Experiments on Patterns of Alluvial Cover and Bedrock Erosion in a Meandering Channel Roberto Fernández1, Gary Parker1,2, Colin P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
And I Heard 'Em Say: Listening to the Black Prophetic Cameron J
Claremont Colleges Scholarship @ Claremont Pomona Senior Theses Pomona Student Scholarship 2015 And I Heard 'Em Say: Listening to the Black Prophetic Cameron J. Cook Pomona College Recommended Citation Cook, Cameron J., "And I Heard 'Em Say: Listening to the Black Prophetic" (2015). Pomona Senior Theses. Paper 138. http://scholarship.claremont.edu/pomona_theses/138 This Open Access Senior Thesis is brought to you for free and open access by the Pomona Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Pomona Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. 1 And I Heard ‘Em Say: Listening to the Black Prophetic Cameron Cook Senior Thesis Class of 2015 Bachelor of Arts A thesis submitted in partial fulfillment of the Bachelor of Arts degree in Religious Studies Pomona College Spring 2015 2 Table of Contents Acknowledgements Chapter One: Introduction, Can You Hear It? Chapter Two: Nina Simone and the Prophetic Blues Chapter Three: Post-Racial Prophet: Kanye West and the Signs of Liberation Chapter Four: Conclusion, Are You Listening? Bibliography 3 Acknowledgments “In those days it was either live with music or die with noise, and we chose rather desperately to live.” Ralph Ellison, Shadow and Act There are too many people I’d like to thank and acknowledge in this section. I suppose I’ll jump right in. Thank you, Professor Darryl Smith, for being my Religious Studies guide and mentor during my time at Pomona. Your influence in my life is failed by words. Thank you, Professor John Seery, for never rebuking my theories, weird as they may be. -
Flowers for Algernon.Pdf
SHORT STORY FFlowerslowers fforor AAlgernonlgernon by Daniel Keyes When is knowledge power? When is ignorance bliss? QuickWrite Why might a person hesitate to tell a friend something upsetting? Write down your thoughts. 52 Unit 1 • Collection 1 SKILLS FOCUS Literary Skills Understand subplots and Reader/Writer parallel episodes. Reading Skills Track story events. Notebook Use your RWN to complete the activities for this selection. Vocabulary Subplots and Parallel Episodes A long short story, like the misled (mihs LEHD) v.: fooled; led to believe one that follows, sometimes has a complex plot, a plot that con- something wrong. Joe and Frank misled sists of intertwined stories. A complex plot may include Charlie into believing they were his friends. • subplots—less important plots that are part of the larger story regression (rih GREHSH uhn) n.: return to an earlier or less advanced condition. • parallel episodes—deliberately repeated plot events After its regression, the mouse could no As you read “Flowers for Algernon,” watch for new settings, charac- longer fi nd its way through a maze. ters, or confl icts that are introduced into the story. These may sig- obscure (uhb SKYOOR) v.: hide. He wanted nal that a subplot is beginning. To identify parallel episodes, take to obscure the fact that he was losing his note of similar situations or events that occur in the story. intelligence. Literary Perspectives Apply the literary perspective described deterioration (dih tihr ee uh RAY shuhn) on page 55 as you read this story. n. used as an adj: worsening; declining. Charlie could predict mental deterioration syndromes by using his formula. -
Timescale Dependence in River Channel Migration Measurements
TIMESCALE DEPENDENCE IN RIVER CHANNEL MIGRATION MEASUREMENTS Abstract: Accurately measuring river meander migration over time is critical for sediment budgets and understanding how rivers respond to changes in hydrology or sediment supply. However, estimates of meander migration rates or streambank contributions to sediment budgets using repeat aerial imagery, maps, or topographic data will be underestimated without proper accounting for channel reversal. Furthermore, comparing channel planform adjustment measured over dissimilar timescales are biased because shortand long-term measurements are disproportionately affected by temporary rate variability, long-term hiatuses, and channel reversals. We evaluate the role of timescale dependence for the Root River, a single threaded meandering sand- and gravel-bedded river in southeastern Minnesota, USA, with 76 years of aerial photographs spanning an era of landscape changes that have drastically altered flows. Empirical data and results from a statistical river migration model both confirm a temporal measurement-scale dependence, illustrated by systematic underestimations (2–15% at 50 years) and convergence of migration rates measured over sufficiently long timescales (> 40 years). Frequency of channel reversals exerts primary control on measurement bias for longer time intervals by erasing the record of observable migration. We conclude that using long-term measurements of channel migration for sediment remobilization projections, streambank contributions to sediment budgets, sediment flux estimates, and perceptions of fluvial change will necessarily underestimate such calculations. Introduction Fundamental concepts and motivations Measuring river meander migration rates from historical aerial images is useful for developing a predictive understanding of channel and floodplain evolution (Lauer & Parker, 2008; Crosato, 2009; Braudrick et al., 2009; Parker et al., 2011), bedrock incision and strath terrace formation (C. -
