The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology and Adaptation of Immature Stages of Hemipteran Insects
© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes. -
Remote Sensing and Geographical Information Analytical Techniques for Modelling Ommatissus Lybicus (Hemiptera: Tropiduchidae) Habitat and Population Densities
Remote Sensing and Geographical Information Analytical Techniques for Modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) Habitat and Population Densities Khalifa M Al-Kindi 1 , Paul Kwan Corresp., 1 , Nigel Andrew 2 , Mitchell Welch 1 1 School of Science and Technology, University of New England, Armidale, NSW, Australia 2 Centre for Behavioural and Physiological Ecology, University of New England, Armidale, NSW, Australia Corresponding Author: Paul Kwan Email address: [email protected] In order to understand the distribution and prevalence of Ommatissus lybicus (Homoptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and highly sophisticated information on the environmental, climatic, and agricultural practices are essential. The analytical techniques available in modern spatial analysis packages, such as Remote Sensing and Geographical Information Systems, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental and human factors. The main objective of this paper is to review remote sensing and geographical information analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus in Oman. An exhaustive search of related literature revealed that there are few studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental and human practice related variables in the Middle East. Our review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance sites that are necessary in designing both local and regional level integrated pest management (IPM) policing of palm tree and other affected cultivated crops. -
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Laws of Malaysia
LAWS OF MALAYSIA ONLINE VERSION OF UPDATED TEXT OF REPRINT Act 716 WILDLIFE CONSERVATION ACT 2010 As at 1 December 2014 2 WILDLIFE CONSERVATION ACT 2010 Date of Royal Assent … … 21 October 2010 Date of publication in the Gazette … … … 4 November 2010 Latest amendment made by P.U.(A)108/2014 which came into operation on ... ... ... ... … … … … 18 April 2014 3 LAWS OF MALAYSIA Act 716 WILDLIFE CONSERVATION ACT 2010 ARRANGEMENT OF SECTIONS PART I PRELIMINARY Section 1. Short title and commencement 2. Application 3. Interpretation PART II APPOINTMENT OF OFFICERS, ETC. 4. Appointment of officers, etc. 5. Delegation of powers 6. Power of Minister to give directions 7. Power of the Director General to issue orders 8. Carrying and use of arms PART III LICENSING PROVISIONS Chapter 1 Requirement for licence, etc. 9. Requirement for licence 4 Laws of Malaysia ACT 716 Section 10. Requirement for permit 11. Requirement for special permit Chapter 2 Application for licence, etc. 12. Application for licence, etc. 13. Additional information or document 14. Grant of licence, etc. 15. Power to impose additional conditions and to vary or revoke conditions 16. Validity of licence, etc. 17. Carrying or displaying licence, etc. 18. Change of particulars 19. Loss of licence, etc. 20. Replacement of licence, etc. 21. Assignment of licence, etc. 22. Return of licence, etc., upon expiry 23. Suspension or revocation of licence, etc. 24. Licence, etc., to be void 25. Appeals Chapter 3 Miscellaneous 26. Hunting by means of shooting 27. No licence during close season 28. Prerequisites to operate zoo, etc. 29. Prohibition of possessing, etc., snares 30. -
Hemiptera: Heteroptera: Reduviidae)
Zootaxa 4425 (2): 372–384 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4425.2.11 http://zoobank.org/urn:lsid:zoobank.org:pub:188C650E-9303-4A21-A65E-3B88444CE885 A remarkable new species of cavernicolous Collartidini from Madagascar (Hemiptera: Heteroptera: Reduviidae) DOMINIK CHŁOND1, ERIC GUILBERT2, ARNAUD FAILLE2,3, PETR BAŇAŘ4 & LEONIDAS-ROMANOS DAVRANOGLOU5 1University of Silesia, Faculty of Biology and Environmental Protection, Department of Zoology, ul. Bankowa 9, 40-007 Katowice, Poland. E-mail: [email protected] 2Muséum National d'Histoire Naturelle, Département de Systématique et Evolution, UMR 7205 CNRS, CP50 - 45 rue Buffon, 75005 Paris, France. E-mail: [email protected] 3Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain. E-mail: [email protected] 4Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University, Zemědělská 1, Brno, CZ-613 00, Czech Republic. E-mail: [email protected] 5Oxford Flight Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom. E-mail: [email protected] Abstract Mangabea troglodytes sp. nov. (Hemiptera: Heteroptera: Reduviidae: Emesinae) is described based on four specimens collected in a cave of the Namoroka Karstic System, Madagascar, and deposited in the Collection of the Muséum National d’Histoire Naturelle, Paris. The dorsal habitus as well as diagnostic characters of male and female genitalia are extensively illustrated and imaged. A key to species of the genus Mangabea Villiers, 1970 is provided and the degree of cave special- ization of the new species is discussed. -
