Historical Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Helium Mrs. Ahng the Second Lightest Element on Earth, Helium Is One Of
Helium Mrs. Ahng The second lightest element on Earth, Helium is one of the most important elements in our universe. It is the reason that we have sunlight, it makes balloons float, and used to cool down nuclear reactors. Although it is a simple noble gas with only two protons and two electrons, it is a powerful and essential resource. Discovered in1868 by astronomer Pierre Janssen while studying a solar eclipse; he noticed a yellow line around sun that had a wavelength that he had not seen before. English Astronomer Sir Norman Lockyer later named the element after the Greek word “Helios”, making the connection to how it was discovered. Helium only makes ups less than 1% of Earth’s atmosphere because of how light it is. It’s atomic mass is only 4.003, so the surrounding air is heavier than helium. An example of the difference in mass can be seen when comparing a helium filled balloon to a balloon filled with a mixture of atmospheric gases. The mass of the mixture is much heavier, and therefore is more effected by gravitational pull. Helium is found mostly in space in the core of stars, but it was also found on Earth in 1895 trapped underground. Scientists believe that the Helium that we harvest today was created during the creation of the universe, or the “Big Bang”. Only two electrons energize one orbital for this element, giving us the popular image for all atoms. With the outer orbital shell full, the element is referred to as inert and nonreactive. -
Goverdhan Mehta Chemistry - a 21St Century Science for Global Sustainability: Is It Future Ready?
Goverdhan Mehta Chemistry - A 21st Century Science for Global Sustainability: Is it future ready? Goverdhan Mehta A ‘selfie’ with theSchool chemical of Chemistry world…… University of Hyderabad National Geophysical Research Institute, CSIR Foundation Day, Sept. 27, 2019 Introducing Chemistry through the Lens of Earth's Systems: What Role Can Systems Thinking Play in Developing Chemically and Environmentally Literate Citizens? J. Kornfeld, S. Stokoe. J. Chemical Education 2019, 96, 2910-2917 A bouquet of ‘matters’ that matter New symbols Passion Sustainability Legacies Ethics & values Responsible Connections Systems Directions Humility Ideas & icons Inspirations Un mélange de beaucoup de choses “Chemistry ought not to be for chemists alone” - Miguel de Unamuno ‘…Life, Universe and Everything’ Chemistry – a source of happiness…. Chem -Connectome ‘...I feel sorry for people who don’t know anything about chemistry. They are missing an important source of happiness....’ - Linus Pauling 1901-1994 S.A. Matlin, G. Mehta, H. Hopf. Chemistry Embraced by All. Science 2015, 347, 1179 Chemistry is in everything. and everything is in it, it is the basis of life, without it we wouldn't exist. Green tea has ~ 200 chemicals Coffee has ~ 1000 chemicals Wine has >1000 chemicals Light cigarette ~ 4000 chemicals Chemistry is ubiquitous/omnipresent Chemistry – Tracing the roots and to the present BCE Art & craft of mixing substances A giant knowledge leap Alchemy to modern science Evidence based science Discipline in a Table - systematization Mendeleev’s Periodic Law ‘Molecularization’ of chemical matter 20th Century A century of evolutionary march of chemistry 20h Century Value added products from almost anything “Utility science” and everything Molecular understanding of life processes and “Core Science” chemical matter Interdisciplinarity in forefront “Integrative Science” Resource stressed planet “Sustainability Science” 21st Century S. -
Arxiv:0906.0144V1 [Physics.Hist-Ph] 31 May 2009 Event
