A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)L

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)L Pacific Science (1997), vol. 51, no. 4: 366-376 © 1997 by University of Hawai'i Press. All rights reserved A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)l MANFRED ASCHE2 ABSTRACT: With 206 endemic species, the phytophagous Fulgoroidea, or planthop­ pers, are among the most important elements of the native Hawaiian fauna. These principally monophagous or oligophagous insects occur in nearly all Hawaiian terrestrial ecosystems. Species of two of the 18 planthopper families occurring worldwide have successfully colonized and subsequently radiated in Hawai'i. Based on collections made mainly by Perkins, Kirkaldy, Muir, Giffard, and Swezey, more than 95% of these species were described in the first three decades of this century. The systematics of the Hawaiian planthoppers has changed little in the past 60 yr and is not based on any phylogenetic analyses. This paper attempts a preliminary phylogenetic evaluation ofthe native Hawaiian p1anthoppers on the basis ofcompara­ tive morphology to recognize monophyletic taxa and major evolutionary lines. The following taxa are each descendants of single colonizing species: in Cixiidae, the Hawaiian Oliarus and Iolania species; in De1phacidae, Aloha partim, Dictyophoro­ delphax, Emoloana, Leialoha + Nesothoe, Nesodryas, and at least four groups within Nesosydne. Polyphyletic taxa are the tribe "Alohini," Aloha s.l., Nesorestias, Nesosydne s.l., and Nothorestias. Non-Hawaiian species currently placed in Iolania, Oliarus, Aloha, Leialoha, and Nesosydne are not closely allied to the Hawaiian taxa. The origin of the Hawaiian planthoppers is obscure. The Hawaiian Oliorus appear to have affinities to (North) American taxa. ALTHOUGH THE HAWAIIAN ISLANDS are the most Other groups of Hawaiian insects have isolated islands on earth, they house a remark­ received far less attention, although they are ably rich flora and fauna. The more than 5000 speciose and ecologically, as well as behavior­ recorded native insect species are predominant ally, highly differentiated from each other. The components of the Hawaiian biota (see Nishida Hawaiian planthoppers (Fulgoroidea) represent 1994). This fauna is assumed to have derived one such neglected group. Although initially from only 400 primary colonizing species (How­ recorded from the Hawaiian Islands more than arth 1990). Several groups of Hawaiian insects 100 yr ago, little is known about their biology, have been studied in great detail (summarized ecology, and evolution. in Wagner and Funk 1995), such as the Drosoph­ Over 95% of the 206 currently recognized ilidae, which have been the focus of studies on native Hawaiian planthopper species were genetics, evolutionary biology, molecular evolu­ described in the first three decades of this cen­ tion, population ecology, and biogeography tury. The first phase ofplanthopper research was (e.g., Carson and Kaneshiro 1976, Kaneshiro based on the contributions of R. C. L. Perkins 1976, Carson and Templeton 1984, Carson 1987, and G. W. Kirkaldy. In the beginning of this DeSalle and Hunt 1987). century, Perkins was the first to collect substan­ tial numbers ofplanthoppers on all major Hawai­ I Manuscript accepted 3 February 1997. ian islands. He also made valuable observations 2 Research Associate in Entomology, Bernice P. Bishop on their ecology and distribution, which were Museum, Box 19000-A, Honolulu, Hawai'i 96817. Current later published in Fauna Hawaiiensis (Kirkaldy address: Museum fUr Naturkunde der Humboldt-Universitat zu Berlin, Institut ftir Systematische Zoologie, Invaliden­ 1902, 1910, Perkins 1913). Before his death in strasse 43, D-10115 Berlin, Germany. 1910, Kirkaldy had described 72 endemic 366 Systematics of Hawaiian Planthoppers-AscHE 367 Hawaiian planthopper species and established logenetic analysis ofthe Hawaiian planthoppers. seven genera (for complete references see Zim­ My review is an effort to reactivate systematic merman [1948]). research on this group and suggest future The second phase of Hawaiian planthopper research needs. research relied upon the important contributions of F. Muir and W. Giffard. Between 1916 and Review of the Hawaiian Planthoppers 1922, Muir described 82 new endemic species Although the Fulgoroidea are diverse and and one endemic genus of Delphacidae (e.g., speciose, with 18 families worldwide with over Muir 1916; further references in Zimmerman 15,000 species, only a