Fraud Risk Management: a Guide to Good Practice
Fraud risk management A guide to good practice Acknowledgements This guide is based on the fi rst edition of Fraud Risk Management: A Guide to Good Practice. The fi rst edition was prepared by a Fraud and Risk Management Working Group, which was established to look at ways of helping management accountants to be more effective in countering fraud and managing risk in their organisations. This second edition of Fraud Risk Management: A Guide to Good Practice has been updated by Helenne Doody, a specialist within CIMA Innovation and Development. Helenne specialises in Fraud Risk Management, having worked in related fi elds for the past nine years, both in the UK and other countries. Helenne also has a graduate certifi cate in Fraud Investigation through La Trobe University in Australia and a graduate certifi cate in Fraud Management through the University of Teeside in the UK. For their contributions in updating the guide to produce this second edition, CIMA would like to thank: Martin Birch FCMA, MBA Director – Finance and Information Management, Christian Aid. Roy Katzenberg Chief Financial Offi cer, RITC Syndicate Management Limited. Judy Finn Senior Lecturer, Southampton Solent University. Dr Stephen Hill E-crime and Fraud Manager, Chantrey Vellacott DFK. Richard Sharp BSc, FCMA, MBA Assistant Finance Director (Governance), Kingston Hospital NHS Trust. Allan McDonagh Managing Director, Hibis Europe Ltd. Martin Robinson and Mia Campbell on behalf of the Fraud Advisory Panel. CIMA would like also to thank those who contributed to the fi rst edition of the guide. About CIMA CIMA, the Chartered Institute of Management Accountants, is the only international accountancy body with a key focus on business. -
Channel Morphology and Bedrock River Incision: Theory, Experiments, and Application to the Eastern Himalaya
Channel morphology and bedrock river incision: Theory, experiments, and application to the eastern Himalaya Noah J. Finnegan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2007 Program Authorized to Offer Degree: Department of Earth and Space Sciences University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Noah J. Finnegan and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Co-Chairs of the Supervisory Committee: ___________________________________________________________ Bernard Hallet ___________________________________________________________ David R. Montgomery Reading Committee: ____________________________________________________________ Bernard Hallet ____________________________________________________________ David R. Montgomery ____________________________________________________________ Gerard Roe Date:________________________ In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred -
3.13 Paleontological Resources
Gateway West Transmission Line Draft EIS 3.13 PALEONTOLOGICAL RESOURCES This section addresses the potential impacts from the Proposed Route and Route Alternatives on the known paleontological resources during construction, operation, and decommissioning. The Proposed Route and Route Alternatives pass through areas where paleontological resources are known to exist. The routes, their potential impacts, and mitigation methods to minimize or eliminate impacts are discussed in this section. 3.13.1 Affected Environment This section describes the mapped geology and known paleontological resources near the Proposed Action. It also describes and compares potential impacts of the Proposed Action and Action Alternatives to paleontological resources. Fossils are important scientific and educational resources because of their use in: 1) documenting the presence and evolutionary history of particular groups of now extinct organisms, 2) reconstructing the environments in which these organisms lived, and 3) determining the relative ages of the strata in which they occur. Fossils are also important in determining the geologic events that resulted in the deposition of the sediments in which they were buried. 3.13.1.1 Analysis Area The Project area in Wyoming and Idaho consists of predominantly north-south trending mountain ranges separated by structural basins. The eastern portion of the Project (Segments 1 and 2) would be located within the Laramie Mountains and the Shirley Mountains, which consist predominantly of Precambrian granite and gneisses. Moving west in Wyoming, the Project would cross major structural basins created during the Laramide Orogeny, including the Hanna Basin in Carbon County (Segment 2), and the Greater Green River Basin in Sweetwater County (Segments 3 and 4). -
River Incision Into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation
River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion and cavitation Kelin X. Whipple* Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Gregory S. Hancock Department of Geology, College of William and Mary, Williamsburg, Virginia 23187 Robert S. Anderson Department of Earth Sciences, University of California, Santa Cruz, California 95064 ABSTRACT long term (Howard et al., 1994). These conditions are commonly met in Improved formulation of bedrock erosion laws requires knowledge mountainous and tectonically active landscapes, and bedrock channels are of the actual processes operative at the bed. We present qualitative field known to dominate steeplands drainage networks (e.g., Wohl, 1993; Mont- evidence from a wide range of settings that the relative efficacy of the gomery et al., 1996; Hovius et al., 1997). As the three-dimensional structure various processes of fluvial erosion (e.g., plucking, abrasion, cavitation, of drainage networks sets much of the form of terrestrial landscapes, it is solution) is a strong function of substrate lithology, and that joint spac- clear that a deep appreciation of mountainous landscapes requires knowl- ing, fractures, and bedding planes exert the most direct control. The edge of the controls on bedrock channel morphology. Moreover, bedrock relative importance of the various processes and the nature of the in- channels play a critical role in the dynamic evolution of mountainous land- terplay between them are inferred from detailed observations of the scapes (Anderson, 1994; Anderson et al., 1994; Howard et al., 1994; Tucker morphology of erosional forms on channel bed and banks, and their and Slingerland, 1996; Sklar and Dietrich, 1998; Whipple and Tucker, spatial distributions. -
SWE PIEDMONT Vs TUSCANY BACKGROUNDER
SWE PIEDMONT vs TUSCANY BACKGROUNDER ITALY Italy is a spirited, thriving, ancient enigma that unveils, yet hides, many faces. Invading Phoenicians, Greeks, Cathaginians, as well as native Etruscans and Romans left their imprints as did the Saracens, Visigoths, Normans, Austrian and Germans who succeeded them. As one of the world's top industrial nations, Italy offers a unique marriage of past and present, tradition blended with modern technology -- as exemplified by the Banfi winery and vineyard estate in Montalcino. Italy is 760 miles long and approximately 100 miles wide (150 at its widest point), an area of 116,303 square miles -- the combined area of Georgia and Florida. It is subdivided into 20 regions, and inhabited by more than 60 million people. Italy's climate is temperate, as it is surrounded on three sides by the sea, and protected from icy northern winds by the majestic sweep of alpine ranges. Winters are fairly mild, and summers are pleasant and enjoyable. NORTHWESTERN ITALY The northwest sector of Italy includes the greater part of the arc of the Alps and Apennines, from which the land slopes toward the Po River. The area is divided into five regions: Valle d'Aosta, Piedmont, Liguria, Lombardy and Emilia-Romagna. Like the topography, soil and climate, the types of wine produced in these areas vary considerably from one region to another. This part of Italy is extremely prosperous, since it includes the so-called industrial triangle, made up of the cities of Milan, Turin and Genoa, as well as the rich agricultural lands of the Po River and its tributaries. -
STREAMS and RUNNING WATER Hydrologic Cycle •What Happens to Precipitation STREAM •River, Creek, Etc
STREAMS AND RUNNING WATER Hydrologic Cycle •What happens to precipitation STREAM •River, Creek, etc. • Banks, Bed • Confined to a channel –Except in time of flood •Floodplain •Longtitudinal Profile Headwaters, mouth Cross-profile V-shaped SHEETWASH –Unchanneled, thin sheet of flowing water – Results in Sheet Erosion Drainage Basin •Tributary • Divide • Examples: –Mississippi River – Amazon River Drainage Patterns •As seen from above • Dendritic (most common) • Radial • Trellis- in tilted or folded layered rock Factors affecting stream erosion and deposition •Velocity- –Distribution in cross-section •Gradient –Usually decreases downstream – Effect on deposition and erosion •Channel shape and roughness • Discharge- –Volume of water moving past a place in time •Usually given as cubic feet per second (cfs) –Usually increases downstream •Discharge- –Volume of water moving past a place in time •Usually given as cubic feet per second (cfs) –Usually increases downstream American River Discharge •In Sacramento: • Average 3,741 c.f.s. • Usual Range: –Winter 9,000 cfs – Last drought 250 cfs •1986 flood 130,000 cfs Stream Erosion •Hydraulic action • Solution- Dissolves rock • Abrasion (by sand and gravel) –Potholes •Deepens valley by eroding river bed • Lateral erosion of banks on outside of curves Transportation of Sediment •Bed load • Suspended load • Dissolved load Deposition •Bars- –moved in floods – deposited as water slows – Placer Deposits (gold, etc.) – Braided Streams •heavy load of sand and gravel • commonly from glacier outwash streams -
River Processes- Erosion, Transportation and Deposition Task 1: for Each of the Processes of Erosion and Transportation Draw a Diagram Show the Process at Work
