The Cardiorespiratory and Anesthetic Effects of Clinical and Supraclinical

Total Page:16

File Type:pdf, Size:1020Kb

The Cardiorespiratory and Anesthetic Effects of Clinical and Supraclinical THE CARDIORESPIRATORY AND ANESTHETIC EFFECTS OF CLINICAL AND SUPRA CLINICAL DOSES OF ALF AXALONE IN CYCLODEXTRAN IN CATS AND DOGS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Laura L. Nelson, B.S., D.V.M. * * * * * The Ohio State University 2007 Dissertation Committee: Professor Jonathan Dyce, Adviser Professor William W. Muir III Professor Shane Bateman If I have seen further, it is by standing on the shoulders of giants. lmac Ne1vton (1642-1727) Copyright by Laura L. Nelson 2007 11 ABSTRACT The anesthetic properties of steroid hormones were first identified in 1941, leading to the development of neurosteroids as clinical anesthetics. CT-1341 was developed in the early 1970’s, featuring a combination of two neurosteroids (alfaxalone and alphadolone) solubilized in Cremophor EL®, a polyethylated castor oil derivative that allows hydrophobic compounds to be carried in aqueous solution as micelles. Though also possessing anesthetic properties, alphadolone was included principally to improve the solubility of alfaxalone. CT-1341, marketed as Althesin® and Saffan®, was characterized by smooth anesthetic induction and recovery in many species, a wide therapeutic range, and no cumulative effects with repeated administration. Its cardiorespiratory effects in humans and cats were generally mild. However, it induced severe hypersensitivity reactions in dogs, with similar reactions occasionally occurring in cats and humans. The hypersensitivity reactions associated with this formulation were linked to Cremophor EL®, leading to the discontinuation of Althesin® and some other Cremophor®-containing anesthetics. More recently, alternate vehicles for hydrophobic drugs have been developed, including cyclodextrins. Cyclodextrins are rings of α-1,4-linked glucose subunits that feature a hydrophilic exterior and hydrophobic interior that allows them to complex with iii appropriately sized hydrophobic drugs. One such molecule, hydroxy-β-cyclodextrin, has a very wide therapeutic index, increases the solubility of alfaxalone by over 8,000 times, and has been combined with alfaxalone as Alfaxan-CD RTU®. The objectives of the described studies were to administer clinical and supraclinical doses of Alfaxan-CD RTU®, to assess the resultant quality of anesthesia, and to assess anesthetic effects on hemodynamic, respiratory, pH, and blood gas variables. We hypothesized that Alfaxan-CD RTU® would produce general anesthesia of rapid onset and brief duration in healthy dogs and cats, that minimal cardiorespiratory depression would result from clinical doses, and that no histaminoid reactions would occur. Eight healthy adult cats and dogs were included in the study. Each cat was sequentially administered placebo, 5 mg/kg, 15 mg/kg, and 50 mg/kg of Alfaxan-CD RTU®, with washout periods of 1, 3, and 24 hours between treatments, respectively. Monitored parameters included respiratory rate, tidal volume, minute volume, lead II electrocardiography, heart rate, arterial blood gas (pH, PaO2, PaCO2, and HCO3), systemic (systolic, mean, and diastolic) and pulmonary arterial pressures, and body temperature. Rate pressure product and systemic vascular resistance were calculated. The qualities of induction, anesthetic maintenance, and recovery and the response to a noxious stimulus were assessed as categorical variables. Alfaxan-CD RTU® doses of 2 mg/kg, 6 mg/kg, and 20 mg/kg were administered to each dog as blinded treatments in random order. Each treatment was followed by a 3 hour washout period. Monitored and calculated parameters were the same as for cats, with the addition of left ventricular end-diastolic pressure. iv In cats, dose-dependent decreases in heart rate, blood pressure, systemic vascular resistance, and rate pressure product were noted. These effects were most pronounced at the higher doses, with significant decreases in systolic arterial blood pressure and pulmonary arterial pressure after the 50 mg/kg doses. Hemodynamic changes were mild at the clinically recommended dose (5 mg/kg). Dose-dependent decreases in PaO2 occurred at all doses, but lasted for 30-60 minutes after the higher doses. The majority of cats at all doses required supplementation with 100% oxygen and mechanical ventilation after PaO2 dropped below 60 