Efficient Radio Frequency Power Amplifiers for Wireless Communications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RF CMOS Power Amplifiers: Theory, Design and Implementation the KLUWER INTERNATIONAL SERIES in ENGINEERING and COMPUTER SCIENCE
RF CMOS Power Amplifiers: Theory, Design and Implementation THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: POWER TRADE-OFFS AND LOW POWER IN ANALOG CMOS ICS M. Sanduleanu, van Tuijl ISBN: 0-7923-7643-9 RF CMOS POWER AMPLIFIERS: THEORY, DESIGN AND IMPLEMENTATION M.Hella, M.Ismail ISBN: 0-7923-7628-5 WIRELESS BUILDING BLOCKS J.Janssens, M. Steyaert ISBN: 0-7923-7637-4 CODING APPROACHES TO FAULT TOLERANCE IN COMBINATION AND DYNAMIC SYSTEMS C. Hadjicostis ISBN: 0-7923-7624-2 DATA CONVERTERS FOR WIRELESS STANDARDS C. Shi, M. Ismail ISBN: 0-7923-7623-4 STREAM PROCESSOR ARCHITECTURE S. Rixner ISBN: 0-7923-7545-9 LOGIC SYNTHESIS AND VERIFICATION S. Hassoun, T. Sasao ISBN: 0-7923-7606-4 VERILOG-2001-A GUIDE TO THE NEW FEATURES OF THE VERILOG HARDWARE DESCRIPTION LANGUAGE S. Sutherland ISBN: 0-7923-7568-8 IMAGE COMPRESSION FUNDAMENTALS, STANDARDS AND PRACTICE D. Taubman, M. Marcellin ISBN: 0-7923-7519-X ERROR CODING FOR ENGINEERS A.Houghton ISBN: 0-7923-7522-X MODELING AND SIMULATION ENVIRONMENT FOR SATELLITE AND TERRESTRIAL COMMUNICATION NETWORKS A.Ince ISBN: 0-7923-7547-5 MULT-FRAME MOTION-COMPENSATED PREDICTION FOR VIDEO TRANSMISSION T. Wiegand, B. Girod ISBN: 0-7923-7497- 5 SUPER - RESOLUTION IMAGING S. Chaudhuri ISBN: 0-7923-7471-1 AUTOMATIC CALIBRATION OF MODULATED FREQUENCY SYNTHESIZERS D. McMahill ISBN: 0-7923-7589-0 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN S. Huss ISBN: 0-7923-7598-X CONTINUOUS-TIME SIGMA-DELTA MODULATION FOR A/D CONVERSION IN RADIO RECEIVERS L. -
Lecture #8 Power Amplifiers Instructor
Integrated Technical Education Cluster Banna - At AlAmeeria © Ahmad El J-601-1448 Electronic Principals Lecture #8 Power Amplifiers Instructor: Dr. Ahmad El-Banna December 2014 Banna Agenda - Introduction © Ahmad El Series-Fed Class A Amplifier 2014 Dec Transformer-Coupled Class A Amplifier , Lec#8 Class B Amplifier Operation & Circuits 1448 , Amplifier Distortion - 601 - Power Transistor Heat Sinking J 2 Class C & Class D Amplifiers INTRODUCTION 3 J-601-1448 , Lec#8 , Dec 2014 © Ahmad El-Banna Banna Amplifier Classes - • In small-signal amplifiers, the main factors are usually amplification linearity and magnitude of gain. • Large-signal or power amplifiers, on the other hand, primarily provide sufficient power © Ahmad El to an output load to drive a speaker or other power device, typically a few watts to tens of watts. • The main features of a large-signal amplifier are the circuit’s power efficiency, the 2014 maximum amount of power that the circuit is capable of handling, and the impedance Dec matching to the output device. , • Amplifier classes represent the amount the output signal varies over one cycle of operation for a full cycle of input signal. Lec#8 Power Amplifier Classes: 1. Class A: The output signal varies 1448 , for a full 360° of the input signal. - • Bias at the half of the supply 601 - J 2. Class B: provides an output signal varying over one-half the input 4 signal cycle, or for 180° of signal. • Bias at the zero level Banna Amplifier Efficiency - Power Amplifier Classes … 3. Class AB: An amplifier may be biased at a dc level above the zero-base-current level of class B and above one-half the supply voltage level of class A. -
Bias Circuits for RF Devices
