Remembering Fritz Haber in the Year 2015 Remembering Fritz Haber In

Total Page:16

File Type:pdf, Size:1020Kb

Remembering Fritz Haber in the Year 2015 Remembering Fritz Haber In CHIMIE NOUVELLE N° 119 - novembre 2015 19 Joseph GAL(1) (1) University of Anschutz Medical Campus, Mail Stop A-022, Aurora, CO 80045 (USA), [email protected] de la chimie Remembering Fritz Haber Remembering Fritz Haber Histoire in the Year 2015 in the Year 2015 Cet article est reproduit avec l’aimable autorisation de l’Actualité Chimique dans lequel il a été initialement publié (L’Act. Chim., 2015, 397-398, p. 114). Abstract Mots-clés German chemist Fritz Haber (1868-1934) was one Synthèse de l’ammoniac, guerre chimique, of the greatest chemists of the 20th century. He Première guerre mondiale, éthique et moralité earned a PhD in organic chemistry in 1891 but then dans les sciences switched to other areas and carried out important research on a broad variety of chemical problems. He had exceptional scientific talent, versatility and 1. Introduction a superb capacity to combine theoretical science with technical application. He was awarded the By the end of the 19th century the world’s popula- 1918 Nobel Prize in Chemistry for his invention of tion had reached ca. 1.6 billion, and mass starva- the synthesis of ammonia from its elements, which tion was looming on the horizon. Indeed, the emi- saved the world from mass starvation by provid- nent British scientist Sir William Crooks warned ing nitrogen fertilizers. During World War I Haber, in 1898 that within a few decades millions would a staunch advocate of chemical weapons, became starve to death, because of the lack of food due to the leader of the German chemical warfare pro- insufficient amounts of nitrogen fertilizers, which gram, for which he has been controversial to this are essential for food production [1]. But all that day. As a young man he converted from Judaism soon changed, with the arrival on the scene of a to Christianity. His family life was unhappy and at German chemist named Fritz Haber (Figure 1) times aggrieved by tragedies. Haber’s exalted exist- [2-6]. He became one of the greatest chemists of ence in science and public life came to an abrupt the 20th century and an eminent figure of modern end with the Nazis’ rise to power and he died in exile Germany. His invention of the synthesis of ammo- in 1934 a broken man. 2015 marks the centenary of nia from its elements hydrogen and nitrogen has the birth of modern chemical warfare, reminding us allowed the production of nitrogen fertilizers in of its protagonist Haber. Moreover, today, with the large quantities and has thereby saved billions from world’s population at over 7 billion and the threat of death by starvation [7]. During World War I (WWI) mass hunger, we are also reminded of Haber’s key Haber became the de facto leader of the German contribution to food production. It is therefore fitting chemical-weapons (CWPs) program [8], and his in 2015 to reflect on Haber’s life and work. role as the “father of modern chemical warfare” has been controversial. Overall, Haber’s life was Keywords an exalted one at the top echelons of science and in Ammonia synthesis, chemical warfare, World War public prominence, but, as we shall see, in the end I, ethics and morality in science his story turned tragic. Figure 1 : Haber in the laboratory in Karlsruhe (Archives of the Max Planck Society, Berlin). Remembering Fritz Haber in the Year 2015 21 The year 2015 marks the centenary of the birth of attended the University of Berlin and the University modern chemical warfare (CW) in which Haber of Heidelberg, and then fulfilled his required one-year played a leading role. Moreover, today, with the military service, after which he returned to his studies, ever-increasing world population – now exceeding at the Technical Institute of Charlottenburg (Berlin). seven billion – and the resulting threat of mass star- He became interested in organic chemistry, and in vation, we are also reminded of Haber’s ammonia 1891 earned his doctorate at the University of Berlin synthesis and the nitrogen fertilizers it provides for with a dissertation entitled “Über einige Derivate food production. It appears particularly fitting there- des Piperonals” (On some piperonal derivatives) fore in this year 2015 to remember Fritz Haber. under the guidance of Carl Liebermann, the eminent dye chemist. Haber then spent short stints at several industrial companies and at universities in Zurich and 2. Beginnings and early career Jena. During his stays at various universities, Haber was exposed to several eminent chemists, e.g., Robert Haber was born into a liberal Jewish family on Bunsen, Georg Lunge, and Ludwig Knorr. December 9th, 1868, in Breslau, a city in the Silesia region of what was then Prussia, one of the many While in Jena (1892-1894), Haber converted to sovereign German states of the time (today Breslau Christianity and was baptized a Lutheran. Such con- is called Wrocław and is