<I>Tibraca Limbativentris</I> (Hemiptera: Pentatomidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2018 Resistance in Rice to Tibraca limbativentris (Hemiptera: Pentatomidae) Influenced yb Plant Silicon Content Lincoln Luis França University of Goias State, Unidade Universitária de Ipameri, [email protected] Cássio Antonio Dierings Federal Goiano Institute, Campus Urutaí, Rodovia, [email protected] André Cirilo de Sousa Almeida Federal Goiano Institute, Campus Urutaí, Rodovia, [email protected] Marcio da Silva Araújo University of Goias State, Unidade Universitária de Ipameri Elvis Arden Heinrichs University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Agriculture Commons, and the Entomology Commons França, Lincoln Luis; Dierings, Cássio Antonio; de Sousa Almeida, André Cirilo; Araújo, Marcio da Silva; Heinrichs, Elvis Arden; da Silva, Anderson Rodrigo; Freitas Barrigossi, José Alexandre; and de Jesus, Flávio Gonçalves, "Resistance in Rice to Tibraca limbativentris (Hemiptera: Pentatomidae) Influenced yb Plant Silicon Content" (2018). Faculty Publications: Department of Entomology. 900. https://digitalcommons.unl.edu/entomologyfacpub/900 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: -
Heteroptera: Coreidae: Coreinae: Leptoscelini)
Brailovsky: A Revision of the Genus Amblyomia 475 A REVISION OF THE GENUS AMBLYOMIA STÅL (HETEROPTERA: COREIDAE: COREINAE: LEPTOSCELINI) HARRY BRAILOVSKY Instituto de Biología, UNAM, Departamento de Zoología, Apdo Postal 70153 México 04510 D.F. México ABSTRACT The genus Amblyomia Stål is revised and two new species, A. foreroi and A. prome- ceops from Colombia, are described. New host plant and distributional records of A. bifasciata Stål are given; habitus illustrations and drawings of male and female gen- italia are included as well as a key to the known species. The group feeds on bromeli- ads. Key Words: Insecta, Heteroptera, Coreidae, Leptoscelini, Amblyomia, Bromeliaceae RESUMEN El género Amblyomia Stål es revisado y dos nuevas especies, A. foreroi y A. prome- ceops, recolectadas en Colombia, son descritas. Plantas hospederas y nuevas local- idades para A. bifasciata Stål son incluidas; se ofrece una clave para la separación de las especies conocidas, las cuales son ilustradas incluyendo los genitales de ambos sexos. Las preferencias tróficas del grupo están orientadas hacia bromelias. Palabras clave: Insecta, Heteroptera, Coreidae, Leptoscelini, Amblyomia, Bromeli- aceae The neotropical genus Amblyomia Stål was previously known from a single Mexi- can species, A. bifasciata Stål 1870. In the present paper the genus is redefined to in- clude two new species collected in Colombia. This genus apparently is restricted to feeding on members of the Bromeliaceae, and specimens were collected on the heart of Ananas comosus and Aechmea bracteata. -
LCSH Section L
L (The sound) Formal languages La Boderie family (Not Subd Geog) [P235.5] Machine theory UF Boderie family BT Consonants L1 algebras La Bonte Creek (Wyo.) Phonetics UF Algebras, L1 UF LaBonte Creek (Wyo.) L.17 (Transport plane) BT Harmonic analysis BT Rivers—Wyoming USE Scylla (Transport plane) Locally compact groups La Bonte Station (Wyo.) L-29 (Training plane) L2TP (Computer network protocol) UF Camp Marshall (Wyo.) USE Delfin (Training plane) [TK5105.572] Labonte Station (Wyo.) L-98 (Whale) UF Layer 2 Tunneling Protocol (Computer network BT Pony express stations—Wyoming USE Luna (Whale) protocol) Stagecoach stations—Wyoming L. A. Franco (Fictitious character) BT Computer network protocols La Borde Site (France) USE Franco, L. A. (Fictitious character) L98 (Whale) USE Borde Site (France) L.A.K. Reservoir (Wyo.) USE Luna (Whale) La Bourdonnaye family (Not Subd Geog) USE LAK Reservoir (Wyo.) LA 1 (La.) La Braña Region (Spain) L.A. Noire (Game) USE Louisiana Highway 1 (La.) USE Braña Region (Spain) UF Los Angeles Noire (Game) La-5 (Fighter plane) La Branche, Bayou (La.) BT Video games USE Lavochkin La-5 (Fighter plane) UF Bayou La Branche (La.) L.C.C. (Life cycle costing) La-7 (Fighter plane) Bayou Labranche (La.) USE Life cycle costing USE Lavochkin La-7 (Fighter plane) Labranche, Bayou (La.) L.C. Smith shotgun (Not Subd Geog) La Albarrada, Battle of, Chile, 1631 BT Bayous—Louisiana UF Smith shotgun USE Albarrada, Battle of, Chile, 1631 La Brea Avenue (Los Angeles, Calif.) BT Shotguns La Albufereta de Alicante Site (Spain) This heading is not valid for use as a geographic L Class (Destroyers : 1939-1948) (Not Subd Geog) USE Albufereta de Alicante Site (Spain) subdivision. -
Hymenoptera) of Meghalaya with Special Reference to Encyrtidae, Mymaridae and Aphelinidae
