Lick Observatory Records: Correspondence UA.036.Ser.01
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Helium Mrs. Ahng the Second Lightest Element on Earth, Helium Is One Of
Helium Mrs. Ahng The second lightest element on Earth, Helium is one of the most important elements in our universe. It is the reason that we have sunlight, it makes balloons float, and used to cool down nuclear reactors. Although it is a simple noble gas with only two protons and two electrons, it is a powerful and essential resource. Discovered in1868 by astronomer Pierre Janssen while studying a solar eclipse; he noticed a yellow line around sun that had a wavelength that he had not seen before. English Astronomer Sir Norman Lockyer later named the element after the Greek word “Helios”, making the connection to how it was discovered. Helium only makes ups less than 1% of Earth’s atmosphere because of how light it is. It’s atomic mass is only 4.003, so the surrounding air is heavier than helium. An example of the difference in mass can be seen when comparing a helium filled balloon to a balloon filled with a mixture of atmospheric gases. The mass of the mixture is much heavier, and therefore is more effected by gravitational pull. Helium is found mostly in space in the core of stars, but it was also found on Earth in 1895 trapped underground. Scientists believe that the Helium that we harvest today was created during the creation of the universe, or the “Big Bang”. Only two electrons energize one orbital for this element, giving us the popular image for all atoms. With the outer orbital shell full, the element is referred to as inert and nonreactive. -
Illinois—Where Astronomical Photometry Grew Up
Beaman and Svec, JAAVSO Volume 40, 2012 141 Illinois—Where Astronomical Photometry Grew Up Barry B. Beaman 6804 Alvina Road, Rockford, IL 61101; [email protected] Michael T. Svec Furman University, Department of Education, 3300 Poinsett Highway, Greenville SC 29613; Internet: [email protected] Presented at the 100th Annual Meeting of the AAVSO, October 7, 2011; received January 21, 2012; revised February 2, 2012; accepted February 6, 2012 Abstract In 1903 Dr. Joel Stebbins joined the University of Illinois faculty as an astronomy instructor and Director of the University of Illinois Observatory. In 1905 he and F. C. Brown began experimenting with selenium sell photometry and developed the equipment and many of the photometric practices used then. Those practices formed the foundation on which present day photometry processes are based. This paper will trace the history of Stebbins’ career and his development of photoelectric photometry from 1903 to 1922. This story explains how Stebbins’ wife, May, caused a change in astronomical observing that continues today. 1. Introduction The prairies of central Illinois may seem an unlikely place to begin a photometric revolution. Illinois is a flat land state with only about 100 clear nights per year, the average elevation is only 600 feet above sea level, and the highest point is only at 1,500 feet. Yet, Illinois has produced its share of prominent and innovative astronomers. George Ellery Hale built his Kenwood Observatory in the heart of Chicago. Edwin Hubble spent his teen years in the Chicago suburbs and was educated at University of Chicago. Grote Reber built the World’s first parabolic-steerable radio telescope. -
Arxiv:0906.0144V1 [Physics.Hist-Ph] 31 May 2009 Event
Solar physics at the Kodaikanal Observatory: A Historical Perspective S. S. Hasan, D.C.V. Mallik, S. P. Bagare & S. P. Rajaguru Indian Institute of Astrophysics, Bangalore, India 1 Background The Kodaikanal Observatory traces its origins to the East India Company which started an observatory in Madras \for promoting the knowledge of as- tronomy, geography and navigation in India". Observations began in 1787 at the initiative of William Petrie, an officer of the Company, with the use of two 3-in achromatic telescopes, two astronomical clocks with compound penduumns and a transit instrument. By the early 19th century the Madras Observatory had already established a reputation as a leading astronomical centre devoted to work on the fundamental positions of stars, and a principal source of stellar positions for most of the southern hemisphere stars. John Goldingham (1796 - 1805, 1812 - 1830), T. G. Taylor (1830 - 1848), W. S. Jacob (1849 - 1858) and Norman R. Pogson (1861 - 1891) were successive Government Astronomers who led the activities in Madras. Scientific high- lights of the work included a catalogue of 11,000 southern stars produced by the Madras Observatory in 1844 under Taylor's direction using the new 5-ft transit instrument. The observatory had recently acquired a transit circle by Troughton and Simms which was mounted and ready for use in 1862. Norman Pogson, a well known astronomer whose name is associated with the modern definition of the magnitude scale and who had considerable experience with transit instruments in England, put this instrument to good use. With the help of his Indian assistants, Pogson measured accurate positions of about 50,000 stars from 1861 until his death in 1891. -
Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J
Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J. Byrne Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J. Byrne Image Again Middletown, NJ USA Cover illustration: Earth-based photograph of the full Moon from the “Consolidated Lunar Atlas” on the Website of the Lunar and Planetary Institute. British Library Cataloging-in-Publication Data Byrne, Charles J., 1935– Lunar Orbiter photographic atlas of the near side of the Moon 1. Lunar Orbiter (Artificial satellite) 2. Moon–Maps 3. Moon–Photographs from space I. Title 523.3 0223 ISBN 1852338865 Library of Congress Cataloging-in-Publication Data Byrne, Charles J., 1935– Lunar Orbiter photographic atlas of the near side of the Moon : with 619 figures / Charles J. Byrne. p. cm. Includes bibliographical references and index. ISBN 1-85233-886-5 (acid-free paper) 1. Moon–Maps. 2. Moon–Photographs from space. 3. Moon–Remote-sensing images. 4. Lunar Orbiter (Artificial satellite) I. Title. G1000.3.B9 2005 523.3 022 3–dc22 2004045006 Additional material to this book can be downloaded from http://extras.springer.com. ISBN 1-85233-886-5 Printed on acid-free paper. © 2005 Springer-Verlag London Limited Apart from any fair dealing for the purposes of research or private study, or criticism, or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro- duced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. -
Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P. -
Oral Histories in Meteoritics and Planetary Science – XX: Dale P
Oral Histories in Meteoritics and Planetary Science – XX: Dale P. Cruikshank by Derek W. G. Sears Planetary Science and Astrobiology Division NASA Ames Research Center, Mountain View California. SUPPLEMENTAL INFORMATION Recollections of Gerard Kuiper DS: Okay, so we have recorded your oral history, let’s spend some time recollecting your interactions with Gerard Kuiper. You described how you met him at Yerkes Observatory as an undergraduate and how you went to graduate school after he moved to the University of Arizona DC: Alan Binder and I applied to graduate school in Arizona and did our graduate training there. At about the same time, Bill Hartmann came to Tucson as a graduate student from Penn State, Elliott Moore and Tobias Owen also came as students from the University of Chicago. Several astronomers and atmospheric physicists also came to Tucson in those first years; Joseph Chamberlain, Donald Hunten, and Lloyd Wallace came to Arizona and joined the staff at the Kitt Peak National Observatory. The National Observatory had decided to locate in Tucson and build its observatory at Kitt Peak some 40 miles outside of town. By the time Kuiper got there Kitt Peak National Observatory was becoming quite a significant national establishment, and that provided a strong draw to the area. The Kitt Peak offices were located on the edge of the University of Arizona campus, just across the street from the University's Steward Observatory. When Kuiper left Yerkes several people involved in his lunar studies enterprise went with him, including David Arthur and Ewen Whitaker. Eventually Tom Gehrels, formerly associated with Kuiper at the University of Chicago, joined the group in Tucson. -
Orion Newtonian Astrograph Instruction Manual
INSTRUCTION MANUAL Orion 8" and 10" f/3.9 Newtonian Astrographs #8297 8" f/3.9, #8296 10" f/3.9 #8296 Providing Exceptional Consumer Optical Products Since 1975 OrionTelescopes.com Customer Support (800) 676-1343 • E-mail: [email protected] Corporate Offices (831) 763-7000 • 89 Hangar Way, Watsonville, CA 95076 © 2011 Orion Telescopes & Binoculars IN 406 Rev. A 07/11 2" Finder scope Accessory bracket collar 9x50 Finder Scope Optical tube Tube rings Focus wheel Drawtube Fine focus wheel tensioning thumbscrew Focus wheel Figure 1. The Orion 8" f/3.9 Newtonian Astrograph Congratulations on your purchase of an Orion f/3.9 Newtonian Astrograph! These powerful imaging telescopes feature “fast,” high-quality parabolic optics, a 2" dual-speed Crayford focuser, and excellent mechanical construction with some special features. Optimized for astrophotography with DSLR and astronomical CCD imaging cameras, our