Solar physics at the Kodaikanal Observatory: A Historical Perspective S. S. Hasan, D.C.V. Mallik, S. P. Bagare & S. P. Rajaguru Indian Institute of Astrophysics, Bangalore, India 1 Background The Kodaikanal Observatory traces its origins to the East India Company which started an observatory in Madras \for promoting the knowledge of as- tronomy, geography and navigation in India". Observations began in 1787 at the initiative of William Petrie, an officer of the Company, with the use of two 3-in achromatic telescopes, two astronomical clocks with compound penduumns and a transit instrument. By the early 19th century the Madras Observatory had already established a reputation as a leading astronomical centre devoted to work on the fundamental positions of stars, and a principal source of stellar positions for most of the southern hemisphere stars. John Goldingham (1796 - 1805, 1812 - 1830), T. G. Taylor (1830 - 1848), W. S. Jacob (1849 - 1858) and Norman R. Pogson (1861 - 1891) were successive Government Astronomers who led the activities in Madras. Scientific high- lights of the work included a catalogue of 11,000 southern stars produced by the Madras Observatory in 1844 under Taylor's direction using the new 5-ft transit instrument. The observatory had recently acquired a transit circle by Troughton and Simms which was mounted and ready for use in 1862. Norman Pogson, a well known astronomer whose name is associated with the modern definition of the magnitude scale and who had considerable experience with transit instruments in England, put this instrument to good use. With the help of his Indian assistants, Pogson measured accurate positions of about 50,000 stars from 1861 until his death in 1891. -
List of Honorary Fellows
LIST OF HONORARY FELLOWS. 847 LIST OF HONORARY FELLOWS .110 AT MARCH 1897. His Royal Highness The PRINCE OF WALES. FOREIGNERS (LIMITED TO THIRTY-SIX BY LAW X.). Elected. 495 1897 Alexander Agassiz, Cambridge (Mass.). 1897 E.-H. Amagat, Paris. 1889 Marcellin Pierre Eugene Berthelot, Paris. 1895 Ludwig Boltzmann, Vienna. 1864 Rohert Wilhelm Bunsen, Heidelberg. 1897 Stanislao Cannizzaro, Rome, 1883 Luigi Cremona, Rome. 1877 Carl Gegenbaur, Heidelberg, 1888 Ernst Haeckel, Jena. 1883 Julius Hann, Vienna. 1884 Charles Hermite, Paris. 1879 Jules Janssen, Paris, 1864 Alhert von Kblliker, Wilrzhurg. 1864 Rudolph Leuckart, Leipzig, 1897 Gabriel Lippmann, Paris. 1895 fileuthere-6lie-Nicolas Mascart, Paris. 1888 Demetrius Ivanovich Mendel6ef, St Petersburg. 1895 Carl Menger, Vienna. 1886 Alphonse Milne-Edwards Paris. 1864 Theodore Mommsen, Berlin. 1897 Fridtjof Nansen, Christiania. 1881 Simon Newcomb, Washington. 1895 Max von Pettenkofer, Munich. 1895 Jules Henri Poincare, Paris. 1889 Georg Hermann Quincke, Heidelberg. 1886 Alphonse Renard, Ghent. 1897 Ferdinand von Ricbthofen, Berlin. 1897 Henry A. Rowland, Baltimore. 1897 Giovanni V. Schiaparelli, Milan, 1881 Johannes Iapetus Smith Steenstrup, Copenhagen. 1878 Otto Wilhelm Strove, St Petersburg. 1886 Tobias Robert Thaten, Upsala. 1874 Otto Torell, Lund. 1868 Rudolph Yirchow, Berlin. 1892 Gustav Wiedemann, Leipzig. 1897 Ferdinand Zirkel, Leipzig. Total, 36. 848 LIST OF HONORARY FELLOWS. BRITISH SUBJECTS (LIMITED TO TWENTY BY LAW x.). Elected. 1889 Sir Robert Stawell Ball, Kt., LL.D., F.R.S., M.R.I. A., Lowndean, Professor of Astronomy in the University of Cambridge, Cambridge 1897 The Very Rev. John Caird, D.D., LL.D., Principal of the Uni- versity of Glasgow, Glasgow. 1892 Colonel Alexander Ross Clarke, C.B., R.E., F.R.S., Redhill, Surrey 1897 George Howard Darwin, M.A., LL.D., F.R.S., Plumian Professor of Astronomy in the University of Cambridge, Cambridge. -
Download This Article (Pdf)
244 Trimble, JAAVSO Volume 43, 2015 As International as They Would Let Us Be Virginia Trimble Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575; [email protected] Received July 15, 2015; accepted August 28, 2015 Abstract Astronomy has always crossed borders, continents, and oceans. AAVSO itself has roughly half its membership residing outside the USA. In this excessively long paper, I look briefly at ancient and medieval beginnings and more extensively at the 18th and 19th centuries, plunge into the tragedies associated with World War I, and then try to say something relatively cheerful about subsequent events. Most of the people mentioned here you will have heard of before (Eratosthenes, Copernicus, Kepler, Olbers, Lockyer, Eddington…), others, just as important, perhaps not (von Zach, Gould, Argelander, Freundlich…). Division into heroes and villains is neither necessary nor possible, though some of the stories are tragic. In the end, all one can really say about astronomers’ efforts to keep open channels of communication that others wanted to choke off is, “the best