in Poland). In January 1871, versions were not uncommon among young Jewish just two years after Haber’s birth, the German states were unified and modern Germany was created, in the form of the German Empire. Haber’s father, Siegfried, was a pros- perous merchant in dyes and pharma- ceuticals. Three weeks after Haber’s birth, his mother, Paula (1844-1868, née Haber, she was Siegfried’s cousin), died of complications of giv- ing birth. Haber the child was thus raised without his mother’s love and guidance. But Haber’s father remar- ried and the stepmother cherished the young boy. It has also been suggested, however, that Haber’s father may have held the son somehow respon- sible for the death of his beloved first wife, with potentially serious psycho- logical effects on the son [5, 9]. Haber benefited from a gener- ally good educational system. He attended St. Elisabeth High School in Breslau, an institution oriented toward the humanities, but mathe- matics and science, especially phys- ics, were also part of the curriculum. Haber became interested in chemis- try early in the high-school years. He Figure 2 : Clara Haber, née Immerwahr (Archives of the Max Planck Society, Berlin). 22 CHIMIE NOUVELLE N° 119 - novembre 2015 professionals and were often motivated by the desire iously suitable for providing a high product yield to facilitate career advancement. In 1894 Haber moved (despite the low ammonia content in the equilib- to Karlsruhe in southwestern Germany where he had rium product gas mixture) and able to withstand been offered a position as Assistent at the Technische the extreme conditions required: a temperature of Hochschule Karlsruhe (Karlsruhe Institute of ca. 550º and a pressure of at least 200 atm. A cata- Technology). He became interested in physical chem- lyst was also necessary, and after many experiments istry, chemical technology, and other areas of chemis- osmium was found to be highly effective in that try, and carried out investigations on a variety of prob- role. Haber’s success in the fixation of nitrogen was lems, e.g., thermal decomposition of hydrocarbons, a unique achievement that revealed his great abili- dye technology, gas technology, electrochemistry, ties in combining theoretical chemistry with practi- thermodynamics of the reactions of solids, metal cor- cal technical considerations. It is noteworthy in this rosion, the thermodynamics of gas reactions (publish- respect that the eminent German chemist Wilhelm ing a successful monograph on this subject in 1905), Ostwald (1853-1932, Nobel Laureate 1909) had etc. The variety of subjects he tackled was indeed tried to synthesize ammonia from its elements some impressive. He worked with great diligence, and many years earlier but failed. of his findings, e.g., in electrochemistry, were of great importance and received considerable recognition. Haber publically announced his discovery on March He was eventually rewarded for his hard work and 18, 1910. His achievement immediately catapulted achievements: in 1906 he was appointed full professor him to the forefront of German science. In 1911 he (“ordinarius”) and director of the Institute of Physical moved to Berlin where he was appointed head of Chemistry and Electrochemistry at Karlsruhe. the Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry, a prestigious institute cre- In 1901 Haber married Clara Immerwahr (1870- ated for him. He was also appointed professor at the 1915) (Figure 2), a chemist and perhaps the first University Berlin and was elected member of the woman to earn a doctorate in chemistry in Germany. Prussian Academy of Sciences. Eventually he was She too was born in Breslau into a Jewish family, awarded the 1918 Nobel Prize in Chemistry for his and she too converted to Christianity. synthesis of ammonia. BASF had the rights to the industrial development 3. Synthesis of ammonia – “bread from air” of Haber’s discovery and entrusted the task to one of their talented scientists, Carl Bosch (1874-1940). The history, technology, and implications of Haber’s Upscaling Haber’s laboratory method to an indus- synthesis of ammonia from its elements (“the fixa- trial process was an immensely challenging task, tion of nitrogen”) is described in detail in the excel- including finding an economically viable catalyst lent volume by Smil [7]. (osmium was not) and designing equipment that would endure the extreme conditions of tempera- By the beginning of the 20th century it was well ture and pressure previously unheard-of in indus- understood that to solve the problem of nitrogen- trial chemistry. Nevertheless, Bosch and his team fertilizer shortage the synthesis of ammonia from succeeded in a relatively short time and the first its elements was required. Haber first attempted the ammonia plant using the Haber-Bosch process, as synthesis in 1904-05 but failed. In 1908 he tried it Haber’s invention came to be known in its industrial again, with financial support from Badische Aniline form, began operating in 1913.