mmHg, including all cats at the highest dose. Apnea occurred in 1 and 2 cats at the 5 and 15 mg/kg doses, respectively, but occurred in all cats at the 50 mg/kg dose. Decreased tidal volume, pH, and HCO3, and increased PaCO2 also occurred at the 50 mg/kg dose. The qualities of induction and maintenance were excellent at all doses. The quality of recovery was excellent at lower doses, but poor in 5/7 cats at the 50 mg/kg dose due to prolonged recovery periods. In dogs, hemodynamic changes included dose-dependent decreases in systemic and pulmonary arterial pressures, rate pressure product, and systemic vascular resistance. Changes were generally mild and were most pronounced at the 6 and 20 mg/kg doses. Dose-dependent decreases in respiratory rate, minute volume, and PaO2 and decreases in PaCO2 and pH were also noted, but lasted for only 15 minutes and were most pronounced at the 20 mg/kg dose. Apnea was more frequent at higher doses. The quality of induction, maintenance, and recovery were good to excellent at all doses. The duration of anesthesia was dose-dependent. In conclusion, our studies indicate that Alfaxan-CD RTU® produced good to excellent anesthesia in cats, characterized by rapid induction to anesthesia, excellent v muscle relaxation, unresponsiveness to noxious stimuli, and smooth, uneventful recovery from anesthesia. Hypoventilation and apnea were uncommon at clinically relevant doses, but became the most important adverse effects when larger doses were administered rapidly IV. Arterial blood pressure remained stable following the IV administration of clinically relevant doses (<5 mg/kg) of Alfaxan® CD-RTU, but caution is advised with larger doses or with administration to animals with cardiovascular compromise. In dogs, Alfaxan®-CD RTU produced safe and effective anesthesia. Induction to anesthesia was rapid and uneventful. The maintenance and recovery periods were characterized by good to excellent muscle relaxation and analgesia. Cardiovascular status was well maintained when dosages of up to 6 mg/kg IV were administered. Respiratory depression and apnea were the only notable disadvantages, and then only when larger dosages (>6 mg/kg IV) are administered. Alfaxan®-CD RTU should be an excellent alternative to currently available injectable anesthetics when administered for short surgical procedures or as induction to inhalant anesthesia. vi Dedicated to my mother and father vu ACKNOWLEDGEMENTS I wish to thank Dr. William Muir for allowing me to participate in this endeavor and for his patience and assistance in its completion. This thesis would not exist without his help. I thank him for saving yet another lost graduate student. I thank my advisor, Dr. Jon Dyce, for his steadfast encouragement, advice, and assistance in this and other scholarly endeavors. I wish to thank Dr. Philip Lerche, whose work in securing funding for and completing these experiments was invaluable. I hope that my assistance in the completion of this project is of some help. Finally, the skilled assistance of Barbara Lang and Dr. Ashley Wiese in the performance of these experiments was deeply appreciated. I am truly indebted to all of the above individuals for their roles in every facet of this project. This research was funded by a grant from Jurox Pty. Ltd. Vlll VITA June 3, 1978 ....................................... Born - Canton, Ohio 1996-2003 ......................................... B.S. Zoology, The Ohio State University 1999-2003 ......................................... Doctor of Veterinary Medicine, The Ohio State University 2003-2004 ......................................... Small Animal Intern, Michigan State University College of Veterinary Medicine, East Lansing, Michigan 2004-present. ...................................... Resident in Small Animal Surgery, The Ohio State University PUBLICATIONS Research Publication 1. Kolin A, Gaumer J, Ravula V, Urban R, Gilbertson L, Bos G, Dey T, Nelson L, Dyce J, Lannutti J: Three-dimensional laser micrometry characterization of surface wear in total hip arthroplasty. J Biomed Mater Res B Appl Biomater 2007. FIELDS OF STUDY Major Field: Veterinary Anesthesia IX LIST OF TABLES Table Page 1.1 Main pharmacokinetic variables after bolus intravenous administration of alfaxalone as Alfaxan-CT RTU® in eight healthy beagle dogs .......................................................................... 