we can do is the best we can do.” 1. Introduction astronomy (though some of the practitioners were actually Christian and Jewish) coincided with the largest extents of Astronomy has always been among the most international of regions governed by caliphates and other Moslem empire-like sciences. Some of the reasons are obvious. You cannot observe structures. In addition, Arabic astronomy also drew on earlier the whole sky continuously from any one place. Attempts to Greek, Persian, and Indian writings. measure geocentric parallax and to observe solar eclipses have In contrast, the Europe of the 16th century, across which required going to the ends (or anyhow the middles) of the earth. -
Norman Lockyer Resources Information Sheet
Norman Lockyer resources information sheet Sir Joseph Lockyer was born in Rugby in 1836, the only son of a surgeon-apothecary, Joseph Hooley Lockyer and was educated privately in England and he also studied languages on the Continent. At the age of twenty-one he became a clerk in the War Office, and married Winifred James in the following year. He developed an interest in astronomy and journalism, and in 1863 began to give scientific papers to the Royal Astronomical Society. It is his discovery of helium which he has become most well known for. In 1869 Lockyer founded the journal 'Nature', which he edited until a few months before his death, and which remains to this day a major resource for international scientific knowledge. In 1870 he was appointed secretary to the Royal Commission on Scientific Instruction, which over the next five years reported on scientific education and resulted in the government setting up a laboratory of solar physics at South Kensington. To further this work Lockyer was transferred from the War Office to the Science and Art Department at South Kensington in 1875. Here he organised an international exhibition of scientific apparatus, as well as establishing the loan collection which eventually formed the nucleus of the collections of the Science Museum. Throughout this period, Lockyer continued to be active in astronomical observations and in spectroscopic studies in the laboratory of the College of Chemistry; he also wrote several books on astronomy and spectral analysis. Lockyer also studied the correlations between solar activity and weather, and developed interests in meteorology. -
How the Saha Ionization Equation Was Discovered
How the Saha Ionization Equation Was Discovered Arnab Rai Choudhuri Department of Physics, Indian Institute of Science, Bangalore – 560012 Introduction Most youngsters aspiring for a career in physics research would be learning the basic research tools under the guidance of a supervisor at the age of 26. It was at this tender age of 26 that Meghnad Saha, who was working at Calcutta University far away from the world’s major centres of physics research and who never had a formal training from any research supervisor, formulated the celebrated Saha ionization equation and revolutionized astrophysics by applying it to solve some long-standing astrophysical problems. The Saha ionization equation is a standard topic in statistical mechanics and is covered in many well-known textbooks of thermodynamics and statistical mechanics [1–3]. Professional physicists are expected to be familiar with it and to know how it can be derived from the fundamental principles of statistical mechanics. But most professional physicists probably would not know the exact nature of Saha’s contributions in the field. Was he the first person who derived and arrived at this equation? It may come as a surprise to many to know that Saha did not derive the equation named after him! He was not even the first person to write down this equation! The equation now called the Saha ionization equation appeared in at least two papers (by J. Eggert [4] and by F.A. Lindemann [5]) published before the first paper by Saha on this subject. The story of how the theory of thermal ionization came into being is full of many dramatic twists and turns. -
Book Reviews Biman Nath, the Story of Helium and the Birth of Astrophysics
