Channel Morphology and Bedrock River Incision: Theory, Experiments, and Application to the Eastern Himalaya

Total Page:16

File Type:pdf, Size:1020Kb

Channel Morphology and Bedrock River Incision: Theory, Experiments, and Application to the Eastern Himalaya Channel morphology and bedrock river incision: Theory, experiments, and application to the eastern Himalaya Noah J. Finnegan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2007 Program Authorized to Offer Degree: Department of Earth and Space Sciences University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Noah J. Finnegan and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Co-Chairs of the Supervisory Committee: ___________________________________________________________ Bernard Hallet ___________________________________________________________ David R. Montgomery Reading Committee: ____________________________________________________________ Bernard Hallet ____________________________________________________________ David R. Montgomery ____________________________________________________________ Gerard Roe Date:________________________ In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, or to the author. Signature __________________________________ Date ______________________________________ University of Washington Abstract Channel morphology and bedrock river incision: Theory, experiments, and application to the eastern Himalaya Noah J. Finnegan Co-Chairs of the Supervisory Committee: Professor Bernard Hallet Professor David R. Montgomery Department of Earth and Space Sciences The dynamics of incising bedrock rivers are a central focus of geomorphology and geodynamics because of the primary importance of river incision in the coupling of surface and tectonic processes, and because of the capacity of river morphology to reveal information about tectonics. Bedrock channel morphology also remains a challenging fluid dynamical problem. The components of channel morphology: width, shape, slope, depth, roughness, and bed cover are central to channel incision because they collectively determine the magnitude and variation of fluid stresses on the bed, and the ability of fluid stresses and transported sediment particles to erode the bed. Here, I take two approaches, one experimental and one theoretical, to investigate the controls on the morphology of incising bedrock channels. I then apply the results of this work to the problem of estimating the spatial variation of river incision rates throughout the eastern Himalayan syntaxis. I show that if the process of river incision is assumed to be scale-invariant, channel width can be cast explicitly in terms of both river slope and discharge. This scaling relationship is validated for three rivers, two in California and one in Tibet, and suggests that river incision models can be significantly improved by accounting for the fact that rivers must occupy smaller channels where they flow faster, in order to conserve mass. For an experimental river eroding due to bedload abrasion, I show that the width of active incision can be cast as a function of sediment supply, grain size and boundary shear stress, suggesting that natural channels may adjust width to accommodate fluctuations in sediment supply. Additionally, I show that channel roughness development due to vertical incision retards sediment transport and incision, and encourages deposition of alluvial cover. The presence of alluvial cover, in turn, forces incision over the lateral and higher regions of the bed. Drawing on my analysis of river morphology, I show that tight spatial co-location of patterns in inferred detachment-limited incision potential, saltation- abrasion potential, topographic relief and mineral cooling ages provide strong evidence for close coupling between river incision and rock uplift in the eastern Himalayan syntaxis. TABLE OF CONTENTS Page List of Figures................................................................................................................ii List of Tables................................................................................................................iii Chapter 1: Introduction..................................................................................................1 Chapter 2: Controls on the channel width of rivers: implications for modeling fluvial incision of bedrock...........................................................................................11 Chapter 3: Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel ...................27 Chapter 4: Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet.........................................................................................................88 Chapter 5: Erosion Rate Patterns and Sediment Provenance within the Yarlung Tsangpo-Brahmaputra River Basin from Cosmogenic 10Be .....................................130 Chapter 6: Conclusion ...............................................................................................152 References .................................................................................................................157 i LIST OF FIGURES Figure Number Page 1. Plot of α for different dominant channel substrates ................................................24 2. Channel width for Kinsey Creek and Oat Creek .....................................................25 3. Channel width and river power for the Yarlung Tsangpo.......................................26 4. Initial and final conditions of the experimental channel .........................................69 5. Channel slope ..........................................................................................................70 6. Channel incision rate ...............................................................................................71 7. Alluvial cover ..........................................................................................................72 8. Example roughness histogram.................................................................................73 9. Bed roughness .........................................................................................................74 10. Spatial patterns of bed incision at different sediment supply rates .......................75 11. Longitudinal patterns of incision rate, slot width and slope..................................76 12. Spatial patterns of bed incision with and without bed cover.................................77 