HELLAS: A Specialized Architecture for Interactive Deformable Object Modeling Shrirang Yardi Benjamin Bishop Thomas Kelliher Department of Electrical and Department of Computing Department of Mathematics Computer Engineering Sciences and Computer Science Virginia Tech University of Scranton Goucher College Blacksburg, VA Scranton, PA Baltimore, MD
[email protected] [email protected] [email protected] ABSTRACT more realistic models, it is likely that the computational Applications involving interactive modeling of deformable resources required by these simulations may continue to ex- objects require highly iterative, floating-point intensive nu- ceed those provided by the incremental advances in general- merical simulations. As the complexity of these models in- purpose systems [12]. This has created an interest in the creases, the computational power required for their simula- use of specialized hardware that provides high performance tion quickly grows beyond the capabilities of current gen- computational engines to accelerate such floating-point in- eral purpose systems. In this paper, we present the design tensive applications [6, 7]. of a low–cost, high–performance, specialized architecture to Our research focuses on the design of such specialized sys- accelerate these simulations. Our aim is to use such special- tems. However, our approach has several important differ- ized hardware to allow complex interactive physical model- ences as compared to previous work in this area: (i) we ing even on consumer-grade PCs. In this paper, we present specifically target algorithms that are numerically stable, details of the target algorithms, the HELLAS architecture, but are much more computationally intensive than those simulation results and lessons learned from our implemen- used by existing hardware implementations [3,6]; (ii) we aim tation.