Unit – I Filters

Total Page:16

File Type:pdf, Size:1020Kb

Unit – I Filters EC6503 Transmission lines and Waveguides Department of ECE 2018 - 2019 EC6503 TRANSMISSION LINES AND WAVEGUIDES UNIT –I TRANSMISSION LINE THEORY PART A - C303.1 1. Distinguish lumped parameters and distributed parameters. Lumped parameters are individually concentrated or lumped at discrete points in the circuit and can be identified definitely as representing a particular parameter. Distributed parameters are distributed along the circuit, each elemental length of the circuit having its own values and concentration of the individual parameters is not possible. 2. What are the different types of transmission lines? The different types of transmission lines are 1.Open wire line 2. Cable 3. Coaxial line 4. Waveguide 3. Describe the different parameters of a transmission line. (1)The parameters include resistance, which is uniformly distributed along the length of the conductors. Since current will be present, the conductors will be surrounded and linked by magnetic flux, and this phenomena will demonstrate its effect in distributed inductance along the line.(2)The conductors are separated by insulating dielectric, so that capacitance will be distributed along the conductor length.(3)The dielectric or the insulators of the open wire line may not be perfect, a leakage current will flow, and leakage conductance will exist between the conductors. 4. Give the general equations of a transmission line. The general equations are, E = ERcosh√ZY s + IRZosinh √ZY s I = IRcosh√ZY s + ( ER / Zo ) sinh √ZY s where Z= R + jωL = series impedance, ohms per unit length of line and Y = G + j ωC = shunt admittance, mhos per unit length of line. 5. What is the advantage in terminating a line with its characteristic impedance? A line of finite length, terminated in a load equivalent to its characteristic impedance, appears to the sending end generator as an infinite line. 6. Define wavelength of the line. (Jan 2016) The distance the wave travels along the line while the phase angle is changing through 2π radians is called a wavelength. 7. What is the relationship between characteristic impedance and propagation constant. R jL Z and R jLG jC . On multiplying Z , characteristic o G jC o impedance and , propagation constant, we get, Z X R jL and G jC o Z o 8. What is meant by distortion less line?&Give the condition for a distortion less line? (Nov 2017). A distortion less line is one which has neither frequency nor delay distortion. The attenuation constant and velocity of propagation cannot be functions of frequency. The condition for a distortion less line is, LG = RC 1 EC6503 Transmission lines and Waveguides Department of ECE 2018 - 2019 9. Find the characteristic impedance of the line at 1600 Hz if Z oc 750 30 and Z sc 600 20 (Nov 2016). Solution: Characteristic impedance, Z Z Z o oc sc = 750 30 X 600 20 = 670.8 25 10. Define frequency distortion. Attenuation constant α is a function of frequency. All frequencies transmitted on a line will then not be attenuated equally. A complex applied voltage, such as a voice voltage containing many frequencies, will not have all frequencies transmitted with equal attenuation, and the received waveform will not be identical with the input waveform at the sending end. This variation is known as frequency distortion. 11. Define delay or phase distortion. All frequencies applied to a transmission line will not have the same time of transmission, some frequencies being delayed more than others. For an applied voice voltage wave the received waveform will not be identical with the input waveform at the sending end, since some frequency components will be delayed more than those of other frequencies. This phenomenon is known as delay or phase distortion. 12. How can you reduce frequency distortion? Frequency distortion is reduced in the transmission of high quality radio broadcast programs over wire lines by use of equalizers at the line terminals. These circuits are networks whose frequency and phase characteristics are adjusted to be inverse to those of the lines, resulting in an over-all uniform frequency response over the desired frequency band. 13. How can you overcome delay distortion? Coaxial cables are used to overcome delay distortion. In such cables, the internal inductance is low at high frequencies because of skin effect, the resistance is small because of the large conductors, and capacitance and leakages are small because of the use of air dielectric with a minimum of spacers. The velocity of propagation is raised and made more nearly equal for all frequencies. 