Bias Circuits for RF Devices Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul A lot of RF schematics mention: “bias circuit not shown”; when actually one of the most critical yet often overlooked aspects in any RF circuit design is the bias network. The bias network determines the amplifier performance over temperature as well as RF drive. The DC bias condition of the RF transistors is usually established independently of the RF design. Power efficiency, stability, noise, thermal runway, and ease to use are the main concerns when selecting a bias configuration. A transistor amplifier must possess a DC biasing circuit for a couple of reasons. • We would require two separate voltage supplies to furnish the desired class of bias for both the emitter-collector and the emitter-base voltages. • This is in fact still done in certain applications, but biasing was invented so that these separate voltages could be obtained from but a single supply. • Transistors are remarkably temperature sensitive, inviting a condition called thermal runaway. Thermal runaway will rapidly destroy a bipolar transistor, as collector current quickly and uncontrollably increases to damaging levels as the temperature rises, unless the amplifier is temperature stabilized to nullify this effect. Amplifier Bias Classes of Operation Special classes of amplifier bias levels are utilized to achieve different objectives, each with its own distinct advantages and disadvantages. The most prevalent classes of bias operation are Class A, AB, B, and C. All of these classes use circuit components to bias the transistor at a different DC operating current, or “ICQ”. When a BJT does not have an A.C. -
UNIVERSITY of CALIFORNIA, SAN DIEGO CMOS RF Power Amplifier Design Approaches for Wireless Communications a Dissertation Submitt
UNIVERSITY OF CALIFORNIA, SAN DIEGO CMOS RF Power Amplifier Design Approaches for Wireless Communications A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) by Sataporn Pornpromlikit Committee in charge: Professor Peter M. Asbeck, Chair Professor Prabhakar R. Bandaru Professor Andrew C. Kummel Professor Lawrence E. Larson Professor Paul K.L. Yu 2010 Copyright Sataporn Pornpromlikit, 2010 All rights reserved. The dissertation of Sataporn Pornpromlikit is approved, and it is acceptable in quality and form for publication on micro- film and electronically: Chair University of California, San Diego 2010 iii DEDICATION To my family. iv EPIGRAPH ”Education is what remains after one has forgotten what one has learned in school.” — Albert Einstein v TABLE OF CONTENTS Signature Page................................... iii Dedication...................................... iv Epigraph.......................................v Table of Contents.................................. vi List of Figures.................................... viii List of Tables.................................... xi Acknowledgements................................. xii Vita......................................... xiv Abstract of the Dissertation............................. xv Chapter 1 Introduction.............................1 1.1 CMOS Technology and Scaling...............2 1.2 Toward Fully-Integrated CMOS Transceivers........4 1.3 Power Amplifier Design...................5 -
5 Steps to Selecting the Right RF Power Amplifier
modular rf 5 Steps to Selecting the Right RF Power Amplifier Jason Kovatch Sr. Development Engineer AR Modular RF, Bothell WA You need an RF power amplifier. You have measured the power of your signal and it is not enough. You may even have decided on a power level in Watts that you think will meet your needs. Are you ready to shop for an amplifier of that wattage? With so many variations in price, size, and efficiency for amplifiers that are all rated at the same number of Watts many RF amplifier purchasers are unhappy with their selection. Some of the unfortunate results of amplifier selection by Watts include: unacceptable distortion or interference, insufficient gain, premature amplifier failure, and wasted money. Following these 5 steps will help you avoid these mistakes. Step 1 - Know Your Signal Step 2 – Do the Math Step 3 - Window Shopping Step 4 - Compare Apples to Apples Step 5 – Shopping for Bells and Whistles Step 1 – Know Your Signal You need to know 2 things about your signal: what type of modulation is on the signal and the actual Peak power of your signal to be amplified. Knowing the modulation is the most important as it defines broad variations in amplifiers that will provide acceptable performance. Knowing the Peak power of your signal will allow you calculate your gain and/or power requirements, as shown in later steps. Signal Modulation and Power- CW, SSB, FM, and PM are Easy To avoid distortion, amplifiers need to be able to faithfully process your signal’s peak power. -