small fraction reached [1948]). Soon after, Giffard revised the Hawai­ Hawai'i and then successfully colonized and ian Cixiidae, describing 44 new species and sub­ radiated there. Only the Cixiidae and the Delpha­ species (Giffard 1925). Zimmerman (1948) cidae are present in the native Hawaiian fauna. summarized these contributions in Insects of The Hawaiian species represent only 1.5% of Hawaii. Only seven endemic Hawaiian delpha­ all planthopper species, but about 95% of these cids (Swezey 1937, Zimmerman 1948, 1952, are endemic. The most comprehensive compila­ Beardsley 1956, 1960, Asche in press a) and tion of data on Hawaiian auchenorrhynchous two cixiids (Fennah 1973) have been described Homoptera was published by Zimmerman in the past 70 yr. (1948) in Insects of Hawaii, nearly 50 yr ago. The lack of scientific interest in the systemat­ The most recent listing is Nishida's (1994) ics and evolution of planthoppers is difficult to Hawaiian terrestrial arthropod checklist, where understand, particularly because these phytopha­ the following numbers are given: 88 endemic gous, sap-feeding insects are ubiquitous in taxa (63 species and 25 subspecies) of Cixiidae, nearly all Hawaiian terrestrial ecosystems. Most 145 endemic taxa (143 species, 2 subspecies) of native Hawaiian planthoppers have been Delphacidae, and 13 mostly adventive nonen­ reported as oligophagous or monophagus on demic planthopper species (i.e., Delphacidae [9 native Hawaiian plant species, mostly on ferns species; see also Beardsley (1990)], Flatidae [2 and woody dicots (see, e.g., Giffard 1917, 1922, species], and Derbidae [1 species]). Asche and Zimmerman 1948, Swezey 1954). In the native Wilson (1989a,b) reported an additional immi­ Hawaiian flora, over 70 plant genera with several grant delphacid species. In total, 219 planthop­ endemic species were reported as hosts ofplant­ per species and 26 subspecies have been reported hoppers, ranging from tree ferns (e.g., Cibotium, from Hawai 'i. The thirteen adventive species are Sadleria), native grasses (e.g., Eragrostis, Spo­ believed to have been introduced accidentally robolus, Vincentia), and palms (Pritchardia) to (e.g., Beardsley 1990); however, a few of them herbs including the endangered silverswords, may actually be indigenous because they are vines, shrubs, and trees (e.g., Argyroxiphium, widespread in the Pacific and on adjacent conti­ Dubautia, Freycinetia, Styphelia, Metrosideros, nents (e.g., the delphacids Sogatella kolophon Acacia) (e.g., Zimmerman 1948). Some of the (Kirkaldy), Opiconsiva paludum (Kirkaldy), and introduced planthopper species are important Toya dryope (Kirkaldy)). pests of crops in Hawai 'i, especially the Austral­ The actual number of species of Hawaiian asian delphacid Perkinsiella saccharicida planthoppers is unknown, because of unsolved Kirkaldy on sugarcane (see references in Zim­ taxonomic problems and the lack of a modern merman [1948]). survey. Most of the native species are known The current classification of Hawaiian plant­ only from a few specimens from the type local­ hoppers differs little from that employed by Zim­ ity, and several are known from the holotype merman (1948), who largely followed Kirkaldy only. (1910), Muir (1915), and Giffard (1925). The supraspecific taxa (genera, tribes) are based on diagnostic characters mostly used in keys. In the Family CIXIIDAE following, I survey the current state ofplanthop­ All 63 species and 25 subspecies of Hawaiian per systematics and propose a preliminary phy- Cixiidae are endemic: Oliarus with 58 species 368 PACIFIC SCIENCE, Volume 51, October 1997 and 24 subspecies from all Islands, and lolania My studies have shown that the Hawaiian with five species and one subspecies from all Oliarus species are not closely related to other major Islands except Moloka'i (Table 1). Two Pacific Cixiidae currently placed in Oliarus. Oliarus species are cavernicolous: both are trog­ This assumption is based on substantial morpho­ lobitic and were discovered by F. G. Howarth in logical differences mainly of the male and lava tubes on Maui and Hawai'i Island (Fennah female genitalia. Also, the Hawaiian species dif­ 1973). Hoch and Howarth (1993) mentioned at fer considerably in their morphology from the least four additional undescribed cave-dwelling type species of Oliarus, O. walkeri Stiil. Oliarus species, one from Moloka'i, two from According to the chaetotaxy of the posttarsi, the Maui, and one from Hawai'i Island. Hawaiian and most other Pacific taxa belong to the subtribe Pentastirina, whereas O. walkeri is in Oliarina. The Hawaiian Oliarus species are most likely Genus Oliarus monophyletic. This is based on synapomorphies The genus Oliarus must be regarded as poly­ in external characters such as the configuration phyletic because it is primarily based on the ofthe spines ofthe hind tarsi (first tarsal segment presence of five mesonotal carinae, a feature distally primarily with eight, second with seven that is likely plesiomorphic and present in all rigid spines) and male genital characters (e.g., members of the cixiid tribe Pentastirini. Despite the special arrangement