14 2.1 Description of anesthetic induction, recovery, and maintenance scores ........................................................................................28 2.2 Hemodynamic average and standard deviation values for cats ..................... .29 2.3 Respiratory and blood gas average and standard deviation values for cats .............................................................................. 30 2.4 Summary of time-related and categorical, descriptive variables for Alfaxan-CD RTU® anesthesia in cats ............................................... 31 3.1 Hemodynamic average and standard deviation values for dogs ...................... 40 3 .2 Respiratory and blood gas average and standard deviation values for dogs ..............................................................................41
Recommended publications
  • Journal of Pharmacology and Experimental Therapeutics
    Journal of Pharmacology and Experimental Therapeutics Molecular Determinants of Ligand Selectivity for the Human Multidrug And Toxin Extrusion Proteins, MATE1 and MATE-2K Bethzaida Astorga, Sean Ekins, Mark Morales and Stephen H Wright Department of Physiology, University of Arizona, Tucson, AZ 85724, USA (B.A., M.M., and S.H.W.) Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina NC 27526, USA (S.E.) Supplemental Table 1. Compounds selected by the common features pharmacophore after searching a database of 2690 FDA approved compounds (www.collaborativedrug.com). FitValue Common Name Indication 3.93897 PYRIMETHAMINE Antimalarial 3.3167 naloxone Antidote Naloxone Hydrochloride 3.27622 DEXMEDETOMIDINE Anxiolytic 3.2407 Chlordantoin Antifungal 3.1776 NALORPHINE Antidote Nalorphine Hydrochloride 3.15108 Perfosfamide Antineoplastic 3.11759 Cinchonidine Sulfate Antimalarial Cinchonidine 3.10352 Cinchonine Sulfate Antimalarial Cinchonine 3.07469 METHOHEXITAL Anesthetic 3.06799 PROGUANIL Antimalarial PROGUANIL HYDROCHLORIDE 100MG 3.05018 TOPIRAMATE Anticonvulsant 3.04366 MIDODRINE Antihypotensive Midodrine Hydrochloride 2.98558 Chlorbetamide Antiamebic 2.98463 TRIMETHOPRIM Antibiotic Antibacterial 2.98457 ZILEUTON Antiinflammatory 2.94205 AMINOMETRADINE Diuretic 2.89284 SCOPOLAMINE Antispasmodic ScopolamineHydrobromide 2.88791 ARTICAINE Anesthetic 2.84534 RITODRINE Tocolytic 2.82357 MITOBRONITOL Antineoplastic Mitolactol 2.81033 LORAZEPAM Anxiolytic 2.74943 ETHOHEXADIOL Insecticide 2.64902 METHOXAMINE Antihypotensive Methoxamine
    [Show full text]
  • Analgesia and Sedation in Hospitalized Children
    Analgesia and Sedation in Hospitalized Children By Elizabeth J. Beckman, Pharm.D., BCPS, BCCCP, BCPPS Reviewed by Julie Pingel, Pharm.D., BCPPS; and Brent A. Hall, Pharm.D., BCPPS LEARNING OBJECTIVES 1. Evaluate analgesics and sedative agents on the basis of drug mechanism of action, pharmacokinetic principles, adverse drug reactions, and administration considerations. 2. Design an evidence-based analgesic and/or sedative treatment and monitoring plan for the hospitalized child who is postoperative, acutely ill, or in need of prolonged sedation. 3. Design an analgesic and sedation treatment and monitoring plan to minimize hyperalgesia and delirium and optimize neurodevelopmental outcomes in children. INTRODUCTION ABBREVIATIONS IN THIS CHAPTER Pain, anxiety, fear, distress, and agitation are often experienced by GABA γ-Aminobutyric acid children undergoing medical treatment. Contributory factors may ICP Intracranial pressure include separation from parents, unfamiliar surroundings, sleep dis- PAD Pain, agitation, and delirium turbance, and invasive procedures. Children receive analgesia and PCA Patient-controlled analgesia sedatives to promote comfort, create a safe environment for patient PICU Pediatric ICU and caregiver, and increase patient tolerance to medical interven- PRIS Propofol-related infusion tions such as intravenous access placement or synchrony with syndrome mechanical ventilation. However, using these agents is not without Table of other common abbreviations. risk. Many of the agents used for analgesia and sedation are con- sidered high alert by the Institute for Safe Medication Practices because of their potential to cause significant patient harm, given their adverse effects and the development of tolerance, dependence, and withdrawal symptoms. Added layers of complexity include the ontogeny of the pediatric patient, ongoing disease processes, and presence of organ failure, which may alter the pharmacokinetics and pharmacodynamics of these medications.