Loudspeaker Parameters
Loudspeaker Parameters D. G. Meyer School of Electrical & Computer Engineering Outline • Review of How Loudspeakers Work • Small Signal Loudspeaker Parameters • Effect of Loudspeaker Cable • Sample Loudspeaker • Electrical Power Needed • Sealed Box Design Example How Loudspeakers Work How Loudspeakers Are Made Fundamental Small Signal Mechanical Parameters 2 • Sd – projected area of driver diaphragm (m ) • Mms – mass of diaphragm (kg) • Cms – compliance of driver’s suspension (m/N) • Rms – mechanical resistance of driver’s suspension (N•s/m) • Le – voice coil inductance (mH) • Re – DC resistance of voice coil ( Ω) • Bl – product of magnetic field strength in voice coil gap and length of wire in magnetic field (T•m) Small Signal Parameters These values can be determined by measuring the input impedance of the driver, near the resonance frequency, at small input levels for which the mechanical behavior of the driver is effectively linear. • Fs – (free air) resonance frequency of driver (Hz) – frequency at which the combination of the energy stored in the moving mass and suspension compliance is maximum, which results in maximum cone velocity – usually it is less efficient to produce output frequencies below F s – input signals significantly below F s can result in large excursions – typical factory tolerance for F s spec is ±15% Measurement of Loudspeaker Free-Air Resonance Small Signal Parameters These values can be determined by measuring the input impedance of the driver, near the resonance frequency, at small input levels for which the -
Characteristic Impedance of Lines on Printed Boards by TDR 03/04
Number 2.5.5.7 ASSOCIATION CONNECTING Subject ELECTRONICS INDUSTRIES ® Characteristic Impedance of Lines on Printed 2215 Sanders Road Boards by TDR Northbrook, IL 60062-6135 Date Revision 03/04 A IPC-TM-650 Originating Task Group TEST METHODS MANUAL TDR Test Method Task Group (D-24a) 1 Scope This document describes time domain reflectom- b. The value of characteristic impedance obtained from TDR etry (TDR) methods for measuring and calculating the charac- measurements is traceable to a national metrology insti- teristic impedance, Z0, of a transmission line on a printed cir- tute, such as the National Institute of Standards and Tech- cuit board (PCB). In TDR, a signal, usually a step pulse, is nology (NIST), through coaxial air line standards. The char- injected onto a transmission line and the Z0 of the transmis- acteristic impedance of these transmission line standards sion line is determined from the amplitude of the pulse is calculated from their measured dimensional and material reflected at the TDR/transmission line interface. The incident parameters. step and the time delayed reflected step are superimposed at the point of measurement to produce a voltage versus time c. A variety of methods for TDR measurements each have waveform. This waveform is the TDR waveform and contains different accuracies and repeatabilities. information on the Z0 of the transmission line connected to the d. If the nominal impedance of the line(s) being measured is TDR unit. significantly different from the nominal impedance of the Note: The signals used in the TDR system are actually rect- measurement system (typically 50 Ω), the accuracy and angular pulses but, because the duration of the TDR wave- repeatability of the measured numerical valued will be form is much less than pulse duration, the TDR pulse appears degraded. -
50V RF LDMOS an Ideal RF Power Technology for ISM, Broadcast and Commercial Aerospace Applications Freescale.Com/Rfpower I
