N O T I C E This Document Has Been Reproduced From

Total Page:16

File Type:pdf, Size:1020Kb

N O T I C E This Document Has Been Reproduced From N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE h80-17t1t^ (HASA—C'Li-163038) PhELIMINAhY UES1GN L'ATA PACKAGE, API'ENUIX L (mouth L4ast 1*-'C111)o1oyY, CSLL 13E Inc.) 239 p ,!L All/Lit AU 1 Gilclas GJ /85 ^787.s ^ kp ^p I S WTH COOT TECHNOLOGY, INC. Santa Barbara,. Callfotnl* n 's k 4 A P P E N D I X C PRELIMINARY DESIGN DATA PACKAGE PREPARED FOR: JET PROPULSION LABORATORIES CONTRACT NUMBER 955189 PREPARED BY: SOUTH COAS1 TECHNOLOGY, INC. P. 0. BOX 3265 SANTA BARBARA, CALIFORNIA 93105 JULY 25, 1979 f LW IJ LJ E) (O'^, /^^ J TABLE OF CONTENTS Page INTRODUCTI ON . 1 2. DESIGN METHODOLOGY AND ASSUMPTIONS . 2 2.1 Design Philosophy . 2 2.2 Propulsion System . 5 2.3 Chassis Systems . 16 2.4 Body/Structure . 19 3. DEVELOPMENT REQUIREMENTS . 28 3.1 Major Areas of Technology Development . 28 3 .2 Controls . 29 3.3 Heat Engine . 32 3 .4 Batteries . 38 4. DESCRIPTION OF NTHV PRELIMINARY DESIGN . 41 4 .1 Propulsion System. , . 53 4.1.1 System Description . 53 4.1.2 System Controller . 57 4.1.3 Heat Engine and Controls . 145 4.1.4 Motor and Motor Controls . 159 4.1.5 Batteries and Battery Charger . 174 4.1.6 Transmission and Rear Axle . 187 4.1.7 Accessory Power . 192 4.2 Chassis Systems . 195 4 .3 Body . 199 4.4 Vehicle System Characteristics . 206 TABLE OF CONTENTS Fame 4.5 Drawing Package . 231 5. LIST OF REFERENCES . 234 APPENDICES C1. Computer Program Documentation Cl.l HYBRID2 . C- 1 C1.2 v.'^YS b VSYS2 . C- 67 C1.3 CRASH . C- 108 C1.4 Handling Programs . C- 132 C1.5 Life Cycle Costs . C- 175 C2. Drawing Package - In Separate Envelope C3. Energy and Materials . C- 182 1. INTRODUCTION . This report presents the results of Task 3 - Preliminary Design of the Near Term Hybrid Vehicle Development Program, Phase I. In- cluded are the data and documentation required to define the prelimi- nary design of the 3outh Coast Technology (SCT) Near Term Hybrid Vehicle and quantify its operational characteristics, together with the assumptions and rationale behind the design decisions. In addition to the paper studies as specified, a first phase design mockup was built to identify and solve any packaging problems. Copies of the photos made from the mockup are included in this report, and the mockup vehicle is available for review at our Santa Barbara facilities. The work on this task was performed by South Coast Technology, Inc., with assistance from our key subcontractors and consultants, who include: C. E. Burke Engineering Services - Propulf,ion system design and cost studies EHV Systems, Inc. - Motor control, charger, and central control microprocessor The Brubaker Group - Body design Sheller-Globe - Body materials/weight reduction ESB, Inc. - Lead-acid batteries Eagle Picher - Nickel-iron batteries B. T. Andren - Automotive engineering 2. DESIGN METHODOLOGY AND ASSUMPTIONS In this section, the analytical tools and design methods used in the preliminary design of the Near Term Hybrid Vehicle (NTHV) are described. Before proceeding to a discussion of the methodology for specific systems, however, d iscussion of the overall design philosophy and how it relates to the two worlds of government sponsored research and development, and auto industry product planning, would be useful. 2.1 Design Philosophy The design approach taken by SCT for the NTHV is based on the vehicle requirements defined in Task 1 of this program and on the design tradeoff studies conducted in Task 2. In addition, the approach was heavily influenced by considerations of technology de- velopment and transfer in the time frame relevant to this near term program. The subject of the hybrid system development requirements will be discussed in greater detail in Section 3; it suffices at this point to outline the thinking which underlies the relationship between SCT's design approach and the task of developing a hybrid vehicle which maximizes the return on the investment in the NTHV program. It is as follows: a) There is a basic program requirement that the technology and development requirements of the NTHV must be such that it would be capable of being mass produced in the mid- 1980's. b) Large scale production of hybrid vehicles (or electric vehicles, for that matter) will only happen if one of the major auto manufacturers undertakes it; it will not happen ^u within, or as a result of growth within, the EV industry. - 2 - ( c) Because of these two factors, the technology developed for . the NTHV must be transferable to the auto industry in the same mid-1980's time frame. Such technology transfer is most likely to occur if the hybrid vehicle presents a viable alternative for bringing the fuel consumption of full- sized six passenger