River Processes- Erosion, Transportation and Deposition Task 1: For each of the processes of erosion and transportation draw a diagram show the process at work In the upper course of the main process is Erosion. This is where the bed and banks of the river are worn away. A river can erode in one of four ways: Process Definition Diagram Hydraulic the sheer force of water hitting the action banks of the river: Abrasion fine material rubs against the riverbank The bank is worn away by a sand- papering action called abrasion, and collapses. This occurs on the outside of meanders. Attrition material is moved along the bed of a river, collides with other material, and breaks up into smaller pieces. Corrosion rocks forming the banks and bed of a river are dissolved by acids in the water. Once the material is eroded it can then be transported by one of four ways, which will depend upon the energy of the river: Process Definition Diagram Traction large rocks and boulders are rolled along the bed of the river. Saltation smaller stones are bounced along the bed of the river Suspension fine material which is carried by the water and which gives the river its 'muddy' colour. Solution dissolved material transported by the river. In the middle and lower course, the land is much flatter, this means that the river is flowing more slowly and has much less energy. The river starts to deposit (drop) the material that it has been carry Deposition Challenge: Add labels onto the diagram to show where all of the processes could be happening in the river channel. -
COLD-BASED GLACIERS in the WESTERN DRY VALLEYS of ANTARCTICA: TERRESTRIAL LANDFORMS and MARTIAN ANALOGS: David R
Lunar and Planetary Science XXXIV (2003) 1245.pdf COLD-BASED GLACIERS IN THE WESTERN DRY VALLEYS OF ANTARCTICA: TERRESTRIAL LANDFORMS AND MARTIAN ANALOGS: David R. Marchant1 and James W. Head2, 1Department of Earth Sciences, Boston University, Boston, MA 02215 [email protected], 2Department of Geological Sciences, Brown University, Providence, RI 02912 Introduction: Basal-ice and surface-ice temperatures are contacts and undisturbed underlying strata are hallmarks of cold- key parameters governing the style of glacial erosion and based glacier deposits [11]. deposition. Temperate glaciers contain basal ice at the pressure- Drop moraines: The term drop moraine is used here to melting point (wet-based) and commonly exhibit extensive areas describe debris ridges that form as supra- and englacial particles of surface melting. Such conditions foster basal plucking and are dropped passively at margins of cold-based glaciers (Fig. 1a abrasion, as well as deposition of thick matrix-supported drift and 1b). Commonly clast supported, the debris is angular and sheets, moraines, and glacio-fluvial outwash. Polar glaciers devoid of fine-grained sediment associated with glacial abrasion include those in which the basal ice remains below the pressure- [10, 12]. In the Dry Valleys, such moraines may be cored by melting point (cold-based) and, in extreme cases like those in glacier ice, owing to the insulating effect of the debris on the the western Dry Valleys region of Antarctica, lack surface underlying glacier. Where cored by ice, moraine crests can melting zones. These conditions inhibit significant glacial exceed the angle of repose. In plan view, drop moraines closely erosion and deposition. -
Avulsion Dynamics in a River with Alternating Bedrock and Alluvial Reaches, Huron River, Northern Ohio (USA)
Open Journal of Modern Hydrology, 2019, 9, 20-39 http://www.scirp.org/journal/ojmh ISSN Online: 2163-0496 ISSN Print: 2163-0461 Avulsion Dynamics in a River with Alternating Bedrock and Alluvial Reaches, Huron River, Northern Ohio (USA) Mark J. Potucek1,2, James E. Evans1 1Department of Geology, Bowling Green State University, Bowling Green, OH, USA 2Arizona Department of Water Resources, Phoenix, AZ, USA How to cite this paper: Potucek, M.J. and Abstract Evans, J.E. (2019) Avulsion Dynamics in a River with Alternating Bedrock and Alluvi- The Huron River consists of alternating bedrock reaches and alluvial reaches. al Reaches, Huron River, Northern Ohio Analysis of historical aerial photography from 1950-2015 reveals six major (USA). Open Journal of Modern Hydrolo- gy, 9, 20-39. channel avulsion events in the 8-km study area. These avulsions occurred in https://doi.org/10.4236/ojmh.2019.91002 the alluvial reaches but were strongly influenced by the properties of the up- stream bedrock reach (“inherited characteristics”). The bedrock reaches Received: December 19, 2018 Accepted: January 20, 2019 aligned with the azimuth of joint sets in the underlying bedrock. One inhe- Published: January 23, 2019 rited characteristic in the alluvial reach downstream is that the avulsion channels diverged only slightly from the orientation of the upstream bedrock Copyright © 2019 by author(s) and channel (range 2˚ - 38˚, mean and standard deviation 12.1˚ ± 13.7˚). A Scientific Research Publishing Inc. This work is licensed under the Creative second inherited characteristic is that avulsion channels were initiated from Commons Attribution International short distances downstream after exiting the upstream bedrock channel reach License (CC BY 4.0).