Recommended publications
  • Goverdhan Mehta Chemistry - a 21St Century Science for Global Sustainability: Is It Future Ready?
    Goverdhan Mehta Chemistry - A 21st Century Science for Global Sustainability: Is it future ready? Goverdhan Mehta A ‘selfie’ with theSchool chemical of Chemistry world…… University of Hyderabad National Geophysical Research Institute, CSIR Foundation Day, Sept. 27, 2019 Introducing Chemistry through the Lens of Earth's Systems: What Role Can Systems Thinking Play in Developing Chemically and Environmentally Literate Citizens? J. Kornfeld, S. Stokoe. J. Chemical Education 2019, 96, 2910-2917 A bouquet of ‘matters’ that matter New symbols Passion Sustainability Legacies Ethics & values Responsible Connections Systems Directions Humility Ideas & icons Inspirations Un mélange de beaucoup de choses “Chemistry ought not to be for chemists alone” - Miguel de Unamuno ‘…Life, Universe and Everything’ Chemistry – a source of happiness…. Chem -Connectome ‘...I feel sorry for people who don’t know anything about chemistry. They are missing an important source of happiness....’ - Linus Pauling 1901-1994 S.A. Matlin, G. Mehta, H. Hopf. Chemistry Embraced by All. Science 2015, 347, 1179 Chemistry is in everything. and everything is in it, it is the basis of life, without it we wouldn't exist. Green tea has ~ 200 chemicals Coffee has ~ 1000 chemicals Wine has >1000 chemicals Light cigarette ~ 4000 chemicals Chemistry is ubiquitous/omnipresent Chemistry – Tracing the roots and to the present BCE Art & craft of mixing substances A giant knowledge leap Alchemy to modern science Evidence based science Discipline in a Table - systematization Mendeleev’s Periodic Law ‘Molecularization’ of chemical matter 20th Century A century of evolutionary march of chemistry 20h Century Value added products from almost anything “Utility science” and everything Molecular understanding of life processes and “Core Science” chemical matter Interdisciplinarity in forefront “Integrative Science” Resource stressed planet “Sustainability Science” 21st Century S.
    [Show full text]
  • George De Hevesy in America
    Journal of Nuclear Medicine, published on July 13, 2019 as doi:10.2967/jnumed.119.233254 George de Hevesy in America George de Hevesy was a Hungarian radiochemist who was awarded the Nobel Prize in Chemistry in 1943 for the discovery of the radiotracer principle (1). As the radiotracer principle is the foundation of all diagnostic and therapeutic nuclear medicine procedures, Hevesy is widely considered the father of nuclear medicine (1). Although it is well-known that he spent time at a number of European institutions, it is not widely known that he also spent six weeks at Cornell University in Ithaca, NY, in the fall of 1930 as that year’s Baker Lecturer in the Department of Chemistry (2-6). “[T]he Baker Lecturer gave two formal presentations per week, to a large and diverse audience and provided an informal seminar weekly for students and faculty members interested in the subject. The lecturer had an office in Baker Laboratory and was available to faculty and students for further discussion.” (7) There is also evidence that, “…Hevesy visited Harvard [University, Cambridge, MA] as a Baker Lecturer at Cornell in 1930…” (8). Neither of the authors of this Note/Letter was aware of Hevesy’s association with Cornell University despite our longstanding ties to Cornell until one of us (WCK) noticed the association in Hevesy’s biographical page on the official Nobel website (6). WCK obtained both his undergraduate degree and medical degree from Cornell in Ithaca and New York City, respectively, and spent his career in nuclear medicine. JRO did his nuclear medicine training at Columbia University and has subsequently been a faculty member of Weill Cornell Medical College for the last eleven years (with a brief tenure at Memorial Sloan Kettering Cancer Center (affiliated with Cornell)), and is now the program director of the Nuclear Medicine residency and Chief of the Molecular Imaging and Therapeutics Section.