Phys. Perspect. 15 (2013) 361–370 Ó 2013 Springer Basel 1422-6944/13/030361-10 DOI 10.1007/s00016-013-0121-5 Physics in Perspective Book Reviews Biman Nath, The Story of Helium and the Birth of Astrophysics. Heidelberg: Springer, 2012, 285 pages. $39.95 (cloth). Helium is the only chemical element ever to be first found anyplace except on earth, despite transitory claims for nebulium, coronium, aldebarium, asterium, cassiopeum, and more. Because the periodic table is now filled at least as far as Z = 112 (Copernicium, with a very short half-life) this will remain true at least as long as the only chemists and physicists we know are confined to terrestrial labs. Biman Nath’s history of the discovery of helium involves astronomy, chemistry, and physics, and so is particularly appropriate for 2013, which is the centenary both of the Bohr atom and of the first of two short papers by Henry Moseley (1887–1915) that established the primacy of Z (atomic number) over A (atomic weight) for constructing periodic tables and, in due course, for understanding the synthesis of the elements in stars. The crucial observations in the helium story were made from Guntur and Masulipam, India, during a long total solar eclipse in August 1868 by expeditions under the leadership of Jules Janssen (for France) and James Tennant and Norman Pogson (for England). John Herschel, son of the one most astronomers know, Captain Haig, and Professor Kero Laxuman also observed from other sites in India, and George Rayet (fresh from his 1867 triumph in codiscovering stars with emission-line spectra) from the Malay Peninsula. -
3-16 Events in Europe and the Rest of the World in the 1860S
3-16 Rest of the World in the 1860s 1 of 3 A Living Resource Guide to Lincoln's Life and Legacy Events in Europe and the Rest of the World in the 1860s In the United States In Europe and the Rest of the World . Lincoln is elected President 1860 . Garibaldi conquers Sicily and Naples . South Carolina secedes from the Union . George Eliot (Mary Ann Evans) . The US Secret Service is created publishes A Mill on the Floss . The Pony Express begins its overland . Frenchman Jean J. Lenoir builds the message delivery service first gas-burning engine . Olympia Brown becomes the first . Florence Nightingale founds the female theology student in the US world’s first nursing school . In Boston Elizabeth Peabody . The first British Open Golf establishes the first English-language Championship is held kindergarten . Louis Agassiz rejects Darwin’s theory of evolution, citing missing links . Alvan Clarks discovers that Sirius is a double star . Croquet becomes a popular pastime . Abraham Lincoln is inaugurated 1861 . Unification of Italy President . Czar Alexander II abolishes serfdom . The Confederate States of America is in Russia created . Prince Albert, consort of Queen . Fort Sumter is fired on, beginning the Victoria, dies – leading the queen into Civil War 3 years of mourning . Lincoln orders a blockade of Southern . The principalities of Moldavia and ports Wallachia unite to form Romania . The South defeats the North in the . According to some, Edouard Manet’s First Battle of Bull Run Spanish Singer marks the beginning . Kansas is admitted to the Union of Impressionism . Matthew Brady begins his . -
Grignard Synthesis of Triphenylmethanol Reactions That Form Carbon-Carbon Bonds Are Among the Most Useful to the Synthetic Organic Chemist
1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel prize in chemistry for his discovery of a new series of reactions that result in the formation of a carbon-carbon bond. A Grignard synthesis first involves the preparation of an organomagnesium reagent via the reaction of an alkyl bromide with magnesium metal: δ– δ+ R Br + Mg R MgBr The resulting “Grignard reagent” acts as both a good nucleophile and a strong base. Its nucleophilic character allows it to react with the electrophilic carbon in a carbonyl group, thus forming the carbon-carbon bond. Its basic property means that it will react with acidic compounds, such as carboxylic acids, phenols, thiols and even alcohols and water; therefore, reaction conditions must be free from acids and strictly anhydrous. Grignard reagents will also react with oxygen to form hydroperoxides, thus they are highly unstable when exposed to the atmosphere and are generally not isolated from solution. For a variety of reasons, anhydrous diethyl ether is the solvent of choice for carrying out a Grignard synthesis. Vapors from the highly volatile solvent help to prevent oxygen from reaching the reaction solution. In addition, evidence suggests that the ether molecules actually coordinate with and help stabilize the Grignard reagent: Et Et O R Mg Br O Et Et The magnesium metal used in the synthesis contains a layer of oxide on the surface that prevents it from reacting with the alkyl bromide. The pieces of metal must be gently scratched while in the ether solution to expose fresh surface area so that the reaction can commence. -