automobiles into line with the federally mandated corporate average fuel economy (CAFE). d) Relative to a conventional automobile which utilizes com- parable technology in vehicle design (transmissions, tires, aerodynamics, structures, etc.), the largest single reduc- tion in fuel consumption comes from the conversion to a hybrid system and the implementation of a control strategy in which the heat engine runs only under selected conditions (high power demand, high speed cruise, or a low battery state of charge). Once the basic conversion to a hybrid system is made, additional refinements at the component or subsystem level result in relatively small additional reduc- tions in fuel consumption. e) The biggest development task associated with the NTHV will be the implementation of the type of control strategy just described, in such a way that the transitions from engine- off to engine-on and back again are handled smoothly, with no more discomfort to the occupants than the shifting of an automatic transmission, and in such a way that emissions re- quirements are met. ' - 3 - since the biggest payoff in terms of reduced fuel consumption, is well as the biggest development task, is associated with ,he implementation of an optimum control strategy, that is the ,lace to put the emphasis in a near term program. The less his task is diluted by efforts to make unrelated component it subsystem refinements, the better the chances of success n terms of demonstrating a vehicle with greatly reduced uel consumption and acceptable driveability and performance. his, together with the requirement for near term trarsfer- bility of technology to the auto industry, led us to the onclusion that component designs should be as close to tate-of-the-art as possible in order to provide adequate ime for system level development. Component level develop- ment should be, in general, limited to those areas which are critical to implementation of the control strategy. Based on these considerations, SCT developed a design philoso- phy characterized by the following: a) The hybrid system is viewed as a means for enabling a major manufacturer to meet CAFE requirements in the year 1985 and beyond, while maintaining a product mix which still possesses a substantial fraction of roomy six-passenger automobiles. b) Consequently, the vehicle in which the hybrid propulsion system is to be incorporated is viewed as an evolutionary development of an existing six-passenger vehicle, incorpora- ting those improvements in transmission design, tires, aero- dynamics, and materials which can be projected to occur - 4 - tween now and 1985. It is not a radically different hicle designed uniquely for hybrid propulsion. signs requiring extensive development at the component level are avoided. In general, we have tried to utilize production, or pre-production hardware, incorporating the best current technolog; , . Developmental hardware is util- ized only in the event that it would result in a large advantage in system performance, and the development status is such that production by the mid-80's is a good possi- bility. 2.2 Propulsion System In this area, we include the heat engine, motor and motor controls, system controller and interface electronics, battery charger, battery, transmission (including heat engine startup clutch), and differential. 2.2.1 Analytical Methods The principal tool used in the analytical design of the pro- pulsion system is an improved version of the computear simulation program HYBRID2. The principal elements of the vehicle simulation are shown in Figure 2-1 . This program, and its simpler predeces- sor HYBRID, are described in Section 2.1 of the Task 2 report. (1) The changes which have been made irs HYBRID2 since the writing of that report include the following: a) Improved battery modelling. b) Greater flexibility in programming transmission shift points. - 5 - ,rS L a N V rl V C '{7 M 1 N u w eo ,4 ow 2QTP907 ZTW"posar f 6 - a c) lr ­ ,rporation of a warmup peri.,d. A discussion of each of these areas follows. Battery Modelling The version of HYBRID2 which was used for Task 2 computes an average battery specific power over each of the composite driving cycles for Mode 1 operation and determines the corresponding avail- able specific energy from a plot of specific energy vs. specific power (Ragone plot). This provides an estimate of available specific energy which is somewhat optimistic. An alternative model which also uses a Ragone plot is the fractional utilization model. With this technique, it is assumed that, if the battery spends an increment of time ©t at a specific power P, the fraction of the battery capacity which is used up in that time increment is given by 0 Plat ^x E(P) where E is the available specific energy at the specific power P.