13. Cross-sectional incision rate patterns ....................................................................78 14. Slot-averaged incision rate versus bed slope.........................................................79 15. Bedload supply rate, roughness, and cover deposition..........................................80 16. Roughness and incision rate ..................................................................................81 17. Bedload supply rate and incision rate....................................................................82 18. Slot width...............................................................................................................83 19. Comparison of experimental channel to Watkins Glen, NY.................................84 20. Channel aspect ratio versus channel slope, Watkins Glen, NY ............................85 21. Geologic setting of the eastern Himalayan syntaxis ..........................................117 22. (U-Th)/He thermochronometry ...........................................................................118 23. 40Ar/39Ar thermochronometry ............................................................................119 24. Topographic relief and erosion rates ...................................................................120 25. Precipitation patterns...........................................................................................121 26. River power .........................................................................................................122 27. Sediment storage .................................................................................................123 28. Example of a cover limited channel ....................................................................124 29. Example of a tools limited channel .....................................................................125 30. Data synthesis......................................................................................................126 31. Coupling of river incision and rock uplift ...........................................................127 32. Recently aggraded channels with young cooling ages........................................128 33. Precipitation and exhumation..............................................................................129 34. Geologic setting...................................................................................................146 35. The transition
Recommended publications
  • Timescale Dependence in River Channel Migration Measurements
    TIMESCALE DEPENDENCE IN RIVER CHANNEL MIGRATION MEASUREMENTS Abstract: Accurately measuring river meander migration over time is critical for sediment budgets and understanding how rivers respond to changes in hydrology or sediment supply. However, estimates of meander migration rates or streambank contributions to sediment budgets using repeat aerial imagery, maps, or topographic data will be underestimated without proper accounting for channel reversal. Furthermore, comparing channel planform adjustment measured over dissimilar timescales are biased because shortand long-term measurements are disproportionately affected by temporary rate variability, long-term hiatuses, and channel reversals. We evaluate the role of timescale dependence for the Root River, a single threaded meandering sand- and gravel-bedded river in southeastern Minnesota, USA, with 76 years of aerial photographs spanning an era of landscape changes that have drastically altered flows. Empirical data and results from a statistical river migration model both confirm a temporal measurement-scale dependence, illustrated by systematic underestimations (2–15% at 50 years) and convergence of migration rates measured over sufficiently long timescales (> 40 years). Frequency of channel reversals exerts primary control on measurement bias for longer time intervals by erasing the record of observable migration. We conclude that using long-term measurements of channel migration for sediment remobilization projections, streambank contributions to sediment budgets, sediment flux estimates, and perceptions of fluvial change will necessarily underestimate such calculations. Introduction Fundamental concepts and motivations Measuring river meander migration rates from historical aerial images is useful for developing a predictive understanding of channel and floodplain evolution (Lauer & Parker, 2008; Crosato, 2009; Braudrick et al., 2009; Parker et al., 2011), bedrock incision and strath terrace formation (C.
    [Show full text]
  • Experimental Evidence for Fluvial Bedrock Incision by Suspended and Bedload Sediment Joel S
    Experimental evidence for fl uvial bedrock incision by suspended and bedload sediment Joel S. Scheingross1*, Fanny Brun1,2, Daniel Y. Lo1, Khadijah Omerdin1, and Michael P. Lamb1 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 2Geosciences Department, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France ABSTRACT regime, the saltation-abrasion model was re- Fluvial bedrock incision sets the pace of landscape evolution and can be dominated by cast (by Lamb et al., 2008) in terms of near-bed abrasion from impacting particles. Existing bedrock incision models diverge on the ability of sediment concentration rather than particle hop sediment to erode within the suspension regime, leading to competing predictions of lowland lengths (herein referred to as the total-load mod- river erosion rates, knickpoint formation and evolution, and the transient response of orogens el). The saltation-abrasion and total-load mod- to external forcing. We present controlled abrasion mill experiments designed to test fl uvial els produce similar results for erosion within incision models in the bedload and suspension regimes by varying sediment size while holding the bedload regime, but within the suspension fi xed hydraulics, sediment load, and substrate strength. Measurable erosion occurred within regime the total-load model predicts nonzero the suspension regime, and erosion rates agree with a mechanistic incision theory for erosion erosion rates that increase with increasing fl uid by mixed suspended and bedload sediment. Our experimental results indicate that suspen- bed stress, leading to contrasting predictions sion-regime erosion can dominate channel incision during large fl oods and in steep channels, for landscape evolution, especially during large with signifi cant implications for the pace of landscape evolution.