    [Show full text]
  • AHFS Pharmacologic-Therapeutic Classification System
    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
    [Show full text]
  • 268 Part 522—Implantation Or Injectable Dosage Form
    § 520.2645 21 CFR Ch. I (4–1–18 Edition) (ii) Indications for use. For the control 522.82 Aminopropazine. of American foulbrood (Paenibacillus 522.84 Beta-aminopropionitrile. larvae). 522.88 Amoxicillin. 522.90 Ampicillin injectable dosage forms. (iii) Limitations. The drug should be 522.90a Ampicillin trihydrate suspension. fed early in the spring or fall and con- 522.90b Ampicillin trihydrate powder for in- sumed by the bees before the main jection. honey flow begins, to avoid contamina- 522.90c Ampicillin sodium. tion of production honey. Complete 522.144 Arsenamide. treatments at least 4 weeks before 522.147 Atipamezole. main honey flow. 522.150 Azaperone. 522.161 Betamethasone. [40 FR 13838, Mar. 27, 1975, as amended at 50 522.163 Betamethasone dipropionate and FR 49841, Dec. 5, 1985; 59 FR 14365, Mar. 28, betamethasone sodium phosphate aque- 1994; 62 FR 39443, July 23, 1997; 68 FR 24879, ous suspension. May 9, 2003; 70 FR 69439, Nov. 16, 2005; 73 FR 522.167 Betamethasone sodium phosphate 76946, Dec. 18, 2008; 75 FR 76259, Dec. 8, 2010; and betamethasone acetate. 76 FR 59024, Sept. 23, 2011; 77 FR 29217, May 522.204 Boldenone. 17, 2012; 79 FR 37620, July 2, 2014; 79 FR 53136, 522.224 Bupivacaine. Sept. 8, 2014; 79 FR 64116, Oct. 28, 2014; 80 FR 522.230 Buprenorphine. 34278, June 16, 2015; 81 FR 48702, July 26, 2016] 522.234 Butamisole. 522.246 Butorphanol. § 520.2645 Tylvalosin. 522.275 N-Butylscopolammonium. 522.300 Carfentanil. (a) Specifications. Granules containing 522.304 Carprofen. 62.5 percent tylvalosin (w/w) as 522.311 Cefovecin.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Euthanasia of Experimental Animals
    EUTHANASIA OF EXPERIMENTAL ANIMALS • *• • • • • • • *•* EUROPEAN 1COMMISSIO N This document has been prepared for use within the Commission. It does not necessarily represent the Commission's official position. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1997 ISBN 92-827-9694-9 © European Communities, 1997 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged Printed in Belgium European Commission EUTHANASIA OF EXPERIMENTAL ANIMALS Document EUTHANASIA OF EXPERIMENTAL ANIMALS Report prepared for the European Commission by Mrs Bryony Close Dr Keith Banister Dr Vera Baumans Dr Eva-Maria Bernoth Dr Niall Bromage Dr John Bunyan Professor Dr Wolff Erhardt Professor Paul Flecknell Dr Neville Gregory Professor Dr Hansjoachim Hackbarth Professor David Morton Mr Clifford Warwick EUTHANASIA OF EXPERIMENTAL ANIMALS CONTENTS Page Preface 1 Acknowledgements 2 1. Introduction 3 1.1 Objectives of euthanasia 3 1.2 Definition of terms 3 1.3 Signs of pain and distress 4 1.4 Recognition and confirmation of death 5 1.5 Personnel and training 5 1.6 Handling and restraint 6 1.7 Equipment 6 1.8 Carcass and waste disposal 6 2. General comments on methods of euthanasia 7 2.1 Acceptable methods of euthanasia 7 2.2 Methods acceptable for unconscious animals 15 2.3 Methods that are not acceptable for euthanasia 16 3. Methods of euthanasia for each species group 21 3.1 Fish 21 3.2 Amphibians 27 3.3 Reptiles 31 3.4 Birds 35 3.5 Rodents 41 3.6 Rabbits 47 3.7 Carnivores - dogs, cats, ferrets 53 3.8 Large mammals - pigs, sheep, goats, cattle, horses 57 3.9 Non-human primates 61 3.10 Other animals not commonly used for experiments 62 4.