f/3.9 Newtonian Astrographs are capable of delivering breathtak- ing imaging performance – for beginning to advanced astrophotographers. This instruction manual covers both the 8" and 10" mod- Parts List els of f/3.9 Newtonian astrograph. Although they differ • Optical tube assembly in aperture and focal length, physical size, and weight, they are otherwise very similar in mechanical construc- • Optical tube dust cap tion and features. So we will use the 8" model to illus- • 1.25" eyepiece holder trate the features of both astrographs. Any exceptions • 9x50 finder scope with bracket related to the 10" model will be noted. • Pair of hinged tube rings This instruction manual will help you to set up and • 2" thread-on extension adapter, 30mm properly use your telescope. -
Download This Article (Pdf)
244 Trimble, JAAVSO Volume 43, 2015 As International as They Would Let Us Be Virginia Trimble Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575; [email protected] Received July 15, 2015; accepted August 28, 2015 Abstract Astronomy has always crossed borders, continents, and oceans. AAVSO itself has roughly half its membership residing outside the USA. In this excessively long paper, I look briefly at ancient and medieval beginnings and more extensively at the 18th and 19th centuries, plunge into the tragedies associated with World War I, and then try to say something relatively cheerful about subsequent events. Most of the people mentioned here you will have heard of before (Eratosthenes, Copernicus, Kepler, Olbers, Lockyer, Eddington…), others, just as important, perhaps not (von Zach, Gould, Argelander, Freundlich…). Division into heroes and villains is neither necessary nor possible, though some of the stories are tragic. In the end, all one can really say about astronomers’ efforts to keep open channels of communication that others wanted to choke off is, “the best we can do is the best we can do.” 1. Introduction astronomy (though some of the practitioners were actually Christian and Jewish) coincided with the largest extents of Astronomy has always been among the most international of regions governed by caliphates and other Moslem empire-like sciences. Some of the reasons are obvious. You cannot observe structures. In addition, Arabic astronomy also drew on earlier the whole sky continuously from any one place. Attempts to Greek, Persian, and Indian writings. measure geocentric parallax and to observe solar eclipses have In contrast, the Europe of the 16th century, across which required going to the ends (or anyhow the middles) of the earth. -
Its Founding and Early Years Ewen A. Whitaker
The University of Arizona's LUNAR AND PLANETARY LABORATORY Its Founding and Early Years Ewen A. Whitaker Set in Varityper Times Roman and printed at the University of Arizona Printing-Reproductions Department Equal Employment Opportunity· Affirmative Action Employer CONTENTS THE PRE-TUCSON ERA Historical background ........................................ I Enter Gerard P. Kuiper ....................................... 2 The Moon enters the picture ................................... 3 A call for suggestions ......................................... 5 The Harold Urey affair ....................................... 6 Preliminaries for the Lunar Atlas ............................... 7 1957 - a dream begins to take shape ............................. 7 The shot that was seen (and heard) around the world ............... 8 Other irons in the fire ......................................... 9 Kuiper seeks full-time help for the Lunar Project .................. 9 1959 - the Lunar Project gathers momentum ..................... 11 A new factor in the Lunar Project LPL story ................... 12 The Air Force enters the lunar cartography business ............... 13 The Lunar Atlas published at last .............................. 14 Big problems with the Yerkes set-up ............................ : 6 The southwestern U.S. begins to beckon ........................ 17 "There is a tide in the affairs of men ..." ....................... 18 Preparing for the move ...................................... 23 THE TUCSON ERA The Lunar Project makes the transfer -
Investigations of the Interstellar Medium at Washburn Observatory, 1930-58