    [Show full text]
  • Tectonic Control on 10Be-Derived Erosion Rates in the Garhwal Himalaya, India Dirk Scherler,1,2 Bodo Bookhagen,3 and Manfred R
    JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE, VOL. 119, 1–23, doi:10.1002/2013JF002955, 2014 Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India Dirk Scherler,1,2 Bodo Bookhagen,3 and Manfred R. Strecker 1 Received 28 August 2013; revised 13 November 2013; accepted 26 November 2013. [1] Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 10Be-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, 1 northern India. Tributary erosion rates range between ~0.1 and 0.5 mm yrÀ in the Lesser 1 Himalaya and ~1 and 2 mm yrÀ in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data.
    [Show full text]
  • Experimental Study of River Incision: Discussion and Reply Discussion
    Experimental study of river incision: Discussion and reply Discussion G. H. DURY Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706 While introducing their experiments on river incision into bed existing streams and ancestral larger streams have proved equally rock, Shepherd and Schumm (1974) claimed that the morphologic capable of developing pool-and-riffle sequences in bed rock. details of interfaces between alluvium and bed rock are essentially Although far more abundant evidence would, of course, be wel- unknown. They referred to highs and lows shaped in bed rock as come, it seems reasonable to suggest that the morphologic details possible analogues of the riffles and pools of alluvial rivers but re- of the alluvium/bedrock interface beneath underfit streams are far garded the longitudinal profiles of bedrock streams as effectively from being essentially unknown. On the contrary, those details unstudied (see their p. 261). The clear implication is that interfaces have been deliberately and extensively studied. Similarly, it would and profiles have not been deliberately investigated. Both here and appear that somewhat more than a little is known of the longitudi- in their review of opinions about the inheritance or noninheritance nal profiles of bedrock streams. Australian serials, especially those of incised meanders (266—267), they overlooked a considerable with a geographical title, might perhaps be regarded as not particu- body of published research and commentary. larly accessible sources, except that Schumm was attached to the The question of the possible inheritance of incised meanders Department of Geography in the University of Sydney, Australia, at from an ancient flood plain at high level has been debated over the about the time when the Colo and Hawkesbury Rivers were being years, the debate involving numbers of workers on the European investigated from that department as a base.
    [Show full text]
  • Asian Alpine E-News Issue No.54
    ASIAN ALPINE E-NEWS Issue No. 54 August 2019 Contents Journey through south Yushu of Qinghai Province, eastern Tibet Nangqen to Mekong Headwaters, July 2019 Tamotsu (Tom) Nakamura Part 1 Buddhists’ Kingdom-Monasteries, rock peaks, blue poppies Page 2~16 Part 2 From Mekong Headwaters to upper Yangtze River. Page 17~32 1 Journey through south Yushu of Qinghai Province, eastern Tibet Nangqen to Mekong Headwaters, July 2019 Tamotsu (Tom) Nakamura Part 1 Buddhists’ Kingdom – Monasteries, rock peaks, blue poppies “Yushu used to be a strategic point of Qinghai, explorers’ crossroads and killing field of frontier.” Geography and Climate of Yushu With an elevation of around 3,700 metres (12,100 ft), Yushu has an alpine subarctic climate, with long, cold, very dry winters, and short, rainy, and mild summers. Average low temperatures are below freezing from early/mid October to late April; however, due to the wide diurnal temperature variation, the average high never lowers to the freezing mark. Despite frequent rain during summer, when a majority of days sees rain, only June, the rainiest month, has less than 50% of possible sunshine; with monthly percent possible sunshine ranging from 49% in June to 66% in November, the city receives 2,496 hours of bright sunshine annually. The monthly 24-hour average temperature ranges from −7.6 °C (18.3 °F) in January to 12.7 °C (54.9 °F) in July, while the annual mean is 3.22 °C (37.8 °F). About three-fourths of the annual precipitation of 486 mm (19.1 in) is delivered from June to September.
    [Show full text]
  • River Incision Into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation
    River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion and cavitation Kelin X. Whipple* Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Gregory S. Hancock Department of Geology, College of William and Mary, Williamsburg, Virginia 23187 Robert S. Anderson Department of Earth Sciences, University of California, Santa Cruz, California 95064 ABSTRACT long term (Howard et al., 1994). These conditions are commonly met in Improved formulation of bedrock erosion laws requires knowledge mountainous and tectonically active landscapes, and bedrock channels are of the actual processes operative at the bed. We present qualitative field known to dominate steeplands drainage networks (e.g., Wohl, 1993; Mont- evidence from a wide range of settings that the relative efficacy of the gomery et al., 1996; Hovius et al., 1997). As the three-dimensional structure various processes of fluvial erosion (e.g., plucking, abrasion, cavitation, of drainage networks sets much of the form of terrestrial landscapes, it is solution) is a strong function of substrate lithology, and that joint spac- clear that a deep appreciation of mountainous landscapes requires knowl- ing, fractures, and bedding planes exert the most direct control. The edge of the controls on bedrock channel morphology. Moreover, bedrock relative importance of the various processes and the nature of the in- channels play a critical role in the dynamic evolution of mountainous land- terplay between them are inferred from detailed observations of the scapes (Anderson, 1994; Anderson et al., 1994; Howard et al., 1994; Tucker morphology of erosional forms on channel bed and banks, and their and Slingerland, 1996; Sklar and Dietrich, 1998; Whipple and Tucker, spatial distributions.
    [Show full text]
  • Taters Versus Sliders: Evidence for A
    Member Recognition Issue VOL. 31, NO. 7 | J U LY 2 021 ’Taters versus Sliders: Evidence for a Long-Lived History of Strike-Slip Displacement along the Canadian Arctic Transform System (CATS) EXPAND YOUR LIBRARY with GSA E-books The GSA Store offers hundreds of e-books, most of which are only $9.99. These include: • popular field guides and maps; Special Paper 413 • out-of-print books on prominent topics; and Earth and • discontinued series, such as Engineering How GeologistsMind: Think Geology Case Histories, Reviews in and Learn about the Earth Engineering Geology, and the Decade of North American Geology. Each book is available as a PDF, including plates and supplemental material. Popular topics include ophiolites, the Hell Creek Formation, mass extinctions, and plates and plumes. edited by Cathryn A. Manduca and David W. Mogk Shop now at https://rock.geosociety.org/store/. JULY 2021 | VOLUME 31, NUMBER 7 SCIENCE 4 ’Taters versus Sliders: Evidence for a Long- Lived History of Strike Slip Displacement along the Canadian Arctic Transform System (CATS) GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 22,000 GSA member readers William C. McClelland et al. and subscribing libraries, with 11 monthly issues (March- April is a combined issue). GSA TODAY is published by The Geological Society of America® Inc. (GSA) with offices at Cover: Geologists studying structures along the Petersen Bay 3300 Penrose Place, Boulder, Colorado, USA, and a mail- fault, a segment of the Canadian Arctic transform system (CATS), ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA.