Journal of Biological Control, 29(2): 49-61, 2015 Research Article Additions to the Chalcidoidea (Hymenoptera) of Meghalaya with special reference to Encyrtidae, Mymaridae and Aphelinidae A. RAMESHKUMAR*, J. POORANI and V. NAVEEN Division of Insect Systematics, ICAR-National Bureau of Agricultural Insect Resources, H. A. Farm post, Bellary road, Hebbal, Bangalore - 560024, Karnataka. *Corresponding author E-mail: [email protected] ABSTRACT: Encyrtidae, Mymaridae and Aphelinidae were surveyed from Ri-Bhoi, Jaintia hills, East Khasi hills, and West Khasi hills districts of Meghalaya in 2013. New distribution records of 55 genera and 61 species of encyrtids, mymarids aphelinids and eucharitids for Meghalaya state are documented. KEY WORDS: Encyrtidae, Mymaridae, Aphelinidae, distributional records, India, Meghalaya (Article chronicle: Received: 01-06-2015; Revised: 21-06-2015; Accepted: 23-06-2015) INTRODUCTION composite images were obtained from image stacks using Combine ZP. The images were arranged in plates in Adobe Studies on the Chalcidoidea fauna of Meghalaya are Photoshop Elements 11. very limited and the state has not been systematically sur- veyed for encyrtids, mymarids and aphelinids though they RESULTS AND DISCUSSION play an important role in natural and applied biological control. Hayat and his co-workers have contributed to the During the survey, 950 specimens of chalcidoids and known fauna of Meghalaya (Hayat, 1998; Hayat, 2006; Ka- other parasitoids were collected. Twenty two species repre- zmi and Hayat, 2012; Zeya and Hayat, 1995). We surveyed senting 16 genera of mymarids, 30 species representing 28 four districts of Meghalaya in 2013 for Chalcidoidea with genera of encyrtids, 10 genera and 8 species of aphelinids particular reference to Encyrtidae, Aphelinidae and My- and Orasema initiator Kerrich of eucharitid are reported maridae and documented several taxa new to the state. -
The Evolution of Insecticide Resistance in the Brown Planthopper
www.nature.com/scientificreports OPEN The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in Received: 18 September 2017 Accepted: 2 March 2018 the period 2012–2016 Published: xx xx xxxx Shun-Fan Wu1, Bin Zeng1, Chen Zheng1, Xi-Chao Mu1, Yong Zhang1, Jun Hu1, Shuai Zhang2, Cong-Fen Gao1 & Jin-Liang Shen1 The brown planthopper, Nilaparvata lugens, is an economically important pest on rice in Asia. Chemical control is still the most efcient primary way for rice planthopper control. However, due to the intensive use of insecticides to control this pest over many years, resistance to most of the classes of chemical insecticides has been reported. In this article, we report on the status of eight insecticides resistance in Nilaparvata lugens (Stål) collected from China over the period 2012–2016. All of the feld populations collected in 2016 had developed extremely high resistance to imidacloprid, thiamethoxam, and buprofezin. Synergism tests showed that piperonyl butoxide (PBO) produced a high synergism of imidacloprid, thiamethoxam, and buprofezin efects in the three feld populations, YA2016, HX2016, and YC2016. Functional studies using both double-strand RNA (dsRNA)-mediated knockdown in the expression of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster showed that CYP6ER1 confers imidacloprid, thiamethoxam and buprofezin resistance. These results will be benefcial for efective insecticide resistance management strategies to prevent or delay the development of insecticide resistance in brown planthopper populations. Te brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a serious pest on rice in Asia1. Tis monophagous pest causes severe damage to rice plants through direct sucking ofen causing “hopper burn”, ovipositing and virus disease transmission during its long-distance migration1,2. -
High Levels of Resistance in the Common Bed Bug, <I>Cimex Lectularius</I> (Hemiptera: Cimicidae), to Neonicotinoid I
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2016 High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides Alvaro Romero New Mexico State University, [email protected] Troy D. Anderson University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons, and the Medicine and Health Sciences Commons Romero, Alvaro and Anderson, Troy D., "High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides" (2016). Faculty Publications: Department of Entomology. 533. http://digitalcommons.unl.edu/entomologyfacpub/533 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Medical Entomology, 53(3), 2016, 727–731 doi: 10.1093/jme/tjv253 Advance Access Publication Date: 28 January 2016 Short Communication Short Communication High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides Alvaro Romero1,2 and Troy D. Anderson3 1Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003 ([email protected]), 2Corresponding author, e-mail: [email protected], and 3Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061 ([email protected]) Received 4 November 2015; Accepted 23 December 2015 Abstract The rapid increase of bed bug populations resistant to pyrethroids demands the development of novel control tactics. -
Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips.