Genetically Modified Baculoviruses for Pest

Total Page:16

File Type:pdf, Size:1020Kb

Genetically Modified Baculoviruses for Pest INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7. This book is printed on acid-free paper Printed and bound in China CONTENTS Preface vii Contributors ix-x 1 Pyrethroids 1 B P S Khambay and P J Jewess A1 Addendum: Pyrethroid Insecticides and Resistance Mechanisms 30 J Vontas, H Ranson, and M S Williamson 2 Indoxacarb and the Sodium Channel Blocker Insecticides: Chemistry, Physiology, and Biology in Insects 35 K D Wing, J T Andaloro, S F McCann, and V L Salgado A2 Addendum: Indoxacarb and the Sodium Channel Blockers: Chemistry, Physiology, and Biology in Insects 58 V L Salgado 3 Neonicotinoid Insecticides 61 P Jeschke and R Nauen A3 Addendum: The Neonicotinoid Insecticides 114 P Jeschke and R Nauen 4 Insect Growth- and Development-Disrupting Insecticides 121 T S Dhadialla, A Retnakaran, and G Smagghe A4 Addendum: Recent Progress on Mode of Action of 20-Hydroxyecdysone, Juvenile Hormone (JH), Non-Steroidal Ecdysone Agonist and JH Analog Insecticides 182 T S Dhadialla 5 Azadirachtin, a Natural Product in Insect Control 185 A J Mordue (Luntz), E D Morgan, and A J Nisbet A5 Addendum: Azadirachtin, A Natural Product in Insect Control: An Update 204 A J Mordue (Luntz), E D Morgan, and A J Nisbet 6 The Spinosyns: Chemistry, Biochemistry, Mode of Action, and Resistance 207 V L Salgado and T C Sparks A6 Addendum: The Spinosyns 244 T C Sparks, G B Watson, and J E Dripps 7 Bacillus thuringiensis: Mechanisms and Use 247 A Bravo, M Sobero´ n, and S S Gill A7 Addendum: Bacillus thuringiensis, with Resistance Mechanisms 278 A Bravo, M Sobero´ n, and S S Gill vi Contents 8 Mosquitocidal Bacillus sphaericus: Toxins, Genetics, Mode of Action, Use, and Resistance Mechanisms 283 J-F Charles, I Darboux, D Pauron, and C Nielsen-Leroux A8 Addendum: Bacillus sphaericus Taxonomy and Genetics 308 C Berry and M H N L Silva Filha 9 Insecticidal Toxins from Photorhabdus and Xenorhabdus 313 R H ffrench-Constant, N Waterfield, and P Daborn A9 Addendum: Recent Advances in Photorhabdus Toxins 328 A J Dowling, P A Wilkinson, and R H ffrench-Constant 10 Genetically Modified Baculoviruses for Pest Insect Control 331 S G Kamita, K-D Kang, B D Hammock, and A B Inceoglu A10 Addendum: Genetically Modified Baculoviruses for Pest Insect Control 383 S G Kamita, K-D Kang, A B Inceoglu, and B D Hammock 11 Entomopathogenic Fungi and their Role in Regulation of Insect Populations 387 M S Goettel, J Eilenberg, and T Glare A11 Addendum: Entomopathogenic Fungi and Their Role in Regulation of Insect Populations, 2004–2009 432 T R Glare, M S Goettel, and J Eilenberg 12 Insect Transformation for Use in Control 439 P W Atkinson, D A O’Brochta, and A S Robinson A12 Addendum: Insect Transformation for Use in Control 447 P W Atkinson Subject Index 451 PREFACE When Elsevier published the seven-volume series Comprehensive Molecular Insect Science in 2005, the original series was targeted mainly at libraries and larger institutions. While this gave access to researchers and students of those institutions, it has left open the opportunity for an individual volume on a popular area in entomology: insect control. Such a volume is of considerable value to an additional audience in the insect research community — individuals who either had not had access to the larger work or desired a more focused treatment of these topics. As two of the three editors of the Comprehensive series, we felt that it was time to update the field of insect control by providing an updated volume targeted specifically at professional researchers and students. In editing the original series, we expended a great deal of effort in finding the best available authors for each of those chapters. In most instances, authors who contributed to Comprehensive Molecular Insect Science also provided updates on Insect Control. The authors carefully reviewed recent data and cited the most relevant literature. We as coeditors reviewed and edited the final addenda. The chapters incorporate all major insecticide classes in use for insect control, with the exception of organophosphates and carbamates. Pyrethroids continue to contribute to insect control in agriculture, and more recently have seen increased use in bed nets for the control of mosquito-borne diseases, such as malaria, and an update is provided in the addendum to ‘‘Pyrethroid Insecticides and Resistance Mechan- isms.’’ The chapters ‘‘Neonicotinoid Insecticides,’’ ‘‘Indoxycarb – Chemistry, Mode of Action, Use and Resistance,’’ ‘‘Spinosyns,’’ and ‘‘Insect Growth Regulators and Development Disrupting Insecticides’’ cover newer classes of insecticides in use. ‘‘Azadirachtin, a Natural Product in Insect Control’’ deals with a plant extract that has also seen increased use. A number of chapters deal with viral, bacterial, and fungal control of insects, and these topics are discussed in the chapters titled ‘‘Genetically Modified Baculoviruses for Pest Insect Control,’’ ‘‘Bacillus thuringiensis, with Resistance Mechanisms,’’ ‘‘Bacillus sphaericus Taxonomy and Genetics,’’ and ‘‘Entomopathogenic Fungi and Their Role in Regulation of Insect Populations.’’ Finally, ‘‘Insect Transformation’’ outlines critical issues on using transformed insects for control programs. Addi- tional chapters of interest are also available in a companion volume titled Insect Pharmacology. Several years of effort was expended by both of us and our colleagues in choosing topics for the seven- volume series, in the selection of authors, and in the editing of the original manuscripts and galley proofs. Each and every chapter in those volumes was important, and even essential, to make it a ‘‘Comprehensive’’ series. Nevertheless, we feel strongly that having this volume with the updated material and many references on these important aspects of insect control will be of great help to professional insect biologists, to graduate students conducting research for advanced degrees, and even to undergraduate research students contem- plating an advanced degree in insect science. – LAWRENCE I. GILBERT, Department of Biology, University of North Carolina, Chapel Hill – SARJEET S. GILL, Cell Biology and Neuroscience, University of California, Riverside This page intentionally left blank CONTRIBUTORS J T Andaloro S S Gill E. I. Du Pont de Nemours and Co., Newark, DE, USA University of California, Riverside, USA P W Atkinson T R Glare University of California, Riverside, CA, USA Lincoln University, Lincoln, Christchurch, New Zealand C Berry Cardiff University Park Place, Wales, UK M S Goettel Agriculture & Agri-Food Canada, Lethbridge, A Bravo Canada Universidad Nacional Auto´noma de Me´xico, Cuernavaca Morelos, Mexico B D Hammock University of California, Davis, USA J-F Charles Institut Pasteur, Paris, France A B Inceoglu University of California, Davis, USA P Daborn University of Bath, Bath, UK P Jeschke Bayer CropScience AG, Monheim am Rhein, I Darboux Germany INRA, Sophia Antipolis, France P J Jewess T S Dhadialla Rothamsted Research, Harpenden, Dow AgroSciences LLC, Indianapolis, Hertfordshire, UK IN, USA S G Kamita A J Dowling University of California, Davis, USA University of Exeter in Cornwall, Tremough Campus, Penryn, UK B P S Khambay Rothamsted Research, Harpenden, J E Dripps Hertfordshire, UK Dow AgroSciences, Indianapolis, IN, USA K-D Kang J Eilenberg University of California, Davis, USA University of Copenhagen, Frederiksberg, Denmark S F McCann E. I. Du Pont de Nemours and Co., Newark, DE, R H ffrench-Constant USA University of Exeter in Cornwall, Tremough Campus, Penryn, UK A J Mordue (Luntz) University of Aberdeen, Aberdeen, UK
Recommended publications
  • Cypermethrin