    [Show full text]
  • Climate, Tectonics, and the Morphology of the Andes
    Climate, tectonics, and the morphology of the Andes David R. Montgomery Greg Balco Sean D. Willett Department of Geological Sciences, University of Washington, Seattle 98195-1310, USA ABSTRACT Large-scale topographic analyses show that hemisphere-scale climate variations are a ®rst-order control on the morphology of the Andes. Zonal atmospheric circulation in the Southern Hemisphere creates strong latitudinal precipitation gradients that, when incor- porated in a generalized index of erosion intensity, predict strong gradients in erosion rates both along and across the Andes. Cross-range asymmetry, width, hypsometry, and maximum elevation re¯ect gradients in both the erosion index and the relative dominance of ¯uvial, glacial, and tectonic processes, and show that major morphologic features cor- relate with climatic regimes. Latitudinal gradients in inferred crustal thickening and struc- tural shortening correspond to variations in predicted erosion potential, indicating that, like tectonics, nonuniform erosion due to large-scale climate patterns is a ®rst-order con- trol on the topographic evolution of the Andes. Keywords: geomorphology, erosion, tectonics, climate, Andes. INTRODUCTION we argue for the ®rst-order importance of earthquake cycle. Some studies have attribut- The presence or absence of mountain rang- large-scale climate zonations and resulting dif- ed local variations in structural, metamorphic, es at the global scale is determined by the lo- ferences in geomorphic processes to the mor- and geomorphic characteristics of the central cation and type of plate boundaries. Other fac- phology of mountain ranges. Andes to erosion (Gephart, 1994; Masek et al., tors become important in the evolution of 1994; Horton, 1999), but none has considered individual mountain systems.
    [Show full text]
  • Experiments on Patterns of Alluvial Cover and Bedrock Erosion in a Meandering Channel Roberto Fernández1, Gary Parker1,2, Colin P
    Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-8 Manuscript under review for journal Earth Surf. Dynam. Discussion started: 27 February 2019 c Author(s) 2019. CC BY 4.0 License. Experiments on patterns of alluvial cover and bedrock erosion in a meandering channel Roberto Fernández1, Gary Parker1,2, Colin P. Stark3 1Ven Te Chow Hydrosystems Laboratory, Department of Civil and Environmental Engineering, University of Illinois at 5 Urbana-Champaign, Urbana, IL 61801, USA 2Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 3Lamont Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA Correspondence to: Roberto Fernández ([email protected]) Abstract. 10 In bedrock rivers, erosion by abrasion is driven by sediment particles that strike bare bedrock while traveling downstream with the flow. If the sediment particles settle and form an alluvial cover, this mode of erosion is impeded by the protection offered by the grains themselves. Channel erosion by abrasion is therefore related to the amount and pattern of alluvial cover, which are functions of sediment load and hydraulic conditions, and which in turn are functions of channel geometry, slope and sinuosity. This study presents the results of alluvial cover experiments conducted in a meandering channel flume of high fixed 15 sinuosity. Maps of quasi-instantaneous alluvial cover were generated from time-lapse imaging of flows under a range of below- capacity bedload conditions. These maps were used to infer patterns
    [Show full text]
  • On Professors' Academic Power in Universities
    Vol 4. No. 2 June 2009 Journal of Cambridge Studies 67 The Star-shaped Towers of the Tribal Corridor of Southwest China Frederique DARRAGON∗ Unicorn Heritage Institute, Sichuan University ABSTRACT: Hundreds of free-standing tall towering stone structures, some of the most astonishing star shapes, are still standing, in the remote, earthquake prone, mountains of Western Sichuan and Southeastern Tibet, part of a region also called Kham. I had stumbled by coincidence upon them, but I later learned that no one knew who had built them, or why, or when. After 11 years of research, hampered by the lack of local written language, and after sending 68 samples of wood, collected from their now broken beams, for carbon-dating, I was able to establish that the towers still standing were built from 200 AD to 1600 AD, they must have been thousands, and they span over a territory large as a third of France. I was also able to determine that, in fact, they belong to 4 different groups, each located in a specific geographical pocket that corresponds to the traditional lands of an ancient tribe. The towers, standing between at 1500 to 4000 meters above sea level, have shapes, masonry techniques and architectural characteristics that are unique to this region and, also, contrary to most other extraordinary towering buildings in the world, they are lay and vernacular constructions. These flamboyant towers are architectural masterpieces and outstanding examples of traditional human settlement and land use which deserve a UNESCO inscription under everyone of the 7 criteria. It is our common responsibility to make known and protect such glorious heritage.