Recommended publications
  • January 1977 I
    CALIFORNIA STATE UN:::VERSITY, NORTHRIDGE HICROPROCESSORS / A graduate p~ojc~t report s~~oitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering .. I by Thor,las Carson Hecht ~- .January 1977 i The graduate project report of Thomas Carson Hecht is approved: California State University, Northridge Oitober 1976 ii TABLE OF CONTENTS TITLE PAGE i. 1-.PPROVAL PAGE i.i LIST OF FIGURES i.v ABSTRP.C'I' vii INTRODUCTION 1 INTRODUCTION 1'0 MICROPROCESSORS 3 THE 6800 HINIHAL SYSTEM 7 THE HICROCOMPUTER ... , .. ,~ .. c•<~c•••••••••••••,.tt•••••••.••,•·•••••-~~·•'~••oo 18 }!ICROELECTRONIC P.ESISTOiZS AND RESISTOR TRH'lMING 31 AJ!FL ICATT.O!'·! OF THE HICROCOI'-1PUTER TO LASER TRIH~llNG R),DJIR ERRORS AND THEIR CORRECTION 65 THE ERROR COF,RECI'TON SYSTEM •••••••c••••.,••••••••••••••• .. •-ta•••••·• 69 THE HICROPROCESSOR SYSTEN 34 LIHJ.TATWNS AND ACCURACY 97 SUNNARY 100 APPENDIX A 6800 IN.~)J'RUC.TIO.N S.&T •••••••••••••••••••• 102 APPEND IX E HOTOIWLA 6800 .CI.ROJ LTS -t.~ ...... ~ ... , ............. ~ ............... 105 lJ:'FENDIX C C.ALCJJL.A.TOR .CHIP DATA SH.EET •• , , .•••• , .•••.•••••••••••• llO 'I + .. .;:,. .. t •· II " • • • 115 BIBLlOGR.t,PHY ••••••••• otto'W ...... ll9 Li.i LIST OF FIGURES FIGURE 1: THE 6800 Mli'Hr·L'\L SYSTEH FIGURE 2: OPERATION OF THE ACIA FIGURE 3: OPERATION OF THE PIA FIGURE Lf: BLOCK DIAGRP..H OF THE PIA/CALCULATOR CHIP INTERFACE FIGURE 5: SCHEHATIC AND TRUTH TABLE OF THE PRIOP.ITY ENCODER FIGURE 6: SCHElv!ATIC OF THE QUAD AND FIGURE 7: SCHEHATIC OF 'I'JIE TNTERRUPT PRIORITY CIRCUIT FIGURE 8: LOCATIONS ADDRESSED BY THE MPU FOR DIFFERENT PRIORITY Ii'fTERlWPTS FIGURE 9: .tv1EHORY H1\P OF THE MICROCOl1PUTER FIGURE 10: CALCULATION OF RESISTANCE USING SQUARES AND SHEET RESISTANCE FIGURE 11: DIFFERENT TYPES OF TRIHS FIGURE 12: RESISTANCE AS A FUNCTION OF TRHllviiNG FIGURE 13: PLOT OF % OF INCREASE IN RESISTANCE VS.