    [Show full text]
  • Anesthesia: the Good, the Bad, and the Elderly
    ANESTHESIA: THE GOOD, THE BAD, AND THE ELDERLY Item Type Electronic Thesis; text Authors Hansen, Madeline Citation Hansen, Madeline. (2020). ANESTHESIA: THE GOOD, THE BAD, AND THE ELDERLY (Bachelor's thesis, University of Arizona, Tucson, USA). Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 08:05:26 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/651023 ANESTHESIA: THE GOOD, THE BAD, AND THE ELDERLY By MADELINE JOLLEEN HANSEN ____________________ A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelors degree With Honors in Physiology THE UNIVERSITY OF ARIZONA M A Y 2 0 2 0 Approved by: ____________________________ Dr. Zoe Cohen Department of Physiology Table of Contents Page number(s) Abstract……………………………………………………………………………………………………..2 General History of Anesthesia.………………………………………………………………………….3-14 Prehistoric-200AD…………………………………………………………….………………....3-5 200AD- 1846 (historical surgery)…………………….………………………………………….5-8 1847-1992……………………...…………………….……………………………………...….9-14 Physiology of General Anesthesia………………………………………………………...…………...14-16 Understanding of anesthesia mechanism…………………………………………………………14 System impacts………………………………………………………………………………..15-16 Description
    [Show full text]
  • Effects of Alfaxalone Or Propofol on Giant-Breed Dog Neonates Viability
    animals Article Effects of Alfaxalone or Propofol on Giant-Breed Dog Neonates Viability During Elective Caesarean Sections Monica Melandri 1, Salvatore Alonge 1,* , Tanja Peric 2, Barbara Bolis 3 and Maria C Veronesi 3 1 Società Veterinaria “Il Melograno” Srl, 21018 Sesto Calende, Varese, Italy; [email protected] 2 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; [email protected] 3 Department of Veterinary Medicine, Università degli Studi di Milano, 20100 Milan, Italy; [email protected] (B.B.); [email protected] (M.C.V.) * Correspondence: [email protected]; Tel.: +39-392-805-8524 Received: 20 September 2019; Accepted: 7 November 2019; Published: 13 November 2019 Simple Summary: Nowadays, thanks to the increased awareness of owners and breeders and to the most recent techniques available to veterinarians, the management of parturition, especially of C-sections, has become a topic of greater importance. Anesthesia is crucial and must be targeted to both the mother and neonates. The present study aimed to evaluate the effect of the induction agent alfaxalone on the vitality of puppies born from elective C-section, in comparison to propofol. After inducing general anesthesia for elective C-section, puppies from the mothers induced with alfaxalone had higher 5-min Apgar scores than those induced with propofol. The concentration of cortisol in fetal fluids collected at birth is neither influenced by the anesthetic protocol used, nor does it differ between amniotic and allantoic fluids. Nevertheless, the cortisol concentration in fetal fluids affects the relationship between anesthesia and the Apgar score: the present study highlights a significant relationship between the anesthetic protocol used and Apgar score in puppies, and fetal fluids cortisol concentration acts as a covariate of this relationship.
    [Show full text]
  • Back Matter (PDF)
    INDEX Abreu, B. E., Richards, A. B., Weaver, L. Azide, effect of, on carotid chemoreceptor C., Burch, G. R., Bunde, C. A., Bock- activity, 46 stahler, E. R., and Wright, D. L. Pharmacologic properties of 4-alkoxy- BAL, see Dimercaprol $-(1-piperidyl)propiophenones, 419 Barbiturates, effect on actions of, of several Acetazoleamide, anticonvulsant potency in analgetic agents, 21 mice, and mechanism, 251 Barbituric acid: 5-ethyl,5(1-methyl,2- Acheson, G. H., see Kahn, J. B., Jr., 305 carboxyethyl), determination in urine, Adrenal cortex, effect of DDD derivatives metabolite of butabarbital, 275 on, 408 5-ethyl,5(1-methyl, 2-carboxyethyl), Adrenal gland, ascorbic acid, and thyroid, ethyl ester derivative, 275 144 Barsoum, H. Colchicine and spermatogene- Adrenergic blockade, effect on responses to sis, 319 sympathomimetic amines, 323 Bass, A. D., see Diermeier, H. F., 240 Agarwal, S. L., see Timiras, P. 5., 154 Benzoquinonium, substitution in, and ac- Alcohol, see Ethanol tivity of, 106 Alloxan, effect on liver DNA, 240 Bergner, A. D., see Murtha, E. F., 291 Alseroxylon, vasomotor effects, 464 Bhargava, K. P., and Borison, H. L. Effects Ammonium chloride, anticonvulsant po- of Rauwolfia alkaloids on hypothalamic, tency in mice, 251 medullary and spinal vasoregulatory Amphetamine, effects upon tracking be- systems, 464 havior, 480 Bioassay, of reserpine, pigeon emesis, 55 Anderson, H. L., Jr., see Ellis, 5., 120 Bockstahler, E. R., see Abreu, B. E., 419 Anesthetics, effects of on myocardium, 206 Borison, H. L., see Bbargava, K. P., 464 general, hydroxydione, 432 Boxill, G. C., and Brown, R. V. Blood pres- local, series of diamino propionic acid sure responses to epinephrine in dogs anilides, 246 with certain humoral backgrounds, I Anhydrochiortetracycline, effect of Brain stem, arousal, drugs on, 449 metallic cations on, 61 Brill, I.