White Paper 50V RF LDMOS An ideal RF power technology for ISM, broadcast and commercial aerospace applications freescale.com/RFpower I. INTRODUCTION RF laterally diffused MOS (LDMOS) is currently the dominant device technology used in high-power RF power amplifier (PA) applications for frequencies ranging from 1 MHz to greater than 3.5 GHz. Beginning in the early 1990s, LDMOS has gained wide acceptance for cellular infrastructure PA applications, and now is the dominant RF power device technology for cellular infrastructure. This device technology offered significant advantages over the previous incumbent device technology, the silicon bipolar transistor, providing superior linearity, efficiency, gain and lower cost packaging options. LDMOS technology has continued to evolve to meet the ever more demanding requirements of the cellular infrastructure market, achieving higher levels of efficiency, gain, power and operational frequency[1-8]. The LDMOS device structure is highly flexible. While the cellular infrastructure market has standardized on 28–32V operation, several years ago Freescale developed 50V processes for applications outside of cellular infrastructure. These 50V devices are targeted for use in a wide variety of applications where high power density is a key differentiator and include industrial, scientific, medical (ISM), broadcast and commercial aerospace applications. Many of the same attributes that led to the displacement of bipolar transistors from the cellular infrastructure market in the early 1990s are equally valued in the broad RF power market: high power, gain, efficiency and linearity, low cost and outstanding reliability. In addition, the RF power market demands the very high RF ruggedness that LDMOS can deliver. The enhanced ruggedness LDMOS devices available from Freescale can displace not only bipolar devices but VMOS and vacuum tube devices that are still used in some ISM, broadcast and commercial aerospace applications. -
Radio Frequency Solid State Amplifiers
Published by CERN in the Proceedings of the CAS-CERN Accelerator School: Power Converters, Baden, Switzerland, 7–14 May 2014, edited by R. Bailey, CERN-2015-003 (CERN, Geneva, 2015) Radio Frequency Solid State Amplifiers J. Jacob ESRF, Grenoble, France Abstract Solid state amplifiers are being increasingly used instead of electronic vacuum tubes to feed accelerating cavities with radio frequency power in the 100 kW range. Power is obtained from the combination of hundreds of transistor amplifier modules. This paper summarizes a one hour lecture on solid state amplifiers for accelerator applications. Keywords Radio-frequency; RF power; RF amplifier; solid state amplifier; RF power combiner, cavity combiner. 1 Introduction The aim of this lecture was to introduce some important developments made in the generation of high radio frequency (RF) power by combining the power from hundreds of transistor amplifier modules. Such RF solid state amplifiers (SSA) were developed and implemented at a large scale at SOLEIL to feed the booster and storage ring cavities [1, 2]. At ELBE FEL four 1.3 GHz–10 kW klystrons have been replaced with four pairs of 10 kW SSAs from Bruker Corporation (now Sigmaphi Electronics, Haguenau/France), thereby doubling the available power [3]. The company Cryolectra GmbH (Wuppertal/Germany) delivers SSA solutions at various frequencies and power levels, such as a 72 MHz–150 kW SSA for a medical cyclotron [4]. Following a transfer of technology from SOLEIL, the company ELTA (Blagnac/France), a subsidiary of the French group AREVA, has delivered seven 352.2 MHz–150 kW RF SSAs to ESRF [5, 6]. -
Amplificadores De Sinais Acesso Em: 17 Maio 2018