    [Show full text]
  • Computer Architectures
    Computer Architectures Motorola 68000, 683xx a ColdFire – CISC CPU Principles Demonstrated Czech Technical University in Prague, Faculty of Electrical Engineering AE0B36APO Computer Architectures Ver.1.10 1 Original Desktop/Workstation 680X0 Feature 68000 'EC000 68010 68020 68030 68040 68060 Data bus 16 8/16 16 8/16/32 8/16/32 32 32 Addr bus 23 23 23 32 32 32 32 Misaligned Addr - - - Yes Yes Yes Yes Virtual memory - - Yes Yes Yes Yes Yes Instruct Cache - - 3 256 256 4096 8192 Data Cache - - - - 256 4096 8192 Memory manager 68451 or 68851 68851 Yes Yes Yes ATC entries - - - - 22 64/64 64/64 FPU interface - - - 68881 or 68882 Internal FPU built-in FPU - - - - - Yes Yes Burst Memory - - - - Yes Yes Yes Bus Cycle type asynchronous both synchronous Data Bus Sizing - - - Yes Yes use 68150 Power (watts) 1.2 0.13-0.26 0.13 1.75 2.6 4-6 3.9-4.9 at frequency of 8.0 8-16 8 16-25 16-50 25-40 50-66 MIPS/kDhryst. 1.2/2.1 2.5/4.3 6.5/11 14/23 35/60 100/300 Transistors 68k 84k 190k 273k 1,170k 2,500k Introduction 1979 1982 1984 1987 1991 1994 AE0B36APO Computer Architectures 2 M68xxx/CPU32/ColdFire – Basic Registers Set 31 16 15 8 7 0 User programming D0 D1 model registers D2 D3 DATA REGISTERS D4 D5 D6 D7 16 15 0 A0 A1 A2 A3 ADDRESS REGISTERS A4 A5 A6 16 15 0 A7 (USP) USER STACK POINTER 0 PC PROGRAM COUNTER 15 8 7 0 0 CCR CONDITION CODE REGISTER 31 16 15 0 A7# (SSP) SUPERVISOR STACK Supervisor/system POINTER 15 8 7 0 programing model (CCR) SR STATUS REGISTER 31 0 basic registers VBR VECTOR BASE REGISTER 31 3 2 0 SFC ALTERNATE FUNCTION DFC CODE REGISTERS AE0B36APO Computer Architectures 3 Status Register – Conditional Code Part USER BYTE SYSTEM BYTE (CONDITION CODE REGISTER) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 T1 T0 S 0 0 I2 I1 I0 0 0 0 X N Z V C TRACE INTERRUPT EXTEND ENABLE PRIORITY MASK NEGATIVE SUPERVISOR/USER ZERO STATE OVERFLOW CARRY ● N – negative ..
    [Show full text]
  • ED135388.Pdf
    DOCUMENT RESUME ED 135 388 IB 004 499 AUTHOR Kirby, Paul J.; Gardner, Edward M. Tin! Microcomputer Controlled, interactive Testing Terminal Development. INSTITUTION Air Force Human Resources lab., Lowry AFB, Colo. Technical Training Div. SPONS AGENCY Air Force Human Resources Lab., Brooks AFB, Texas. REPORT NO AIHEI-TR-76-66 PUB DATE Oct 76 NOTE 27p. EDRS PRICE MF-$0.83 HC-$2.06 Plus Postage. DESCRIPTORS Autcinstructional Aids; Computer Programs; *Computer Science; *Individual Tests; Man Machine Systems; Self Pacing Machines; *Testing; *Test Scoring Machines IDENTIFIERS Microcomputers ABSTRACT The evolution of a self-contained test scoring terminal is presented. The rationale for thedesign is presented along with an evolutionary description ofthe requirements for the system. The sequence of software andhardware tools, which were developed in order to build the device, are alsodescribed in this report. The resulting device,which contains an imbedded microcomputer is functionally described and the testingstrategies which it cur.rently supports axe presented.(Author) *********************************************************************** * Dcraents acquired by ERIC include many informalunpublished * *materls not available from other sources. ERICmakes every effort * *to obtain tbe best copyavailable. Nevertheless, items of marginal * *reproducibility are often encountered andthis affects the quality * *of the microfiche and hardcopyxeproductions ERIC makes available * *via the ERIC Document ReproductionService (EDRS). EDRS is not * *responsible
    [Show full text]
  • Technician's Guide to 68HC11 Microcontroller.Pdf
    chapter 1 Introduction to Computer Hardware Objectives I ntr odu ct ion to Com put er H ardw are After completing this chapter, you should be able to: ◗ Describe the fundamental elements of every computer system: proces- sor, memory, and input/output ◗ Compare elements of the HC11 block diagram to the fundamentals of every computer system ◗ Describe the use of busses to connect computer elements ◗ Explain the three major functional units of a processor ◗ Illustrate the typical registers inside the processor ◗ List the HC11 processor registers ◗ Discuss the HC11 processor modes ◗ Compare and contrast various memory types ◗ Describe the on-chip memory of the HC11 ◗ Specify input/output functions present on most computers ◗ Use some basic BUFFALO commands to control the EVBU Outline ◗ 1.1 Elements of Every Computer ◗ 1.2 Elements of Processors ◗ 1.3 Introduction to Memory ◗ 1.4 Memory Types ◗ 1.5 Input/Output 1 ◗ 1.6 EVBU/BUFFALO Technician’s Guide to the 68HC11 Microcontroller Introduction Computer systems have been developed for a variety of functions and purposes. General-application desktop machines are the most common. They run a variety of software applications, such as word processing, financial management and data processing. They have all but replaced the typewriter as a necessary business tool. Computers are also present in automobiles, appliances, airplanes and all types of controllers and electromechanical devices. Despite the differences among these computer systems, they all share fundamental components and design. The purpose of this chapter is to provide an understanding of the fundamental components of a computer system. A conceptual presentation regarding the elements of every computer system is made with sufficient detail to establish a foundation for these concepts.