Recommended publications
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Local and Regional Influences on Arthropod Community
    LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network.
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • The Evolution of Insecticide Resistance in the Brown Planthopper
    www.nature.com/scientificreports OPEN The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in Received: 18 September 2017 Accepted: 2 March 2018 the period 2012–2016 Published: xx xx xxxx Shun-Fan Wu1, Bin Zeng1, Chen Zheng1, Xi-Chao Mu1, Yong Zhang1, Jun Hu1, Shuai Zhang2, Cong-Fen Gao1 & Jin-Liang Shen1 The brown planthopper, Nilaparvata lugens, is an economically important pest on rice in Asia. Chemical control is still the most efcient primary way for rice planthopper control. However, due to the intensive use of insecticides to control this pest over many years, resistance to most of the classes of chemical insecticides has been reported. In this article, we report on the status of eight insecticides resistance in Nilaparvata lugens (Stål) collected from China over the period 2012–2016. All of the feld populations collected in 2016 had developed extremely high resistance to imidacloprid, thiamethoxam, and buprofezin. Synergism tests showed that piperonyl butoxide (PBO) produced a high synergism of imidacloprid, thiamethoxam, and buprofezin efects in the three feld populations, YA2016, HX2016, and YC2016. Functional studies using both double-strand RNA (dsRNA)-mediated knockdown in the expression of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster showed that CYP6ER1 confers imidacloprid, thiamethoxam and buprofezin resistance. These results will be benefcial for efective insecticide resistance management strategies to prevent or delay the development of insecticide resistance in brown planthopper populations. Te brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a serious pest on rice in Asia1. Tis monophagous pest causes severe damage to rice plants through direct sucking ofen causing “hopper burn”, ovipositing and virus disease transmission during its long-distance migration1,2.
    [Show full text]
  • Two New Species of Planthoppers from India (Hemiptera: Auchenorrhyncha: Delphacidae) in the Genera Parasogata and Eoeurysa
    European Journal of Taxonomy 724: 93–108 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.724.1161 www.europeanjournaloftaxonomy.eu 2020 · Ramya N. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:EAA06FE6-F8CA-4494-9191-414ED0F4BC3C Two new species of planthoppers from India (Hemiptera: Auchenorrhyncha: Delphacidae) in the genera Parasogata and Eoeurysa Ramya N. 1, Charles BARTLETT 2 & Naresh M. MESHRAM 3,* 1,3 Indian Council of Agricultural Research - Indian Agricultural Research Institute, New Delhi 110012, India. 2 Department of Entomology and Wild Life Ecology, College of Agriculture and Natural Resources, University of Delaware, Newark DE 19716, USA. * Corresponding author: [email protected] 1 Email: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:064ACDA0-ECAF-42E2-91D5-85DE937B8EEA 2 urn:lsid:zoobank.org:author:47CE21C6-6289-4AD4-90EB-3F03DE1D9BF3 3 urn:lsid:zoobank.org:author:3B0F30C0-3391-4143-9169-5F996531AE72 Abstract. The genus Parasogata Zhou, Yang & Chen, 2018 is here reported from India represented by the new species Parasogata sexpartita sp. nov. collected in a recent exploration and survey of delphacids from Nagaland in northeastern India. A second species of Eoeurysa Muir, 1913 from India, the new species Eoeurysa sagittaria sp. nov., was found in Rampur, Una, Himachal Pradesh. Both new species are described with illustrations, and a molecular identification is given with the mtCOI gene sequence. A modified key to species of the genera is also provided. Keywords. Planthopper, morphology, distribution, identification, taxonomy. Ramya N., Bartlett C.