    [Show full text]
  • A Paleoflood Assessment of the Greenbrier River in Southeast, West Virginia, USA
    A Paleoflood Assessment of the Greenbrier River in Southeast, West Virginia, USA A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Sara A. Thurkettle May 2019 © 2019 Sara A. Thurkettle. All Rights Reserved. 2 This thesis titled A Paleoflood Assessment of the Greenbrier River in Southeast, West Virginia, USA by SARA A. THURKETTLE has been approved for the Department of Geological Sciences and the College of Arts and Sciences by Gregory S. Springer Associate Professor of Geological Sciences Joseph Shields Interim Dean, College of Arts and Sciences 3 ABSTRACT THURKETTLE, SARA A., M.S., May 2019, Geological Sciences A Paleoflood Assessment of the Greenbrier River in Southeast, West Virginia, USA Director of Thesis: Gregory S. Springer Slackwater deposits and hydraulic modeling were used to extend the historical record of floods and determine the critical threshold of sediment entrainment in the Greenbrier River of southeastern West Virginia (SE WV). The southward flowing bedrock river incises Paleozoic sandstones, limestones, and shales. The river has experienced three catastrophic floods since 1985: the 1985, 1996, and 2016 floods, which caused extensive damage in communities alongside the river with the most recent flood destroying roughly 1,200 homes in the Greenbrier River watershed. This study better constrains the frequency of floods that have the potential to cause similar damage, which is a matter of urgent need. Paleostage indicators (PSIs) found in Greenbrier River Cave were used as proxies for extending the historical record and reconstructing recurrence intervals of floods.
    [Show full text]
  • Mongolo-Tibetica Pragensia 12-2.Indd
    Mongolo-Tibetica Pragensia ’12 5/2 MMongolo-Tibeticaongolo-Tibetica PPragensiaragensia 112-2.indd2-2.indd 1 115.5. 22.. 22013013 119:13:299:13:29 MMongolo-Tibeticaongolo-Tibetica PPragensiaragensia 112-2.indd2-2.indd 2 115.5. 22.. 22013013 119:13:299:13:29 Mongolo-Tibetica Pragensia ’12 Ethnolinguistics, Sociolinguistics, Religion and Culture Volume 5, No. 2 Publication of Charles University in Prague Philosophical Faculty, Institute of South and Central Asia Seminar of Mongolian Studies Prague 2012 ISSN 1803–5647 MMongolo-Tibeticaongolo-Tibetica PPragensiaragensia 112-2.indd2-2.indd 3 115.5. 22.. 22013013 119:13:299:13:29 Th is journal is published as a part of the Programme for the Development of Fields of Study at Charles University, Oriental and African Studies, sub-programme “Th e process of transformation in the language and cultural diff erentness of the countries of South and Central Asia”, a project of the Philosophical Faculty, Charles University in Prague. Mongolo-Tibetica Pragensia ’12 Linguistics, Ethnolinguistics, Religion and Culture Volume 5, No. 2 (2012) © Editors Editors-in-chief: Jaroslav Vacek and Alena Oberfalzerová Editorial Board: Daniel Berounský (Charles University in Prague, Czech Republic) Agata Bareja-Starzyńska (University of Warsaw, Poland) Katia Buff etrille (École pratique des Hautes-Études, Paris, France) J. Lubsangdorji (Charles University Prague, Czech Republic) Marie-Dominique Even (Centre National des Recherches Scientifi ques, Paris, France) Marek Mejor (University of Warsaw, Poland) Tsevel Shagdarsurung (National University of Mongolia, Ulaanbaatar, Mongolia) Domiin Tömörtogoo (National University of Mongolia, Ulaanbaatar, Mongolia) Reviewed by Prof. Václav Blažek (Masaryk University, Brno, Czech Republic) and Prof. Tsevel Shagdarsurung (National University of Mongolia, Ulaanbaatar, Mongolia) English correction: Dr.
    [Show full text]