    International Environmental Health Criteria 82 Cypermethrin Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization WORLD HEALTH ORGANIZATION GENEVA 1989 Other titles available in the ENVIRONMENTAL HEALTH CRITERIA series include: 1. Mercury 2. Polychlorinated Biphenyls and Terphenyls 3. Lead 4. Oxides of Nitrogen 5. Nitrates, Nitrites, and N-Nitroso Compounds 6. Principles and Methods for Evaluating the Toxicity of Chemicals, Part 1 7. Photochemical Oxidants 8. Sulfur Oxides and Suspended Particulate Matter 9. DDT and its Derivatives 10. Carbon Disulfide 11. Mycotoxins 12. Noise 13. Carbon Monoxide 14. Ultraviolet Radiation 15. Tin and Organotin Compounds 16. Radiofrequency and Microwaves 17. Manganese 18. Arsenic 19. Hydrogen Sulfide 20. Selected Petroleum Products 21. Chlorine and Hydrogen Chloride 22. Ultrasound 23. Lasers and Optical Radiation 24. Titanium 25. Selected Radionuclides 26. Styrene 27. Guidelines on Studies in Environmental Epidemiology 28. Acrylonitrile 29. 2,4-Dichlorophenoxyacetic Acid (2,4-D) 30. Principles for Evaluating Health Risks to Progeny Associated with Exposure to Chemicals during Pregnancy 31. Tetrachloroethylene 32. Methylene Chloride 33. Epichlorohydrin 34. Chlordane 35. Extremely Low Frequency (ELF) Fields 36. Fluorine and Fluorides 37. Aquatic (Marine and Freshwater) Biotoxins 38. Heptachlor 39. Paraquat and Diquat 40. Endosulfan 41. Quintozene 42. Tecnazene 43. Chlordecone 44. Mirex continued on p. 156
    [Show full text]
  • Insecticide Residue Analyses in Cucumbers Sampled from Çanakkale Open Markets1 Çanakkale Açık Pazarlarından Örneklenen Hıyarlarda Insektisit Kalıntı Analizleri
    Türk. entomol. derg., 2020, 44 (4): 449-460 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.767482 E-ISSN 2536-491X Original article (Orijinal araştırma) Insecticide residue analyses in cucumbers sampled from Çanakkale open markets1 Çanakkale açık pazarlarından örneklenen hıyarlarda insektisit kalıntı analizleri Hayriye ÇATAK2 Osman TİRYAKİ3* Abstract The aim of this study was to investigate four insecticide residues in cucumbers with the aid of QuEChERS 2007.1 method. For method verification assessment, pesticide-free cucumber matrix was spiked with 0.1, 1 and 10 times of MRL for each pesticide. The QuEChERS-LC-MS/MS analytical method revealed that the detection limits of the insecticides were below the MRLs and the overall recovery of method was 97.7%. These figures were within the SANTE recovery limits (60-140%) and the values specified for the repeatability (≤20%). Cucumbers were collected from six different stands (A-F) at Çanakkale open markets for 6 weeks between 23 November and 28 December 2018. Residues of each sampling time and each stand were assessed. Acetamiprid residue of 257g and 236 µg/kg were detected in week 5 from stand B and in week 2 from stand E, respectively. These values are close to MRL (300 µg/kg). Formetanate hydrochloride residue of the week 3 from stand F (36.3 µg/kg) was more than MRL of 10 µg/kg. Pirimiphos methyl and chlorpyrifos residues were not detected in cucumbers. Theoretical maximum daily intake assessment showed that there was no chronic exposure risk for these four pesticides through cucumber consumption. Keywords: Cucumber, insecticide residues, QuEChERS, risk assessment, toxicology Öz Bu çalışma hıyarlarda dört insektisit kalıntısını QuEChERS 2007.1 yöntemi ile belirlemek amacıyla yapılmıştır.
    [Show full text]
  • Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait
    International Journal of Environmental Research and Public Health Article Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait Mustapha F. A. Jallow *, Dawood G. Awadh, Mohammed S. Albaho, Vimala Y. Devi and Nisar Ahmad Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; [email protected] (D.G.A.); [email protected] (M.S.A.); [email protected] (V.Y.D.); [email protected] (N.A.) * Correspondence: [email protected]; Tel.: +965-249-8984 Received: 1 May 2017; Accepted: 12 July 2017; Published: 25 July 2017 Abstract: The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS) multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pesticide residues above the maximum residue limits (MRL) were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs.