    [Show full text]
  • 4. Marie Curie, Ethics and Research
    CATHERINE MILNE 4. MARIE CURIE, ETHICS AND RESEARCH INTRODUCTION Recently Chemistry and Engineering News (Bard, Prestwich, Wight, Heller, & Zimmerman, 2010) carried a series of commentaries on the culture of academic research in chemistry with a focus on the role of funding in research. Initially, Alan Bard decried how decisions about tenure seem more and more to focus on grant getting rather than consideration of the applicant’s accomplishments generated because of access to this funding. Bard argued further that often this funding was based, not on the quality of the proposed research but on a researcher’s ability to “hype their research” and damming truth in the process (Bard et al., 2010, p. 27). According to him, there was a disturbing trend in universities for researchers to be encouraged, almost expected, to generate patents and from there, even to be involved in initiating “start up” companies. Other researchers responded. Glen Prestwich and Charles Wight (Bard et al., 2010) argue that if researchers were able to present a clear connection between “taxpayer dollars” and funded research, the public would realize the value that science delivers. Prestwich and Wight argue further that a new cadre of researchers is involved in identifying real world problems, translating basic research into applications, and creating products as well as publications. Moving from basic research to applications that address real world problems is called translational research, and Prestwich and Wight see this research as a positive development in chemistry. Adam Heller (Bard et al., 2010) weighs in claiming that the pursuit of “patent-protected, people-serving products” was not “a sad sign of our times but a reawakening of the proud history of academic chemistry and chemical engineering” (p.
    [Show full text]
  • Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. by Vaclav Smil. Cambridge: MIT Press, 2004
    Book Reviews / 383 nessing water power to produce scythes for farmers, spindles for textile mills, and cotton thread. Small emphasizes that these were not the activities of ab- sentee investors but of local men and women who mixed manufacturing with agriculture. Beauty and Convenience focuses on a farming community that has received scant attention from historians, but Small makes a convincing case that the way in which the farmers of Sutton fashioned and re-fashioned their houses and landscape reveals their full participation in the historic transformations of their era. Kenneth Hafertepe Baylor University Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. By Vaclav Smil. Cambridge: MIT Press, 2004. 360 pp., $19.95, paperback, ISBN 0-262-69313-5. What is the most important technological invention in the twentieth century? Vaclav Smil makes the cogent argument that it is the discovery and industrial- ization of ammonia synthesis by Fritz Haber and Carl Bosch. Without indus- trial N-fixation, as much as two-fifths of the world’s population would starve for want of available protein in their diet, and major advances in high-pressure industrial processes would have been delayed. Likewise, the Haber-Bosch process facilitated world munitions production; encouraged agricultural ex- pansion onto marginal lands, leading to greater greenhouse emissions and soil degradation; and (because of inherent inefficiencies in nitrogen recovery by plants) has led to an unbalanced enrichment of natural ecosystems by nitrogen. It is an odd book given the title. History and society would be unalterably different without Haber and Bosch, but these protagonists do not appear un- til chapters four and five, respectively; then their lives are described in the most perfunctory manner.
    [Show full text]
  • Grignard Synthesis of Triphenylmethanol Reactions That Form Carbon-Carbon Bonds Are Among the Most Useful to the Synthetic Organic Chemist
    1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel prize in chemistry for his discovery of a new series of reactions that result in the formation of a carbon-carbon bond. A Grignard synthesis first involves the preparation of an organomagnesium reagent via the reaction of an alkyl bromide with magnesium metal: δ– δ+ R Br + Mg R MgBr The resulting “Grignard reagent” acts as both a good nucleophile and a strong base. Its nucleophilic character allows it to react with the electrophilic carbon in a carbonyl group, thus forming the carbon-carbon bond. Its basic property means that it will react with acidic compounds, such as carboxylic acids, phenols, thiols and even alcohols and water; therefore, reaction conditions must be free from acids and strictly anhydrous. Grignard reagents will also react with oxygen to form hydroperoxides, thus they are highly unstable when exposed to the atmosphere and are generally not isolated from solution. For a variety of reasons, anhydrous diethyl ether is the solvent of choice for carrying out a Grignard synthesis. Vapors from the highly volatile solvent help to prevent oxygen from reaching the reaction solution. In addition, evidence suggests that the ether molecules actually coordinate with and help stabilize the Grignard reagent: Et Et O R Mg Br O Et Et The magnesium metal used in the synthesis contains a layer of oxide on the surface that prevents it from reacting with the alkyl bromide. The pieces of metal must be gently scratched while in the ether solution to expose fresh surface area so that the reaction can commence.
    [Show full text]
  • François Auguste Victor Grignard
    DE ANIVERSARIO Hemos invitado al autor de la sección PARA QUITARLE EL POLVO François Auguste “La química en la historia, para la enseñanza” durante los últimos trece números a participar en la sección Victor Grignard DE ANIVERSARIO con una contribución de la misma categoría que las anteriores, dedicada al tema Jaime Wisniak* de QUÍMICA DE FRONTERA, como todavía puede catalogarse el trabajo de Grignard por el que obtuvo el premio Nobel en 1912. Resumen (that would see the inaugura- A Víctor Grignard (1871-1935) le debemos el descubrimien- tion of the Eiffel Tower) no to de la reacción que lleva su nombre, relacionada con la scholarships were offered at síntesis de derivados organometálicos que pueden ser usados the time of Grignard’s gradu- como intermediarios en la preparación sencilla de una am - ation from high school. plia gama de compuestos químicos, en particular, alcoholes Whoever took this decision, secundarios y terciarios. El paso de Grignard de una carrera could have hardly guessed en matemáticas a otra en química fue el resultado de una the tremendous impact it serie de eventos burocráticos que lo llevaron a recibir el would have in the develop- Premio Nobel de Química en 1912. ment of organic chemistry. Grignard was left with no al- ternative but to register at the Abstract École Normale Secundaire To Victor Grignard (1871-1935) we owe the discovery of the Spéciale at Cluny, an institu- reaction that carries his name, involving the synthesis of tion that had been estab- Figure 1. Victor Grignard. organomagnesium derivatives that can be used as interme- lished in 1866 as a training diates for the easy preparation of a wide range of chemicals, school for teachers of modern secondary education, for those in particular, secondary and tertiary alcohols.
    [Show full text]
  • Opening Ceremony, 19 September 2010 Christian Colliex, IFSM
    Opening Ceremony, 19 September 2010 Christian Colliex, IFSM President PartipantesPartipantes dodo IMCIMC 17,17, sejamsejam todostodos BemBem VindosVindos aoao RioRio DeDe JaneiroJaneiro IFSM International Federation of Societies for Microscopy Words about the Federation Life from 2006 to 2010 From IMC 16 in Sapporo to IMC 17 in Rio, and next? Prag ? Beijing? Istanbul ? Sapporo 2006 Rio 2010 Sydney ? General Assembly of IFSM selects Rio de Janeiro as host city for IMC 17 in 2010 Sapporo, closing ceremony GS and CC Sapporo 2006 IFSM presidents and executive board members Left to right : First row E. Zeitler, A. Maunsbach, G. Thomas,H. Hashimoto, A. Howie Second row : S. Iijima, G. Solorzano, B. Carter, G. Griffin, X, H. Lichte, D. Cockayne, P. Ingram, C. Colliex, W. Baumeister, K. Furuya. Selection and visit of the site (October 2006) Rehearsal, September 2009 From an IFSM summit meeting at Cusco (2007) preparing IMC 17… …to the official opening of IMC 17 to night at Rio de Janeiro 19 September 2010 Thanks and congratulations to the organizing committee Organizing Committee Chair Guillermo Solorzano Vice Chairs Wanderley de Souza (Life Science) Walter J. Botta (Materials Science) Daniel Ugarte (Instrumentation) Chair Local organizing committee Luiz Henrique de Almeida (UFRJ) Marcia Attias (UFRJ) Helene Barbosa (Fiocruz) Claudia Franca Barros (JBRJ) Ivani Bott (PUC‐Rio) Marilia Garcia Diniz (UERJ) Secretary Marcos Farina (UFRJ) Andréa Martiny (Inmetro) Rossana Melo (UFJF), secretary Vice Chairs André Luiz Pinto (CBPF) Elisa Saitovitch (CBPF)
    [Show full text]
  • Historical Group
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 78 Summer 2020 Registered Charity No. 207890 COMMITTEE Chairman: Dr Peter J T Morris ! Dr Christopher J Cooksey (Watford, 5 Helford Way, Upminster, Essex RM14 1RJ ! Hertfordshire) [e-mail: [email protected]] !Prof Alan T Dronsfield (Swanwick) Secretary: Prof. John W Nicholson ! Dr John A Hudson (Cockermouth) 52 Buckingham Road, Hampton, Middlesex, !Prof Frank James (University College) TW12 3JG [e-mail: [email protected]] !Dr Michael Jewess (Harwell, Oxon) Membership Prof Bill P Griffith ! Dr Fred Parrett (Bromley, London) Secretary: Department of Chemistry, Imperial College, ! Prof