    [Show full text]
  • High Levels of Resistance in the Common Bed Bug, <I>Cimex Lectularius</I> (Hemiptera: Cimicidae), to Neonicotinoid I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2016 High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides Alvaro Romero New Mexico State University, [email protected] Troy D. Anderson University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons, and the Medicine and Health Sciences Commons Romero, Alvaro and Anderson, Troy D., "High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides" (2016). Faculty Publications: Department of Entomology. 533. http://digitalcommons.unl.edu/entomologyfacpub/533 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Medical Entomology, 53(3), 2016, 727–731 doi: 10.1093/jme/tjv253 Advance Access Publication Date: 28 January 2016 Short Communication Short Communication High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides Alvaro Romero1,2 and Troy D. Anderson3 1Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003 ([email protected]), 2Corresponding author, e-mail: [email protected], and 3Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061 ([email protected]) Received 4 November 2015; Accepted 23 December 2015 Abstract The rapid increase of bed bug populations resistant to pyrethroids demands the development of novel control tactics.
    [Show full text]
  • The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
    JOURNAL OF NATURAL HISTORY, 1993, 27, 609-629 The planthopper genus Trypetimorpha: systematics and phylogenetic relationships (Hemiptera: Fulgoromorpha: Tropiduchidae) J. HUANG and T. BOURGOINt* Pomological Institute of Shijiazhuang, Agricultural and Forestry Academy of Sciences of Hebei, 5-7 Street, 050061, Shijiazhuang, China t Mus#um National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005, Paris, France (Accepted 28 January 1993) The genus Trypetimorpha is revised with the eight currently recognized species described or re-described. Four new species are described and seven new synonymies are proposed. Within Trypetimorphini sensu Fennah (1982), evidences for the monophyly of each genus are selected, but Caffrommatissus is transferred to the Cixiopsini. Monophyly of Trypetimorphini, restricted to Trypetimorpha and Ommatissus, is discussed. A key is given for the following Trypetimorpha species: (1) T. fenestrata Costa ( = T. pilosa Horvfith, syn. n.); (2) T. biermani Dammerman (= T. biermani Muir, syn. n.; = T. china (Wu), syn. n.; = T. formosana Ishihara, syn. n.); (3) T. japonica Ishihara ( = T. koreana Kwon and Lee, syn. n.); (4) T. canopus Linnavuori; (5) T. occidentalis, sp. n. (= T. fenestrata Costa, sensu Horvfith); (6) T. aschei, sp. n., from New Guinea; (7) T. wilsoni, sp. n., from Australia; (8) T. sizhengi, sp. n., from China and Viet Nam. Study of the type specimens of T. fenestrata Costa shows that they are different from T. fenestrata sensu Horvfith as usually accepted, which one is redescribed here as T. occidentalis. KEYWORDS: Hemiptera, Fulgoromorpha, Tropiduchidae, Trypetimorpha, Ommatissus, Cafrommatissus, systematics, phylogeny. Downloaded by [University of Delaware] at 10:13 13 January 2016 Introduction This revision arose as the result of a study of the Chinese Fulgoromorpha of economic importance (Chou et al., 1985) and the opportunity for J.H.