    [Show full text]
  • EUPT-CF10-Webinar
    Results of EUPT-CF10 Incurred and spiked pesticides in rye Mette Erecius Poulsen Holte, 20 September 2016 PTs on cereals/feed 2016 EUPT-CF10 Test material Rye flour Participants 178 (160) Compulsory target pesticides 134 Voluntary target pesticides 7 Incurred pesticides 10 Spiked pesticides 8 Total no. of pesticides 18 National Food Institute, Technical University of Denmark Advisory Group Quality Group Amadeo R. Fernández-Alba Antonio Valverde André de Kok Stewart Reynolds Antonio Valverde Magnus Jezussek Michelangelo Anastassiades Miguel Gamón Organising team at EURL Philippe Gros Mette Erecius Poulsen Ralf Lippold Susan Strange Herrmann Sonja Masselter Parvaneh Hajeb Stewart Reynolds Merete B. Ludwigsen Tuija Pihlström Lisbet Pilhkjær Finbarr Oregan Jens-Ole Frimann National Food Institute, Technical University of Denmark National Food Institute, Technical University of Denmark Activity Dates Announcement Calendar December 2015 Target Pesticide List EUPT-Registration Website 11 January 2016 Deadline for registration 1 February 2016 Release of Specific Protocol 29 February 2016 Distribution of Test items 7 March 2016 Deadline for Receipt and Acceptance of Test Materials within 24 hr on reciept 11 April 2016 Deadline for Result Submission at 13.00 CET Deadline for submission of additional method information for 15 April 2015 false negative results Preliminary Report (only compilation of results) 30 May 2015 Final Report December 2015 National Food Institute, Technical University of Denmark Target list - new pesticides and voluntary compounds
    [Show full text]
  • Insecticides - Development of Safer and More Effective Technologies
    INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work.
    [Show full text]
  • Ataenius Heinekeni Wollatson, 1894 (Insecta: Coleoptera: Aphodiinae)
    (A. heinekeni) Ataenius heinekeni Wollatson, 1894 (Insecta: Coleoptera: Aphodiinae) By: Edrick Lugo Millán & Verónica Acevedo Ramírez, Juliana Cardona, Nico Franz Geographic Range: Bahamas (Andros), Barbados (probably introduced), Cuba, Hispaniola, Puerto Rico (Quebradillas- east of Lago Guajataca, Bayamón, Mayagüez), St. Thomas. USA (SC-FLTX), Mexico to Brazil, introduced to Ascension and Madeira islands. Habitat: A. heinekeni beetles were beaten from leaves, collected under leaves and logs on hard ground, under live-oak trees, on old rice-field dams, under roadside debris and at coastal coppice trap. (Jerath,1960). They are mainly found in animal dung and decaying material. Physical Description: Ataenius is distinguished from other genera of the Eupariini by a combination of characters, among them head narrower than pronotum, anterior clypeus visible from above, pronotum laterally without denticles and at most sparsely to moderately ciliate, sides of pronotum not explanate, elytra often with basal margination, front tibiae with slanted anterior margin, middle and hind tibiae not flattened, uniformly wider from base, hind tibiae straight with outer apical angle spiniformly prolonged, tarsi normal with first segment often as long as the following three segments combined (SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY, no 154). Length 4.3.-5.5 mm. Usually reddish-brown to black, few with color patterns, some dorsally setose.. Head moderately convex, surface smooth, granulate, wrinkled, or rugose. Abdominal fluting is distinct. External sexual dimorphisms are subtle, if present. Life Stages: The life cycle of Ataenius beetles is not well known but apparently they are humus feeders in the soil, with a few species attracted to decaying vegetation and to animal dung.
    [Show full text]
  • Jordan Beans RA RMO Dir
    Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation.