    [Show full text]
  • Part 21 Rept Re Marking of Motorola 8-Bit Microprocessor Family
    . o *" ']w', ('', , . 1, ;, * , ' i VICTOREEN, INC. - 10101 WDODLAND AVE., CLE(ELAND, DillD 44104 . VICTOREEN "" "*:'''*1'****** = m i n o l a :'' * * * ' August 19, 1983 'i ' . ' U. S. Nuclear Regulatory Commission Region III 799 Roosevelt Road Glen Allyn, IL 60137 . Attentior. Mr. Robert Gregor Subject: 10CFR21 Repertable Data . Reference: Phone conversation of 8/18/83 Dear Mr. Gregor: In accordance with 10CFR21, VICT0REEN, INC. shall use this letter to formally document our phone co'nversation of 8/18/83 as well as transmit our written report. On 8/18/83, your department was notified by phone . of a potential defect involving the marking of the Motorola 8-Bit Microprocessor (MPU's) Family. The defect involves the letter designa- tion utilized on the Hi-Re1 products which was changed to indicate tem- perature classifications of the microprocessor. What follows is the written report required as per 10CFR21 Paragraph 21.21 b2 and b3., , MD Ref: B3.i.) q VICTOREEN, INC. t 10101 Woodland Avenue ,g O-[* Cleveland, Ohio 44104 /k Attention: Roger Zimmerman, Q. A. Manager, and Attention: Ken Stafford, Reliability Manager | | Ref: B3.ii) i The facilities which may contain the basic component is as follows: Facility Type of VICTOREEN Equipment . Midland, Units 1 & 2 Quantity of 12 Class IE Area Radiation Monitors Model No. M861CD Indian Point Ouantity of 2 Class 1E High i Range Containment Monitor Model No. M861CD h , s p 8309070411 830831 g gDRADOCK05000 A shener o obe comoreon sues.o ry | . m . _ _ ._ . d - . P:gs 2 - , ~ . U. S. Nuclear Regulatory Commission , . Region III Clen Allyn, IL 60137 ,.
    [Show full text]
  • Renesas General-Purpose Microcontrollers/Microprocessors Lineup Catalog
    Renesas General-Purpose Microcontrollers/Microprocessors Lineup Catalog Notes: Renesas General-Purpose Microcontrollers/Microprocessors 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or Lineup Catalog others. 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
    [Show full text]
  • Eindhoven University of Technology MASTER Embedded Sensing Platform for Smart Urban Spaces Garza Salas, A
    Eindhoven University of Technology MASTER Embedded sensing platform for smart urban spaces Garza Salas, A. Award date: 2015 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Embedded Sensing Platform for Smart Urban Spaces Eindhoven University of Technology Faculty of Electrical Engineering Royal Philips N.V. - Research Master Embedded Systems Author: Amado Garza Salas - 0827000 [email protected] Date: 9 January 2015 Supervisors: prof. dr. ir. Gerard de Haan dr. ir. Frank van Heesch ir. Ruben Rajagopalan Acknowledgement I would like to express my gratitude towards prof. dr. ir. Gerard de Haan for providing me with this opportunity, as well as for his involvement, supervision and support during the realization of this project.