Henry Rzepa (Imperial College) London, SW7 2AZ [e-mail: [email protected]] Treasurer: Prof Richard Buscall, Exeter, Devon [e-mail: [email protected]] Newsletter Dr Anna Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail: [email protected]] Newsletter Dr Gerry P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail: [email protected]] https://www.qmul.ac.uk/sbcs/rschg/ http://www.rsc.org/historical/ 1 RSC Historical Group Newsletter No. 78 Summer 2020 Contents From the Editor (Anna Simmons) 2 ROYAL SOCIETY OF CHEMISTRY HISTORICAL GROUP NEWS 3 Letter from the Chair (Peter Morris) 3 New “Lockdown” Webinar Series (Peter Morris) 3 RSC 2020 Award for Exceptional Service 3 OBITUARIES 4 Noel G. Coley (1927-2020) (Peter Morris, Jack Betteridge, John Hudson, Anna Simons) 4 Kenneth Schofield (1921-2019), FRSC (W. H. Brock) 5 MEMBERS’ PUBLICATIONS 5 Special Issue of Ambix August 2020 5 PUBLICATIONS OF INTEREST 7 SOCIETY NEWS 8 OTHER NEWS 9 Giessen Celebrates (?) the Centenary of the Liebig Museum (W.
    [Show full text]
  • One Hundred Years of Chemical Warfare: Research
    Bretislav Friedrich · Dieter Hoffmann Jürgen Renn · Florian Schmaltz · Martin Wolf Editors One Hundred Years of Chemical Warfare: Research, Deployment, Consequences One Hundred Years of Chemical Warfare: Research, Deployment, Consequences Bretislav Friedrich • Dieter Hoffmann Jürgen Renn • Florian Schmaltz Martin Wolf Editors One Hundred Years of Chemical Warfare: Research, Deployment, Consequences Editors Bretislav Friedrich Florian Schmaltz Fritz Haber Institute of the Max Planck Max Planck Institute for the History of Society Science Berlin Berlin Germany Germany Dieter Hoffmann Martin Wolf Max Planck Institute for the History of Fritz Haber Institute of the Max Planck Science Society Berlin Berlin Germany Germany Jürgen Renn Max Planck Institute for the History of Science Berlin Germany ISBN 978-3-319-51663-9 ISBN 978-3-319-51664-6 (eBook) DOI 10.1007/978-3-319-51664-6 Library of Congress Control Number: 2017941064 © The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncom- mercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
    [Show full text]
  • Scientists and War 1916-2016 by Dave Webb Leeds Beckett University and Scientists for Global Responsibility
    Scientists and War 1916-2016 By Dave Webb Leeds Beckett University and Scientists for Global Responsibility The quest for understanding and to know how things work – to find out why they are, what they are - has always been a major driving force for scientists. There are, however, other more negative external drivers – such as the pursuit for military superiority, even in times of peace. Science and engineering have unfortunately made killing easier by helping to develop new types of weapons and World War 1 saw more than its fair share of those. The war also saw a mixture of attitudes from scientists and engineers. Many thought it their duty to help develop new weapons technologies. But there were also those who would not participate in the killing. To understand the social pressures on scientists who spoke out against the war, we need to recognise the cultural context at that time. Just before World War 2 an article in Time magazine dated 11 September 1939, entitled Science and War, expressed the opinion that scientists were not to blame for the way in which their discoveries were used by “men of bad will” and misapplied to “the conquest and murder of men”. This also seemed to be the attitude of many scientists in 1914, and perhaps remains so today. Some though were directly involved. At the outbreak of the First World War, men with specialist scientific and technological skills were not prevented from serving at the Front – by Germany or the Allies. Although some were placed into departments of Time Magazine Front Cover, the armed forces where their skills could be used – for example September 11, 1939 Physicists Ernest Rutherford (Professor of Physics at Manchester since 1907 and winner of the 1908 Nobel Prize in Chemistry) and William Henry Bragg (holder of the Cavendish chair of physics at Leeds since 1909) went to carry out anti-submarine work for the Admiralty.