    [Show full text]
  • Intravenous Alfaxalone Anaesthesia in Two Squamate Species: Eublepharis Macularius and Morelia Spilota Cheynei
    INTRAVENOUS ALFAXALONE ANAESTHESIA IN TWO SQUAMATE SPECIES: EUBLEPHARIS MACULARIUS AND MORELIA SPILOTA CHEYNEI Tesi per il XXIX Ciclo del Dottorato in Scienze Veterinarie, Curriculum Scienze Cliniche Veterinarie Dipartimento di Scienze Veterinarie, Universita’ degli Studi di Messina Tutor: Prof. Filippo Spadola Cotutor: Prof. Zdenek Knotek Dr. Manuel Morici Sommario L’anestesia negli Squamati è una costante sfida della medicina e chirurgia dei rettili. Le differenze morfo-fisiologiche di questi taxa, rendono difficilmente applicabile i comuni concetti di anestesiologia veterinaria usati con successo negli altri animali da compagnia. Diversi protocolli anestetici sono stati utilizzati, sia per l’induzione che per il mantenimento, sia negli ofidi che nei sauri, ma con risultati variabili. Di fatti la maggior parte dei protocolli risultano in induzione o recuperi troppo brevi o troppo lunghi. L’obbiettivo di questa tesi dottorale è di valutare l’efficacia di un anestetico steroideo (alfaxalone), somministrato per via endovenosa in due specie di squamati usati come modello: il geco leopardo (Eublepharis macularius) e il pitone tappeto (Morelia spilota cheynei). Due metodi di somministrazione endovenosa (vena giugulare nei gechi e vena caudale nei serpenti) sono stati analizzati e descritti, usando un dosaggio di anestetico di 5 mg/kg in 20 gechi leopardo, e di 10 mg/kg in 10 pitoni tappeto. Nei gechi il tempo di induzione, il tempo di perdita del tono mandibolare, l’intervallo di anestesia chirurgica e il recupero completo sono stati rispettivamente di 27.5 ± 30.7 secondi, 1.3 ± 1.4 minuti, 12.5 ± 2.2 minuti and 18.8 ± 12.1 minuti. Nei pitoni tappeto, il tempo di induzione, la perdita di sensazione, il tempo di inserimento del tubo endotracheale, l’intervallo di anestesia chirurgica e il recupero sono stati rispettivamente di 3.1±0.8 minuti, 5.6±0.7 minuti, 6.9±0.9 minuti, 18.8±4.7 minuti, e 36.7±11.4 minuti.
    [Show full text]
  • 2010 National Ambulatory Medical Care Survey Public Use Data File
    2010 NAMCS MICRO-DATA FILE DOCUMENTATION PAGE 1 ABSTRACT This material provides documentation for users of the 2010 National Ambulatory Medical Care Survey (NAMCS) public use micro-data file. NAMCS is a national probability sample survey of visits to office-based physicians conducted by the National Center for Health Statistics, Centers for Disease Control and Prevention. It is a component of the National Health Care Surveys which measure health care utilization across a variety of health care providers. Section I, "Description of the National Ambulatory Medical Care Survey," includes information on the scope of the survey, the sample, field activities, data collection procedures, medical coding procedures, population estimates, and sampling errors. Section II provides technical information, including a detailed description of the contents of each data record by location, and a list of physician specialties represented in the survey. Section III contains marginal data and estimates for selected items on the data record. The appendixes contain sampling errors, instructions and definitions for completing the Patient Record form, and lists of codes used in the survey. PAGE 2 2010 NAMCS MICRO-DATA FILE DOCUMENTATION SUMMARY OF CHANGES FOR 2010 The 2010 NAMCS public use micro-data file is, for the most part, similar to the 2009 file, but there are some important changes. These are described in more detail below and reflect changes to the survey instruments, the Patient Record form and the Physician Induction Interview form. There are also new injury-related items on the public use file, but these are simply recoded data from existing items on the Patient Record form and are described in a separate section below.
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]