    [Show full text]
  • Addressing Mode 1 Addressing Mode
    Addressing mode 1 Addressing mode Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how machine language instructions in that architecture identify the operand (or operands) of each instruction. An addressing mode specifies how to calculate the effective memory address of an operand by using information held in registers and/or constants contained within a machine instruction or elsewhere. In computer programming, addressing modes are primarily of interest to compiler writers and to those who write code directly in assembly language. Caveats Note that there is no generally accepted way of naming the various addressing modes. In particular, different authors and computer manufacturers may give different names to the same addressing mode, or the same names to different addressing modes. Furthermore, an addressing mode which, in one given architecture, is treated as a single addressing mode may represent functionality that, in another architecture, is covered by two or more addressing modes. For example, some complex instruction set computer (CISC) computer architectures, such as the Digital Equipment Corporation (DEC) VAX, treat registers and literal/immediate constants as just another addressing mode. Others, such as the IBM System/390 and most reduced instruction set computer (RISC) designs, encode this information within the instruction. Thus, the latter machines have three distinct instruction codes for copying one register to another, copying a literal constant into a register, and copying the contents of a memory location into a register, while the VAX has only a single "MOV" instruction.
    [Show full text]
  • System-On-A-Chip
    System-on-a-chip From Wikipedia, the free encyclopedia Jump to: navigation, search System-on-a-chip or system on chip (SoC or SOC) is an idea of integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions – all on one chip. A typical application is in the area of embedded systems. If it is not feasible to construct an SoC for a particular application, an alternative is a system in package (SiP) comprising a number of chips in a single package. SoC is believed to be more cost effective since it increases the yield of the fabrication and because its packaging is simpler. Contents [hide] • 1 Structure • 2 Design flow • 3 Fabrication • 4 See also • 5 External links [edit] Structure y513719001187192499 from [email protected] was published by D-Publish on August 15, 2007 Microcontroller-based System-on-a-Chip A typical SoC consists of: • One or more microcontroller, microprocessor or DSP core(s). • Memory blocks including a selection of ROM, RAM, EEPROM and Flash. • Timing sources including oscillators and phase-locked loops. • Peripherals including counter-timers, real-time timers and power-on reset generators. • External interfaces including industry standards such as USB, FireWire, Ethernet, USART, SPI. • Analog interfaces including ADCs and DACs. • Voltage regulators and power management circuits. These blocks are connected by either a proprietary or industry-standard bus such as the AMBA bus from ARM. DMA controllers route data directly between external interfaces and memory, by-passing the processor core and thereby increasing the data throughput of the SoC.
    [Show full text]
  • Dimsport Spain C/ Alt De Gironella, 11 - 13 08017 BARCELONA - SPAIN T (+34) 932895900 F (+34) 932233 E-Mail: [email protected] a Company of Empresa Del Grupo
    Dimsport Spain C/ Alt de Gironella, 11 - 13 08017 BARCELONA - SPAIN T (+34) 932895900 F (+34) 932233 E-mail: [email protected] a company of empresa del grupo SPAIN www.dimsport.es REPROGRAMACIÓN DE CENTRALITAS CARS & TRUCKS TRACTORS MOTORBIKES MARINE OFFROAD CVC Performance Febbraio 2015 SPAIN [email protected] www.dim-sport.com www.cvc-performance.com Holdim Srl gathers and promotes solid companies operating in the Automotive feld such as Dimsport and Ecomotive Solutions. The founders operate together since 1991: thanks to their experience in the electronics, software and technologies applied to the Automotive, the structure has grown fast and frmly, becoming a point of reference worldwide. Through its brands, manufacturing facilities and commercial branches operating all over the world, Holdim offers a complete range of products and solutions dedicated to professionals aiming at achieving outstanding results on the customization of electronically managed engines of cars, bikes, light commercial vehicles, heavy duty trucks, buses, tractors and marine applications. D-GID – technological platform to convert diesel engines to Our leading product lines are: dual fuel systems (DDF) RACE – customization of the engine working parameters of original ECUs/ECMs Research and excellence in engineering are the keys to RAPID – add-on modules for electronically controlled turbo Holdim’s advanced solutions. The Group puts customers frst; diesel and turbo petrol engines their professional needs are met since their frst approach and RAPID BIKE – add-on modules & racing control units for bikes are guaranteed by a whole lot of quality products and services DYNO – chassis dynamometers and road simulators for all provided after purchase.