    [Show full text]
  • 1 Chiral Analysis of Pollutants and Their Metabolites by Capillary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Chiral analysis of pollutants and their metabolites by capillary electromigration methods Javier Hernández-Borges1, Miguel Ángel Rodríguez-Delgado1, Francisco J. García-Montelongo1, Alejandro Cifuentes2,* 1Department of Analytical Chemistry, Nutrition and Food Science, University of La Laguna, Avda. Astrofísico Fco. Sánchez s/n, 38071 La Laguna, Tenerife, Spain. 2 Department of Food Analysis, Institute of Industrial Fermentations (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. Keywords: capillary electrophoresis; enantiomers; pollutants; pesticides; review; chiral analysis; CE; MEKC; CEC. Corresponding author: Dr. Alejandro Cifuentes E-mail: [email protected] Fax: +34-91-5644853; Tel: +34-91-5622900 1 Abbreviations: allyl-TER: 1-allylterguride; ANDSA: 7-aminonaphthalene-1,3-disulfonic acid; ANSA: 5-aminonaphthalene-1-sulfonic acid; ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid; BGE: background electrolyte; CM-γ-CD: carboxymethylated-γ-cyclodextrin; MCPA: (4-chloro-2-methylphenoxy)-acetic acid; MCPB: (4-chloro-2-methylphenoxy)butyric acid; 2,2-CPPA: 2-(2-chlorophenoxy)-propionic acid; 2,3-CPPA: 2-(3- chlorophenoxy)propionic acid; 2,4-CPPA: 2-(4-chlorophenoxy)-propionic acid; CMBA: 2-(4-chlorophenyl)-3-methylbutanoic acid; CA: chrysanthemic acid; MEGA: decanoyl-N-methylglucamide; DCA: dichorochrysanthemic acid; 2,4-D: (2,4- dichlorophenoxy)acetic acid; 2,4-DB: 4-(2,4-dichlorophenoxy)butiric acid; 2,4- DCPPA: 2-(2,4-dichlorophenoxy)propionic
    [Show full text]
  • Reaction of the Ladybird Chilocorus Nigritus (F.) (Col., Coccinellidae) To
    J. Appl. Ent. 112 (1991), 493-498 0 1991 Verlag Paul Parey, Hamburg und Berlin ISSN 093 1-2048 Department of Zoology and Entomology, University of Natal, Pietermaritzburg, South Africa Reaction of the ladybird Chi’locorus nigritus (F.) (Col., Coccinellidae) to a doomed food resource By C. ERICHSEN,M. J. SAMWAYSand V. HATTINGH Abstract The coccinellid Chilocorus nigritus (F.), a predator of many scale insects, has become an economically important natural enemy of red scale (Aonidzella aurantii [Maskell]) in the subtropical citrus-growing areas of southern Africa. Although relatively easy to mass rear and distribute, there has been speculation that C. nigritus does not exploit fruit with very hi h scale infestations. Experimentation using an alternative prey scale Aspidiotus nerii Bouchi showefi that a ran e of low to medium-high scale population levels supported increasin ly high ladybird densities. At aigh scale densities, where the host vegetable was imminently doomefi, there was a significant drop in beetle densities. At even higher scale densities, where the fruit was already beginnin to rot, there was a return in beetle densities to a level equivalent to that on medium-high scale fiensities. At low to medium-high prey densities, male and female beetles were present in fairly constant proportions. At high prey levels there was an increase in female dominance, yet a strong decrease in dominance at even higher scale levels where the vegetable was already beginning to rot. There appears to be an avoidance of imminent1 doomed vegetable hosts, yet, in contrast, rotting vegetables have some attraction but more so &r males.
    [Show full text]
  • A Review of the Mosquito Species (Diptera: Culicidae) of Bangladesh Seth R
    Irish et al. Parasites & Vectors (2016) 9:559 DOI 10.1186/s13071-016-1848-z RESEARCH Open Access A review of the mosquito species (Diptera: Culicidae) of Bangladesh Seth R. Irish1*, Hasan Mohammad Al-Amin2, Mohammad Shafiul Alam2 and Ralph E. Harbach3 Abstract Background: Diseases caused by mosquito-borne pathogens remain an important source of morbidity and mortality in Bangladesh. To better control the vectors that transmit the agents of disease, and hence the diseases they cause, and to appreciate the diversity of the family Culicidae, it is important to have an up-to-date list of the species present in the country. Original records were collected from a literature review to compile a list of the species recorded in Bangladesh. Results: Records for 123 species were collected, although some species had only a single record. This is an increase of ten species over the