Back Matter (PDF)
[ 395 ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s A, V o l . 193. A. Abney (W. de W.). The Colour Sensations in Terms of Luminosity, 259. Atmospheric electricity—experiments in connection with precipitation (Wilson), 289. Bakebian Lectube. See Ewing and Kosenhain. C. Colour-blind, neutral points in spectra found by (Abney), 259. Colour sensations in terms of luminosity (Abney), 259. Condensation nuclei, positively and negatively charged ions as (W ilson), 289. Crystalline aggregates, plasticity in (Ewing and Rosenhain), 353. D. Dawson (H. M.). See Smithells, Dawson, and Wilson VOL. CXCIII.— Ao : S F 396 INDEX. Electric spark, constitution of (Schuster and Hemsalech), 189; potential—variation with pressure (Strutt), 377. Electrical conductivity of flames containing vaporised salts (Smithells, Dawson, and Wilson), 89. Electrocapillary phenomena, relation to potential differences between‘solutions (Smith), 47. Electrometer, capillary, theory of (Smith), 47. Ewing (J. A.) and Rosenhain (W.). The Crystalline Structure of Metals.—Bakerian Lecture, 353. F. Filon (L. N. G ). On the Resistance to Torsion of certain Forms of Shafting, with special Reference to the Effect of Keyways, 309. Flames, electrical conductivity of, and luminosity of salt vapours in (Smithells, Dawson, and Wilson), 89. G. Gravity balance, quartz thread (Threlfall and Pollock), 215. H. Hemsalech (Gustav). See Schuster and Hemsalech. Hertzian oscillator, vibrations in field of (Pearson and Lee), 159. Hysteresis in the relation of extension to stress exhibited by overstrained iron (Muir), 1. I. Ions, diffusion into gases, determination of coefficient (Townsend), 129. Ions positively and negatively charged, as condensation nuclei (Wilson), 289. Iron, recovery of, from overstrain (Muir), 1. -
François Auguste Victor Grignard
DE ANIVERSARIO Hemos invitado al autor de la sección PARA QUITARLE EL POLVO François Auguste “La química en la historia, para la enseñanza” durante los últimos trece números a participar en la sección Victor Grignard DE ANIVERSARIO con una contribución de la misma categoría que las anteriores, dedicada al tema Jaime Wisniak* de QUÍMICA DE FRONTERA, como todavía puede catalogarse el trabajo de Grignard por el que obtuvo el premio Nobel en 1912. Resumen (that would see the inaugura- A Víctor Grignard (1871-1935) le debemos el descubrimien- tion of the Eiffel Tower) no to de la reacción que lleva su nombre, relacionada con la scholarships were offered at síntesis de derivados organometálicos que pueden ser usados the time of Grignard’s gradu- como intermediarios en la preparación sencilla de una am - ation from high school. plia gama de compuestos químicos, en particular, alcoholes Whoever took this decision, secundarios y terciarios. El paso de Grignard de una carrera could have hardly guessed en matemáticas a otra en química fue el resultado de una the tremendous impact it serie de eventos burocráticos que lo llevaron a recibir el would have in the develop- Premio Nobel de Química en 1912. ment of organic chemistry. Grignard was left with no al- ternative but to register at the Abstract École Normale Secundaire To Victor Grignard (1871-1935) we owe the discovery of the Spéciale at Cluny, an institu- reaction that carries his name, involving the synthesis of tion that had been estab- Figure 1. Victor Grignard. organomagnesium derivatives that can be used as interme- lished in 1866 as a training diates for the easy preparation of a wide range of chemicals, school for teachers of modern secondary education, for those in particular, secondary and tertiary alcohols.