    [Show full text]
  • Electronic Design Automation Software the Aha! Moment
    THE AUTHORITY ON EMERGING TECHNOLOGIES FOR DESIGN SOLUTIONS March 2015 electronicdesign.com Powered by 503EDECover-Tip.indd 1 2/2/15 2:56 PM 150112_BOMM_ELECDES_US.indd 1 1/5/15 4:26 PM SMT Assembly for Engineers THE AUTHORITY ON EMERGING TECHNOLOGIES FOR DESIGN SOLUTIONSS March 2015 electronicdesign.com Powered by 300 Watts. Zero Wait. Coilcraft PL300 Series planar transformers. Stacked with performance. Available from stock. We’ve packed a lot of performance into our Best of all, these Coilcraft planars are new compact planar transformers. Rated available from stock, so order your free for 300 Watts, the PL300 Series offers DCR evaluation samples today! as low as 7.2 mOhms and leakage induc- Learn more about the tance down to 0.25 µH. PL300 and its 160 Watt They are AEC-Q200 Grade 1 qualifed companion, the PL160, for automotive applications and provide by visiting us online at 1500 Vrms primary-to-secondary isolation. www.coilcraft.com/PL. Coilcraft also offers the 160 W rated PL160 Series ® WWW.COILCRAFT.COM Keysight W2211BP Advanced Design System electronic design automation software The Aha! moment. W2351EP ADS DDR4 Compliance Test Bench We’ll help you feel it. It takes more than silicon to push the limits of DDR memory. It also takes gray matter. The stuff inside your head. A brain capable of genuine insight. If you’re a DDR design engineer, we can give you expert advice from some of the brightest minds in the measurement world. And our end-to-end solutions range from simulation software to advanced hardware. Working together, they can help you determine precisely where your memory challenges are and how to overcome them.
    [Show full text]
  • The Embedded Experts
    The Embedded Experts Debug Probes Software Tools RTOS File System Compression Connectivity Security & IoT User Interface Production Debug Probes J-Link SEGGER Embedded Studio n Features n J-Link Debug Probes n Supports Arm® Cortex®-M / R / A cores, including the 64-bit cores (ARMv8-A) and Arm® 7 / 9 / 11, Microchip PIC32, Renesas RX, RISC-V and Silicon Labs 8051 SEGGER J-Links are the most widely used line of also adds support for corner cases that cannot be debug probes available today. They have proven their supported without such intelligence. n Maximum JTAG speed 15 MHz, J-Link ULTRA+ / PRO: 50 MHz worth for more than 15 years with over 1 Mio units in A sample for such a scenario is: Accessing a slowly n Download speed up to 1.5 MB/s (J-Link® / J-Link® PLUS), 3 MB/s (J-Link® ULTRA+ / PRO) the field. This popularity stems from the unparalleled running CPU at high target interface speeds. J-Links n Power profiling (J-Link® ULTRA+ / PRO) performance, extensive feature set, large number of are the most robust probe in these situations. n Very fast flash loader supported CPUs and compatibility with all popular n Supported by all popular debuggers development environments. n Software Development Kit (SDK) n Support for different debug interfaces: JTAG / SWD / FINE / SPD / ICSP For customers who want to build their n Debug smarter and faster with J-Link! own applications using J-Link, and for n Serial Wire Viewer (SWV) with up to 7.5 / 25 MHz supported With up to 3 MByte per second download speed IDE vendors who implement J-Link n Host interface: USB, Ethernet to RAM and record-breaking flashloaders, and with support for their IDE, SEGGER n Power over USB the ability to set an unlimited number of breakpoints offers a J-Link SDK which n Support for adaptive clocking in flash memory of MCUs, J-Link debug probes comes with the J-Link DLL, n Multi-core debugging supported are undoubtedly the best choice to optimize your the API documentation and debugging and flash programming experience.
    [Show full text]