most recent complete list, compiled nearly 30 years ago. Collection records of three additional species are included here: Anopheles pseudowillmori, Armigeres malayi and Mimomyia luzonensis. Conclusions: While this work constitutes the most complete list of mosquito species collected in Bangladesh, further work is needed to refine this list and understand the distributions of those species within the country. Improved morphological and molecular methods of identification will allow the refinement of this list in years to come. Keywords: Species list, Mosquitoes, Bangladesh, Culicidae Background separation of Pakistan and India in 1947, Aslamkhan [11] Several diseases in Bangladesh are caused by mosquito- published checklists for mosquito species, indicating which borne pathogens. Malaria remains an important cause of were found in East Pakistan (Bangladesh).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,852,618 B2 Clough (45) Date of Patent: Oct
    USOO8852618B2 (12) United States Patent (10) Patent No.: US 8,852,618 B2 Clough (45) Date of Patent: Oct. 7, 2014 (54) INSECTICIDAL MIXTURE CONTAINING CA 2429218 A1 6, 2002 GAMMA-CYHALOTHRN CH 689326 A5 4f1995 EP O237227 A1 9, 1987 EP 0771526 A2 5, 1997 (75) Inventor: Martin Stephen Clough, Bracknell EP O988788 A1 3f2000 (GB) FR 272O230 A1 12/1995 JP 63. 126805 A2 5, 1988 (73) Assignee: Syngenta Limited, Guildford (GB) JP 63126805 A2 5, 1988 JP 63126805 5, 1998 c - r WO WO 86 O7525 A1 12, 1986 (*) Notice: Subject to any disclaimer, the term of this WO WO 93 03618 A2 3, 1993 patent is extended or adjusted under 35 WO WO95 229O2 A1 8/1995 U.S.C. 154(b) by 824 days. WO WO9533380 A1 12, 1995 WO WO 96 16543 A2 6, 1996 (21) Appl. No.: 12/633,063 WO WO97 06687 A1 2/1997 WO WO974O692 A1 11, 1997 (22) Filed: Dec.a V88, 2009 WO WOOOO2453 A1 1, 2000 OTHER PUBLICATIONS (65) Prior Publication Data US 201O/OO81714 A1 Apr. 1, 2010 Canadian Office Action (Applin. No. 2,452,515 filed: Jul. 10, 2002) mailing date Oct. 1, 2010 (pp. 1-2). Related U.S. Application Data Allen et al. Transgenic & Conventional Insect & Weed Control Sys tems; Proceedings of the Beltwide Cotton Conference, vol. 2, 1065 (62) Division of application No. 10/484.745, filed as 1068 (1999), USA. application No. PCT/GB02/03181 on Jul. 10, 2002, Anonymous; Pesticide Mixtures for Control of Insect and Acarid now Pat. No.
    [Show full text]
  • A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)L
    Pacific Science (1997), vol. 51, no. 4: 366-376 © 1997 by University of Hawai'i Press. All rights reserved A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)l MANFRED ASCHE2 ABSTRACT: With 206 endemic species, the phytophagous Fulgoroidea, or planthop­ pers, are among the most important elements of the native Hawaiian fauna. These principally monophagous or oligophagous insects occur in nearly all Hawaiian terrestrial ecosystems. Species of two of the 18 planthopper families occurring worldwide have successfully colonized and subsequently radiated in Hawai'i. Based on collections made mainly by Perkins, Kirkaldy, Muir, Giffard, and Swezey, more than 95% of these species were described in the first three decades of this century. The systematics of the Hawaiian planthoppers has changed little in the past 60 yr and is not based on any phylogenetic analyses. This paper attempts a preliminary phylogenetic evaluation ofthe native Hawaiian p1anthoppers on the basis ofcompara­ tive morphology to recognize monophyletic taxa and major evolutionary lines. The following taxa are each descendants of single colonizing species: in Cixiidae, the Hawaiian Oliarus and Iolania species; in De1phacidae, Aloha partim, Dictyophoro­ delphax, Emoloana, Leialoha + Nesothoe, Nesodryas, and at least four groups within Nesosydne. Polyphyletic taxa are the tribe "Alohini," Aloha s.l., Nesorestias, Nesosydne s.l., and Nothorestias. Non-Hawaiian species currently placed in Iolania, Oliarus, Aloha, Leialoha, and Nesosydne are not closely allied to the Hawaiian taxa. The origin of the Hawaiian planthoppers is obscure. The Hawaiian Oliorus appear to have affinities to (North) American taxa. ALTHOUGH THE HAWAIIAN ISLANDS are the most Other groups of Hawaiian insects have isolated islands on earth, they house a remark­ received far less attention, although they are ably rich flora and fauna.
    [Show full text]