? 5 mg/kg (0.5mL/kg) for cats FOR... 4 mg/kg (0.4 mL/kg) for rabbits YES NO Label the syringe Spontaneous ventilation? Take a ‘pre-induction’ Assign ASA score Further tests? heart rate YES NO Stabilise ASA PHYSICAL STATUS Re-assess CLASSIFICATION SYSTEM (Consider referral?) Secure IV access Ensure catheter is The five physical risk states are: intravenous and patent Supply maintenance Wait. If SPO2 ASA Physical Status 1 A normal healthy patient • Early plane of sedation agent and / or clinical signs indicate the ASA Physical Status 2 A patient with mild systemic disease Give ¼ of the induction dose • Degree of control Breathing need, start IPPV ASA Physical Status 3 A patient with severe systemic disease over the animal (Likely to be continuous) ASA Physical Status 4 A patient with severe systemic disease that is WAIT 15 SECONDS Heart Rate a constant threat to life (Alfaxan® is thought to LOOK OUT FOR... ASA Physical Status 5 A moribund patient who is not expected to Give another ¼ dose minimally affect cardiac survive without the operation function at clinical doses) If the animal has been presented as an emergency, the letter ‘E’ can be added to the recorded stage. WAIT 15 SECONDS Anaesthetic Depth • Adequate duration of action for It is essential that all patients are classified before any premedication is applied, and that smooth & unhurried transition consideration is paid to the classification in developing the patient’s anaesthetic protocol. -
24Hrs Patent Application Publication May 21 , 2020 Sheet 1 of 6 US 2020/0155522 A1
US 20200155522A1 IN (19 ) United States (12 ) Patent Application Publication ( 10 ) Pub . No.: US 2020/0155522 A1 Osten et al. (43 ) Pub . Date : May 21 , 2020 (54 ) GABOXADOL FOR REDUCING RISK OF Publication Classification SUICIDE AND RAPID RELIEF OF (51 ) Int. Ci. DEPRESSION A61K 31/437 (2006.01 ) A61K 31/135 (2006.01 ) ( 71) Applicant: Certego Therapeutics , Farmingdale , A61P 25/24 ( 2006.01 ) NY (US ) (52 ) U.S. CI. (72 ) Inventors: Pavel Osten , Brooklyn , NY (US ) ; CPC A61K 31/437 (2013.01 ) ; A61P 25/24 Kristin Baldwin , San Diego , CA (US ) ( 2018.01 ) ; A61K 31/135 ( 2013.01 ) (73 ) Assignee : Certego Therapeutics, Farmingdale , ( 57 ) ABSTRACT NY (US ) Methods and compositions are disclosed for rapidly reduc (21 ) Appl. No.: 16 /691,049 ing the risk of suicide in patients suffering from acute suicidality and rapidly relieving mood symptoms in major ( 22 ) Filed : Nov. 21 , 2019 depression and treatment - resistant depression using a novel therapeutic regimen comprising a single or intermittent Related U.S. Application Data administration of a high dose of gaboxadol, or a pharma (60 ) Provisional application No.62 / 770,287 , filed on Nov. ceutically acceptable salt thereof, to the subject n need 21 , 2018 . thereof. 220 I ther 24hrs Patent Application Publication May 21 , 2020 Sheet 1 of 6 US 2020/0155522 A1 FIGURE1:METHODFORWHOLE-BRAINPHARMACOMAPSREPRESENTINGDRUGEVOKED ACTIVATIONINTHEMOUSE. Patent Application Publication May 21 , 2020 Sheet 2 of 6 US 2020/0155522 A1 FIGURE 2 : KETAMINE DOSE - CURVE PHARMACOMAPS , Ketamine