    [Show full text]
  • Organometallic Chemistry and Applications
    Chemistry 462 Fall 2017 MYD Organometallic Chemistry and Applications Note: Organometallic Compounds and Complexes Contain a M-C Bond. Organometallic chemistry timeline 1760 Louis Claude Cadet de Gassicourt investigates inks based on cobalt salts and isolates Cacodyl from cobalt mineral containing arsenic 1827 William Christopher Zeise produces Zeise's salt; the first platinum / olefin complex 1848 Edward Frankland discovers diethylzinc 1863 Charles Friedel and James Crafts prepare organochlorosilanes 1890 Ludwig Mond discovers nickel carbonyl 1899 Introduction of Grignard reaction 1899 John Ulric Nef discovers alkylation using sodium acetylides. 1900 Paul Sabatier works on hydrogenation of organic compounds with metal catalysts. Hydrogenation of fats kicks off advances in food industry; see margarine! 1909 Paul Ehrlich introduces Salvarsan for the treatment of syphilis, an early arsenic based organometallic compound 1912 Nobel Prize Victor Grignard and Paul Sabatier 1930 Henry Gilman works on lithium cuprates, see Gilman reagent 1951 Walter Hieber was awarded the Alfred Stock prize for his work with metal carbonyl chemistry—(but not the Nobel Prize). 1951 Ferrocene is discovered 1963 Nobel prize for Karl Ziegler and Giulio Natta on Ziegler-Natta catalyst: Polymerization of olefins 1965 Discovery of cyclobutadieneiron tricarbonyl 1968 Heck reaction 1973 Nobel prize Geoffrey Wilkinson and Ernst Otto Fischer on sandwich compounds 1981 Nobel prize Roald Hoffmann and Kenichi Fukui for expression of the Woodward-Hoffman Rules 2001 Nobel prize W. S. Knowles, R. Noyori and Karl Barry Sharpless for asymmetric hydrogenation 2005 Nobel prize Yves Chauvin, Robert Grubbs, and Richard Schrock on metal-catalyzed alkene metathesis 2010 Nobel prize Richard F. Heck, Ei-ichi Negishi, Akira Suzuki for palladium catalyzed cross coupling reactions The following slides are meant merely as examples of the catalytic processes we will explore later this semester.
    [Show full text]
  • Antoine Laurent Lavoisier (1743-1794)
    Lavoisier and I I, , studied chemistry under OLIVER K. MANUEL (1936- ), Professor of Chemistry at the University of Missouri- Rolla, who showed that the solar system inherited its chemical gradients from poorly-mixed debris of a supernova (SN) that exploded here 5 Gy ago and that the Sun sorts atoms by mass and derives its energy from repulsion between neutrons in the collapsed SN core on which it formed, who studied chemistry under PAUL KAZUO KURODA (1917-2001), Professor of Chemistry at the University of Arkansas who predicted the occurrence of self-sustaining chain reactors in natural uranium minerals and predicted and then discovered the fission products of extinct Plutonium-244 and who studied chemistry under KENJIRO KIMURA (1896-1988), Professor of Chemistry at the Tokyo Imperial University, who discovered uranium-237 and the symmetric mode of fission prior to WWII, and who studied chemistry under GEORGE DE HEVESY (1885-1966), Professor of Chemistry at the University of Freiburg, who discovered element 72 Hafnium and received the Nobel Prize in Chemistry in 1943 for his work on the use of isotopes as tracers in the study of chemical processes, and who studied chemistry under FRITZ HABER (1868-1934), Professor of Chemistry at the University of Berlin, who received the Nobel Prize in Chemistry in 1918 for the synthesis of ammonia from its elements, and who studied chemistry under CARL THEODOR LIEBERMANN (1842-1914), Professor of Chemistry at the Technical School of Charlottenberg, who synthesized alizarin in 1868, and who studied
    [Show full text]