14. Give the expressions for attenuation constant, phase constant and velocity of propagation in a telephone cable. Attenuation constant, α = √ (ωRC) / 2 Phase constant, β = √ (ωRC) / 2 Velocity of propagation, vp = ω/ β = √ (2ω) /RC 15. What is the need for inductance loading of telephone cables? The condition for a distortion less line is, LG = RC. In order to achieve this condition, L/C ratio has to be increased. To increase this ratio, the value of L must be increased which in turn is increased by adding lumped inductors spaced at regular intervals along the telephone cables. 16. What do you mean by reflection factor? 2 EC6503 Transmission lines and Waveguides Department of ECE 2018 - 2019 The change in current in the load due to reflection at the mismatched junction is called 2 Z Z the reflection factor and is given by reflection factor, k = R O Z R Z O 17. Define reflection loss. Reflection loss is defined as the number of nepers or decibels by which the current in the load under image matched conditions would exceed the current actually flowing in Z Z 2 the load. Reflection loss, nepers = 10 log R o , Reflection loss, dB = 20 log 4Z Z R O Z Z R o 2 Z R Z O Where ZR = Receiving end impedance, Zo = characteristic impedance 18. Define insertion loss of a line. (May 2015) The insertion loss of a line or network is defined as the number of nepers or decibels by which the current in the load is changed by the insertion. 19. What are the primary&secondary constants of a transmission line? The primary constants of a transmission line are resistance R, ohm/unit length, inductance L, henry/unit length, capacitance C, farad/unit length and conductance G, mho/unit length. The secondary constants of a transmission line are characteristic impedance and propagation constant. 20. A transmission line has Z o 745 12 ohms and is terminated by Z R 100ohms. Calculate the reflection loss in dB and reflection factor. (May 2017) Z Z Solution: Reflection loss, dB = 20 log R o = 3.776 dB 2 Z R ZO 2 Z Z Reflection factor, k = R O = 0.648 Z Z R O 21. When does a finite line appear as an infinite line? A line of finite length, terminated in a load equivalent to its characteristic impedance appears to the sending end generator as an infinite line. 22. Write the equation for the input impedance of a transmission line. The equation for the input impedance of a transmission line is Z R coshl Z o sinhl Zin Z o Z coshl Z sinhl o R 23. A 50 ohms coaxial cable feeds a 75+j20 ohms dipole antenna. Find reflection coefficient and standing wave ratio. Solution: Given Zo = 50 ohms, ZR = 75+j20 ohms Z Z Reflection co-efficient, K = R o Z R Z o 3 EC6503 Transmission lines and Waveguides Department of ECE 2018 - 2019 75 j20 50 25 j20 3238.65 75 j20 50 125 j20 126.589.09 1 K 1 0.25 0.2529.56 SWR, S 1.666 1 K 1 0.25 24. Find the reflection coefficient of a 50 ohm transmission line when it is terminated by a load impedance of 60+j40 ohm.(Nov 2015) Solution: Given Zo = 50 ohms, ZR = 60+j40 ohms Reflection co-efficient, K = 60 j40 50 10 j40 41.2375.9 60 j40 50 110 j40 117.04719.98 0.352355.9169 1 K Standing wave ratio,S 1 K 1 0.3523 2.08 1 0.3523 25.What is the drawback of using ordinary telephone cables?(May 2015) The drawback of using ordinary telephone cables is the attenuation and velocity are functions of frequency and there will be very considerable frequency and delay distortion. 26. Find the attenuation constant and phase constant of a wave propagating along the line Whose 1.048x104 88.8 Solution: Propagation constant, j that is, 1.048x104 88.8 In rectangular form, 2.194x106 j1x104 , Equating the real and imaginary parts, we get, 2.194x106 nepers per unit length and 1x104 rad per unit length. 27. What is characteristic impedance? (Nov 2017) The characteristic impedance of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. 28.A lossless line hasan characteristic impedance of 400Ω. Determine the standing wave ratio if the receiving impedance is 800+j0.0Ω. (May 2017) Reflection co-efficient, K = 800 400 400 1 0.33 800 400 1200 3 1 0.3333 Z R Z1o.999 2 1 0.3333 Z R Z o PART B- C303.1 4 EC6503 Transmission lines and Waveguides Department of ECE 2018 - 2019 1. (i) Derive the transmission line equation and hence obtain the expression for voltage and current on a transmission line. (ii) Prove that an infinite line equal to finite line terminated in its characteristic impedance.(May 2016,Nov 2017 ) 2. A communication link has R = 10.4 ohm/km, L = 3.67 mH/km, G = 0.08 µmho/km and C = 0.0083µF/km.
Recommended publications
  • Loudspeaker Parameters
    Loudspeaker Parameters D. G. Meyer School of Electrical & Computer Engineering Outline • Review of How Loudspeakers Work • Small Signal Loudspeaker Parameters • Effect of Loudspeaker Cable • Sample Loudspeaker • Electrical Power Needed • Sealed Box Design Example How Loudspeakers Work How Loudspeakers Are Made Fundamental Small Signal Mechanical Parameters 2 • Sd – projected area of driver diaphragm (m ) • Mms – mass of diaphragm (kg) • Cms – compliance of driver’s suspension (m/N) • Rms – mechanical resistance of driver’s suspension (N•s/m) • Le – voice coil inductance (mH) • Re – DC resistance of voice coil ( Ω) • Bl – product of magnetic field strength in voice coil gap and length of wire in magnetic field (T•m) Small Signal Parameters These values can be determined by measuring the input impedance of the driver, near the resonance frequency, at small input levels for which the mechanical behavior of the driver is effectively linear. • Fs – (free air) resonance frequency of driver (Hz) – frequency at which the combination of the energy stored in the moving mass and suspension compliance is maximum, which results in maximum cone velocity – usually it is less efficient to produce output frequencies below F s – input signals significantly below F s can result in large excursions – typical factory tolerance for F s spec is ±15% Measurement of Loudspeaker Free-Air Resonance Small Signal Parameters These values can be determined by measuring the input impedance of the driver, near the resonance frequency, at small input levels for which the
    [Show full text]
  • Characteristic Impedance of Lines on Printed Boards by TDR 03/04
    Number 2.5.5.7 ASSOCIATION CONNECTING Subject ELECTRONICS INDUSTRIES ® Characteristic Impedance of Lines on Printed 2215 Sanders Road Boards by TDR Northbrook, IL 60062-6135 Date Revision 03/04 A IPC-TM-650 Originating Task Group TEST METHODS MANUAL TDR Test Method Task Group (D-24a) 1 Scope This document describes time domain reflectom- b. The value of characteristic impedance obtained from TDR etry (TDR) methods for measuring and calculating the charac- measurements is traceable to a national metrology insti- teristic impedance, Z0, of a transmission line on a printed cir- tute, such as the National Institute of Standards and Tech- cuit board (PCB). In TDR, a signal, usually a step pulse, is nology (NIST), through coaxial air line standards. The char- injected onto a transmission line and the Z0 of the transmis- acteristic impedance of these transmission line standards sion line is determined from the amplitude of the pulse is calculated from their measured dimensional and material reflected at the TDR/transmission line interface. The incident parameters. step and the time delayed reflected step are superimposed at the point of measurement to produce a voltage versus time c. A variety of methods for TDR measurements each have waveform. This waveform is the TDR waveform and contains different accuracies and repeatabilities. information on the Z0 of the transmission line connected to the d. If the nominal impedance of the line(s) being measured is TDR unit. significantly different from the nominal impedance of the Note: The signals used in the TDR system are actually rect- measurement system (typically 50 Ω), the accuracy and angular pulses but, because the duration of the TDR wave- repeatability of the measured numerical valued will be form is much less than pulse duration, the TDR pulse appears degraded.
    [Show full text]
  • 1.1 Transmission Line Basic Concepts: Introduction to Narrow-Band Matching Networks
    European Master of Research on Information Technology Design and Analysis of RF and Microwave Systems 1.1 Transmission line basic concepts: Introduction to narrow-band matching networks March 2010 Francesc Torres, Lluís Pradell, Jorge Miranda European Master of Research on Information Technology Design and Analysis of RF and Microwave Systems Voltage and current in the transmission line V For any lossless transmission line: L IL V (z) V (z) V (z) V(z V+(z) Z ≠ Z 1 Z0 I(z) - L 0 I(z) V (z) V (z) V (z) Z0 -z z=0 where At z=0 Periodicity of V(z) and I(z): wavelength jz (z z) z n2 , z n2 V (z) V0 e V (0) V0 V0 VL 1 jz I(0) V V I 2 V (z) V0 e Z L z n n 0 Impedance: load Reflection coefficient: load V V V V V 1 V Z Z Z L Z Z L Z L L 0 L 0 0 0 L I L V V V LV 1 L V Z L Z0 1 European Master of Research on Information Technology Design and Analysis of RF and Microwave Systems Reflection coefficient in the transmission line At any point z of the transmission line the impedance is computed as: V (z) 1 (z) Z(z) Z0 Z(z) Z0 (z) Z0 I(z) 1 (z) Z(z) Z0 At any point z of the transmission line the reflection coefficient is: V (z) V 2 jz 2 jz 2 jz (z) e (0)e Le V (z) V 2 jz Modulus (z) Le L Constant in z 180º 2z rad 2z deg Phase 2z 2 (z z) n2 , 2z n2 Linear n n Increasing with +z (towards load) z n Periodicity: half a wavelength 2 2 European Master of Research on Information Technology Design and Analysis of RF and Microwave Systems The transmission line as impedance transformer () L 2 j (z) L 2 jz Z0, β ZL≠ Z0 |Γ(z) |=|ΓL| i () z z=0 Example: Compute the input impedance Zi of a circuit formed by a transmission line of length is λ/8 and loaded with ZL=0 (sc).
    [Show full text]
  • 521Fmelectronic 1..14
    Radio-Frequency and Microwave Communication Circuits: Analysis and Design Devendra K. Misra Copyright # 2001 John Wiley & Sons, Inc. ISBNs: 0-471-41253-8 (Hardback); 0-471-22435-9 (Electronic) RADIO-FREQUENCY AND MICROWAVE COMMUNICATION CIRCUITS RADIO-FREQUENCY AND MICROWAVE COMMUNICATION CIRCUITS ANALYSIS AND DESIGN DEVENDRA K. MISRA A WILEY±INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright # 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@ WILEY.COM. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.
    [Show full text]
  • Microwave Connectors
    O30E.pdf Mar. 19,2021 Microwave Connectors !Note • Please read rating and !CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. O30E.pdf • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. Mar. 19,2021 EU RoHS Compliant • All the products in this catalog comply with EU RoHS. • EU RoHS is "the European Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment." • For more details, please refer to our web page, "Murata's Approach for EU RoHS" (https://www.murata.com/en-eu/support/ compliance/rohs). !Note • Please read rating and !CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. O30E.pdf • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. Mar. 19,2021 1 Contents Product specifications are as of February 2021. 2 Part Numbering p2 Type of Connectors p3 1 Microwave Coaxial Connectors with Switch SWD Type p5 SWF Type p7 SWG Type p9 SWH Type p11 SWH-2Way Type p13 SWJ Type p15 2 Microwave Multi Line Connectors MLF Type p17 Notice (Design) p22 Notice (Engagement/Disengagement) p23 Type of Probes p24 Electrical Performance Measurement System (Insertion Loss, VSWR) p25 Mechanical Performance Measurement System (Engagement/Disengagement Force) p26 Notice p27 Please check the MURATA website (https://www.murata.com/) if you cannot find a part number in this catalog.
    [Show full text]
  • Acoustic Interface Design Guide
    Acoustic Interface Design Guide MEMS MICROPHONES ECMs SPECIALTY MICROPHONES SPECIALTY SPEAKERS CUSTOM ASSEMBLIES ACOUSTIC SOFTWARE MICROPHONE AND SPEAKER BASICS Discover your next acoustic interface solution. Knowles Acoustics offers you a full spectrum of MEMS microphones, electret condenser microphones, specialty microphones, balanced armature speakers, custom assemblies, and sound conditioning software. This application guide will help you select the right acoustic interface solution. Knowles reserves the right to change designs and specifications without prior notice. Should a safety concern arise regarding this product, please contact us immediately for technical consultation. Knowles cannot assume responsibility for any problems arising out of the use of this product. This information does not convey any license by any implication under any patents or other right. 2 www.knowles.com We can help you every step of the way. It all starts with your application. Or it starts with an idea you may have. For support from concept to design to sub-assembly, or any step along the way, just call us. Or visit us at www.knowles.com Table of Contents MICROPHONES - MEMS . 4-5 MICROPHONES - ECMs . 6-8 SPECIALTY TRANSDUCERS - MICROPHONES . 9-14 ACCELEROMETERS & DAMPERS . 14 SPECIALTY TRANSDUCERS - SPEAKERS . 15-23 CUSTOM ASSEMBLIES . 24 ACOUSTIC SOFTWARE . 25 MICROPHONE AND SPEAKER BASICS . 26-27 www.knowles.com 3 MICROPHONES – MEMS SiSonic™ MEMS Microphones The SiSonic™ MEMS microphone series is entering its fourth generation of development, with product shipments exceeding 400 million units to date. The proven and evolving design series continues to support high-performance, high-density innovation in such applications as cell phones, digital still cameras, portable music players, premium earbuds and other portable electronic devices.
    [Show full text]
  • EN 300 330 V1.2.2 (1999-02) European Standard (Telecommunications Series)
    Final draft EN 300 330 V1.2.2 (1999-02) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Technical characteristics and test methods for radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz 2 Final draft EN 300 330 V1.2.2 (1999-02) Reference REN/ERM-RP08-0108 (32000ipc.PDF) Keywords SRD, radio, testing ETSI Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Internet [email protected] Individual copies of this ETSI deliverable can be downloaded from http://www.etsi.org If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1999. All rights reserved. ETSI 3 Final draft EN 300 330 V1.2.2 (1999-02) Contents Intellectual Property Rights................................................................................................................................6 Foreword ............................................................................................................................................................6
    [Show full text]
  • Electronics Design in a Passive Speaker System
    Teemu Jortikka Electronics Design in a Passive Speaker System Metropolia University of Applied Sciences Bachelor of Engineering Electronics Bachelor’s Thesis 15 May 2021 Abstract Author Teemu Jortikka Title Electronics Design in a Passive Speaker System Number of Pages 57 pages Date 15 May 2021 Degree Bachelor of Engineering Degree Programme Electrical and Automation Engineering Professional Major Electronics Instructors Hannes Nieminen, Project Manager Heikki Valmu, Senior Lecturer The goal of this thesis project was to start the research and development of the electronics of a passive loudspeaker system. The project being started from scratch, many of the topics included in speaker design are not limited to electronics engineering. The project was not ordered by any company but is rather a passion project of two audio engineers. The project started with the research of the proper speaker drivers. Once the drivers were chosen, the enclosure was next in line for the design. Once the drivers and enclosure were brought to physical reality, the frequency responses from different combinations of elements were measured. From these measurements, with the help of a little DSP, the requirements for the passive circuitry of the speaker were discovered. The circuit was to consist of a simple crossover circuit and a delay. The crossover is simple due to it just being a high pass filter and a low pass filter, but the delay is a much more tricky subject. The delay was chosen to be implemented using an all-pass filter topology. All the circuitry was simulated, but due to the limitations of the software and the nature of sound design in general, most decisions and opinions had to be made by ear.
    [Show full text]
  • Hardware Implementation Overhead of Switchable Matching Networks
    TCAS 1 - 2017 1 Hardware implementation overhead of switchable matching networks Ettore Lorenzo Firrao, Anne Johan Annema, Frank E. van Vliet and Bram Nauta decrease the efficiency and radiated power significantly. Abstract— Nowadays, more and more RF systems include Automatic antenna tuners are used to match an antenna switchable matching networks to decrease the impact of the impedance to an impedance close to the nominal impedance, environment-dependent antenna impedance on the RF front end which is typically 50 Ω. An antenna tuner [6]-[25] is performance. This paper reviews the theoretical lower limit on generally implemented through a system consisting of the required number of matching states to match VSWR ranges impedance sensing circuitry, a tunable matching network and and then presents an analysis of hardware implementations to actually implement a suitable switchable matching network. A a control loop that implements the tuning procedure [26]-[30] number of matching network topologies are analyzed: PI of the matching network. The tunable matching network can networks, loaded transmission lines, branch line coupler based be a continuous tunable matching network or a switchable circuits, single circulators and cascaded circulators. In our matching network; typically a switchable matching network investigation only narrow-band applications are targeted. For is used [6]-[25]. the various circuit implementations the required number of In [31], the theoretical minimum number of states for matching states for each hardware implementation is compared switchable matching networks was derived, required to match to the theoretical minimum number of states required for the Γ Γ same matching in order to benchmark their hardware any load impedance for which | load| ≤ | load|max to within a implementation overhead.
    [Show full text]
  • Antenna Basics White Paper
    Antenna Basics White Paper This white paper describes the basic functionality of antennas. Starting with Hertz's Antenna model followed by a short introduction to the fundamentals of wave propagation, the important general characteristics of an antenna and its associated parameters are explained. A more detailed explanation of the functionality of some selected antenna types concludes this white paper. 01_1e 8GE - White Paper / Dr. C. Rohner 3.2015 Reckeweg M. Table of Contents Table of Contents 1 Introduction ......................................................................................... 3 2 Fundamentals of Wave Propagation ................................................. 5 2.1 Maxwell's Equations .................................................................................................... 5 2.2 Wavelength ................................................................................................................... 6 2.3 Far Field Conditions .................................................................................................... 7 2.4 Free Space Conditions ................................................................................................ 7 2.5 Polarization ................................................................................................................... 8 3 General Antenna Characteristics ...................................................... 9 3.1 Radiation Density........................................................................................................
    [Show full text]
  • On a Class of Low-Reflection Transmission-Line Quasi- Gaussian Low-Pass Filters and Their Lumped-Element Approximations
    Appears in IEEE Transactions on Microwave Theory & Technology, vol. 51, pp. 1871-1877 July 2003. On a Class of Low-Reflection Transmission-Line Quasi- Gaussian Low-Pass Filters and Their Lumped-Element Approximations Antonije R. Djordjević, Alenka G. Zajić, Aleksandra S. Steković, Marija M. Nikolić, and Zoran A. Marićević Abstract — Gaussian-like filters are frequently used in digital signal transmission. Usually, these filters are made of lumped inductors and capacitors. In the stopband, these filters exhibit a high reflection, which can create unwanted signal interference. To prevent that, a new, low-reflection ladder network is introduced that consist of resistors, inductors, and capacitors. The network models fictitious transmission lines with Gaussian-like amplitude characteristics. Starting from the analysis of this network, a procedure is developed for synthesis of a new class of lumped-element RLC filters. These filters have transmission coefficients similar to the classical Bessel filters. In contrast to the Bessel filters, the new filters exhibit a low reflection both in the stopband and passband, they have a small span of element parameters, and they are easy for manufacturing and tuning. Indexing terms — Linear phase filters, low-pass filters, distributed parameter filters, impedance matching. I. INTRODUCTION In digital signal transmission, Gaussian-like frequency-domain transfer functions are usually desirable because they do not yield overshoots and ringing in the time domain. For practical filter design, the leading representatives for this kind of low-pass filters are the Bessel (Bessel-Thompson) filters, which have a maximally flat group delay [1]. Lumped element realizations of such filters and their implementations in the microwave range have been well developed and known, e.g., [2], [3].
    [Show full text]
  • Microphone Measurements, Standards, and Specifications
    CHAPTER 7 Microphone Measurements, Standards, and Specifications Introduction In this chapter we discuss the performance parameters of microphones that form the basis of specification documents and other microphone literature. While some microphone standards are applied globally, others are not, and this often makes it difficult to compare similar models from different manufacturers. Some of the differences are regional and reflect early design practice and usage. Specifically, European manufacturers developed specifications based on modern recording and broadcast practice using condenser microphones, whereas traditional American practice was based largely on standards developed in the early days of ribbon and dynamic microphones designed originally for the US broadcasting industry. Those readers who have a special interest in making microphone measurements are referred to the standards documents listed in the bibliography. Primary Performance Specifications 1. Directional properties: Data may be given in polar form or as a set of on- and off-axis normalized frequency response measurements. 2. Frequency response measurements: Normally presented along the principal (0) axis as well as along 90 and other reference axes. For dynamic microphones the load impedance used should be specified as the frequency response often changes with loading. 3. Output sensitivity: Often stated at 1 kHz and measured in the free field. Close-talking and boundary-layer microphones need additional qualification. Some manufacturers specify a load on the microphone’s output. 4. Output source impedance. 5. Equivalent self-noise level. 6. Maximum operating sound pressure level (SPL) for a stated percentage of total harmonic distortion (THD). For condenser microphones it is critical to specify a minimum load impedance above which the microphone will deliver the specified maximum SPL and THD.
    [Show full text]