Amplificadores de sinais https://www.electronics-tutorials.ws/amplifier/amp_1.html Acesso em: 17 Maio 2018 Sumário • 1. Introduction to the Amplifier • 2. Common Emitter Amplifier • 3. Common Source JFET Amplifier • 4. Amplifier Distortion • 5. Class A Amplifier • 6. Class B Amplifier • 7. Crossover Distortion in Amplifiers • 8. Amplifiers Summary • 9. Emitter Resistance • 10. Amplifier Classes • 11. Transistor Biasing • 12. Input Impedance of an Amplifier • 13. Frequency Response • 14. MOSFET Amplifier • 15. Class AB Amplifier Introduction to the Amplifier An amplifier is an electronic device or circuit which is used to increase the magnitude of the signal applied to its input. Amplifier is the generic term used to describe a circuit which increases its input signal, but not all amplifiers are the same as they are classified according to their circuit configurations and methods of operation. In “Electronics”, small signal amplifiers are commonly used devices as they have the ability to amplify a relatively small input signal, for example from a Sensor such as a photo- device, into a much larger output signal to drive a relay, lamp or loudspeaker for example. There are many forms of electronic circuits classed as amplifiers, from Operational Amplifiers and Small Signal Amplifiers up to Large Signal and Power Amplifiers. The classification of an amplifier depends upon the size of the signal, large or small, its physical configuration and how it processes the input signal, that is the relationship between input signal and current flowing -
Design and Analysis of Class AB RF Power Amplifier for Wireless Communication Applications
University of Central Florida STARS Retrospective Theses and Dissertations 2002 Design and analysis of class AB RF power amplifier for wireless communication applications Mohamed El-Dakroury University of Central Florida, [email protected] Part of the Systems and Communications Commons Find similar works at: https://stars.library.ucf.edu/rtd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation El-Dakroury, Mohamed, "Design and analysis of class AB RF power amplifier for wireless communication applications" (2002). Retrospective Theses and Dissertations. 1498. https://stars.library.ucf.edu/rtd/1498 DESIGN AND ANALYSIS OF CLASS AB RF POWER AMPLIFIER FOR WIRELESS COMMUNICATION APPLICATIONS by MOHAMED EL-DAKROURY B.SC. Cairo University, Egypt, 1995 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Electrical Engineering and Computer Science in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer term 2002 Major Professor: Dr. Jiann S. Yuan ABSTRACT The Power Amplifier is the most power-consu!}ling. blpqk among the quil~ing blocks of RF transceivers. It is still a difficult problem to design power amplifiers, especially for linear, low voltage operation. Until now power amplifiers for wireless applications is being produced almost in GaAs processes with some exceptions in LDMOS, Si BJT, and SiGe HBT. -
Unit – I Filters
EC6503 Transmission lines and Waveguides Department of ECE 2018 - 2019 EC6503 TRANSMISSION LINES AND WAVEGUIDES UNIT –I TRANSMISSION LINE THEORY PART A - C303.1 1. Distinguish lumped parameters and distributed parameters. Lumped parameters are individually concentrated or lumped at discrete points in the circuit and can be identified definitely as representing a particular parameter. Distributed parameters are distributed along the circuit, each elemental length of the circuit having its own values and concentration of the individual parameters is not possible. 2. What are the different types of transmission lines? The different types of transmission lines are 1.Open wire line 2. Cable 3. Coaxial line 4. Waveguide 3. Describe the different parameters of a transmission line. (1)The parameters include resistance, which is uniformly distributed along the length of the conductors. Since current will be present, the conductors will be surrounded and linked by magnetic flux, and this phenomena will demonstrate its effect in distributed inductance along the line.(2)The conductors are separated by insulating dielectric, so that capacitance will be distributed along the conductor length.(3)The dielectric or the insulators of the open wire line may not be perfect, a leakage current will flow, and leakage conductance will exist between the conductors. 4. Give the general equations of a transmission line. The general equations are, E = ERcosh√ZY s + IRZosinh √ZY s I = IRcosh√ZY s + ( ER / Zo ) sinh √ZY s where Z= R + jωL = series impedance, ohms per unit length of line and Y = G + j ωC = shunt admittance, mhos per unit length of line. 5.