Journal of Astronomical History andheritage 7(2):85-94 2004 Investigations of the interstellar medium at Washburn Observatory, 1930-58 David S Liebl* University of Wisconsin- College of Engineering, 432 North Lake Street, Rm. 311, Madison, Wisconsin 53706, USA E-mail: [email protected] Christopher Fluke Centre for Astrophysics and Supercomputing, Swinbume University ofTeclmo/ogy, PO Box 218, Victoria 3122, Australia E-mail: [email protected] Abstract Behveen 1930 and 1958, the Washburn Observatory of the University of Wisconsin-Madison was home to pioneering photometric research into the interstellar medium by Joel Stebbins and Albert Whitford. Between 1933 and 1941, Stebbins and Whitford published seminal research on the photometry of stellar reddening, using the Washburn 15-inch refractor and the 60- and 100-inch reflectors at Mount Wilson Observatory. Many factors were responsible for the Washburn Observatory's pre-eminence in this area. l11is paper reviews their research on interstellar dust during the years 1922 58, the observational teclmology and scientific methods that were developed at the Washburn Observatory during that time and the scientific discoveries that originated there. We discuss the factors that enabled WashburnObservatory to become a leader in photometry during the first half of the twentieth century. We also draw on the recollections of past and present Washburn Observatory scientists1 to understand how Washburn's standing led to a subsequent programme of research into the interstellar medium at the University of Wisconsin-Madison. The resulting portrayal of Washburn Observatory provides insights into the evolution of astronomical research in America, from the beginning of the hventieth cenh1ry until today. -
Norman Lockyer Resources Information Sheet
Norman Lockyer resources information sheet Sir Joseph Lockyer was born in Rugby in 1836, the only son of a surgeon-apothecary, Joseph Hooley Lockyer and was educated privately in England and he also studied languages on the Continent. At the age of twenty-one he became a clerk in the War Office, and married Winifred James in the following year. He developed an interest in astronomy and journalism, and in 1863 began to give scientific papers to the Royal Astronomical Society. It is his discovery of helium which he has become most well known for. In 1869 Lockyer founded the journal 'Nature', which he edited until a few months before his death, and which remains to this day a major resource for international scientific knowledge. In 1870 he was appointed secretary to the Royal Commission on Scientific Instruction, which over the next five years reported on scientific education and resulted in the government setting up a laboratory of solar physics at South Kensington. To further this work Lockyer was transferred from the War Office to the Science and Art Department at South Kensington in 1875. Here he organised an international exhibition of scientific apparatus, as well as establishing the loan collection which eventually formed the nucleus of the collections of the Science Museum. Throughout this period, Lockyer continued to be active in astronomical observations and in spectroscopic studies in the laboratory of the College of Chemistry; he also wrote several books on astronomy and spectral analysis. Lockyer also studied the correlations between solar activity and weather, and developed interests in meteorology. -
How the Saha Ionization Equation Was Discovered
How the Saha Ionization Equation Was Discovered Arnab Rai Choudhuri Department of Physics, Indian Institute of Science, Bangalore – 560012 Introduction Most youngsters aspiring for a career in physics research would be learning the basic research tools under the guidance of a supervisor at the age of 26. It was at this tender age of 26 that Meghnad Saha, who was working at Calcutta University far away from the world’s major centres of physics research and who never had a formal training from any research supervisor, formulated the celebrated Saha ionization equation and revolutionized astrophysics by applying it to solve some long-standing astrophysical problems. The Saha ionization equation is a standard topic in statistical mechanics and is covered in many well-known textbooks of thermodynamics and statistical mechanics [1–3]. Professional physicists are expected to be familiar with it and to know how it can be derived from the fundamental principles of statistical mechanics. But most professional physicists probably would not know the exact nature of Saha’s contributions in the field. Was he the first person who derived and arrived at this equation? It may come as a surprise to many to know that Saha did not derive the equation named after him! He was not even the first person to write down this equation! The equation now called the Saha ionization equation appeared in at least two papers (by J. Eggert [4] and by F.A. Lindemann [5]) published before the first paper by Saha on this subject. The story of how the theory of thermal ionization came into being is full of many dramatic twists and turns.