    [Show full text]
  • Towards a Phylogeny of the Cixiidae (Fulgoromorpha) and Its Major Subgroups: Preliminary Results
    LECTURES Friday, 11. 6. 01 Towards a phylogeny of the Cixiidae (Fulgoromorpha) and its major subgroups: preliminary results Werner E, Holzinger', Ingrid Kammerlander', Thierry Bourgoin^, Kathy L. Chan^ and Bruce C. Campbell^ 'Oekoteam, Inst. f. Faunistik und Tieroekologie, Bergmanngasse 22, A-8010 Graz, Austria ^MNHN-Laboratoire d'Entomologie & ESA 8043 du CNRS, 45, Rue Buffon, F-75005 Paris, France 'USDA-ARS, WRRC, 800 Buchanan St., Albany, 94710-1100, CA, USA Cixiidae is one of the larger families within Fulgoromorpha. Cixiids are distributed worldwide, with an especially high diversity in the tropics. Some taxa are of economic importance, as they are vectors of serious plant diseases. Together with Delphacidae, Derbidae, Achihdae, Achilixiidae and - argued by some authors - Tettigometridae, Cixiidae are usually placed in a very basal position within Fulgoromorpha. The delimitation of the family is based mainly on symplesiomorphies, only a few characters are considered to be synapomorphies (see e. g. Bourgoin et al. 1997, Emeljanov 1990, 1997). Using both molecular and morphological methods, we want to provide new data for a comprehensive phylogenetic analysis of the Cixiidae and its major subgroups. Initial results based on 18S ribosomal DNA sequences indicate, that the Cixiidae (sensu lato) might be a paraphyletic taxon, whereas the subfamilies Bothriocerinae and Cixiinae are obviously monophyletic. The two major tribes within Cixiinae, Pentastirini and Cixiini, are also distinct monophyla with many autapomorphic nucleotide sites. This molecular-based inference is supported by certain morphological characters, especially those found in female genitalia. For example, the presence of a heUx-like, strongly wound Ductus receptaculi (see Remane & Asche 1979) appears to be a strong synapomorphy of the Cixiini.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Hemiptera: Flatidae) En Rapa Nui Y Distribución Potencial En Chile Continental
    www.biotaxa.org/rce. ISSN 0718-8994 (online) Revista Chilena de Entomología (2019) 45 (4): 559-578. Artículo Científico Presencia de Siphanta acuta (Walker) (Hemiptera: Flatidae) en Rapa Nui y distribución potencial en Chile continental Presence of Siphanta acuta (Walker) (Hemiptera: Flatidae) in Rapa Nui and potential distribution in mainland Chile Juan F. Campodonico1 1Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile. Av. Rector Eduardo Morales Miranda s/n, Edificio Emilio Pugín, Valdivia, Chile. E-mail: [email protected] ZooBank: urn:lsid:zoobank.org:pub: 772E8AC9-1BD1-4305-A977-5C1AF1500F4F https://doi.org/10.35249/rche.45.4.19.08 Resumen. Siphanta acuta (Walker, 1851) es un fitófago generalista originario de Australia que ha invadido Nueva Zelanda, Islas Hawái y California (Estados Unidos de América), Sudáfrica, Islas Azores (Portugal) y Vietnam. Esta especie se viene reolectando desde 1998 en Rapa Nui (Isla de Pascua), Chile insular. Con el objetivo de conocer la susceptibilidad de Chile continental a la introducción de esta especie se generaron modelos de distribución mediante los algoritmos GAM Boost y Random Forest a partir de variables bioclimáticas y altitud en la aplicación Simple Nicho, obteniéndose una alta probabilidad de establecimiento en la zona costera de Chile Central. Palabras clave: Auchenorrhyncha, Fulgoroidea, invasiones biológicas, plagas, modelo de distribución de especies, modelo de nicho ecológico, Isla de Pascua. Abstract. Siphanta acuta (Walker, 1851) is a generalist phytophagous native of Australia which has invaded New Zealand, Hawaii islands and California (United States of America), South Africa, Azores islands (Portugal) and Vietnam.
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]