A Dynamical Initialization Scheme for Real-Time Forecasts of Tropical Cyclones Using the WRF Model*

Total Page:16

File Type:pdf, Size:1020Kb

A Dynamical Initialization Scheme for Real-Time Forecasts of Tropical Cyclones Using the WRF Model* 964 MONTHLY WEATHER REVIEW VOLUME 141 A Dynamical Initialization Scheme for Real-Time Forecasts of Tropical Cyclones Using the WRF Model* DONG-HYUN CHA AND YUQING WANG International Pacific Research Center and Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii (Manuscript received 8 March 2012, in final form 27 September 2012) ABSTRACT To improve the initial conditions of tropical cyclone (TC) forecast models, a dynamical initialization (DI) scheme using cycle runs is developed and implemented into a real-time forecast system for northwest Pacific TCs based on the Weather Research and Forecasting (WRF) Model. In this scheme, cycle runs with a 6-h window before the initial forecast time are repeatedly conducted to spin up the axisymmetric component of the TC vortex until the model TC intensity is comparable to the observed. This is followed by a 72-h forecast using the Global Forecast System (GFS) prediction as lateral boundary conditions. In the DI scheme, the spectral nudging technique is employed during each cycle run to reduce bias in the large-scale environmental field, and the relocation method is applied after the last cycle run to reduce the initial position error. To demonstrate the effectiveness of the proposed DI scheme, 69 forecast experiments with and without the DI are conducted for 13 TCs over the northwest Pacific in 2010 and 2011. The DI shows positive effects on both track and intensity forecasts of TCs, although its overall skill depends strongly on the performance of the GFS forecasts. Compared to the forecasts without the DI, on average, forecasts with the DI reduce the position and intensity errors by 10% and 30%, respectively. The results demonstrate that the proposed DI scheme im- proves the initial TC vortex structure and intensity and provides warm physics spinup, producing initial states consistent with the forecast model, thus achieving improved track and intensity forecasts. 1. Introduction to uncertainties in model physics and initial conditions. One way to reduce TC forecast errors is to improve TC Tropical cyclones (TC) are severe weather systems forecast models. There have been a number of efforts that cause human fatalities and property damage in their in recent years to improve these models in terms of affected areas. An accurate prediction of the motion physical processes related to surface flux under TC and intensity of a TC is critical to preparedness and conditions (Emanuel 2003; Donelan et al. 2004; Moon evacuation for areas that could potentially be hit by an et al. 2004; Zeng et al. 2010) and convective parame- intense TC. Dynamical prediction by numerical models terization (Ma and Tan 2009), ocean feedback processes is a major objective approach to TC forecasting in most (Emanuel et al. 2004; Davis et al. 2008), and increased major TC centers. Considerable progress has been made model resolution (Chen et al. 2007; Davis et al. 2010). in numerical TC forecasts because of the advancements Another way to reduce TC forecast errors is to im- in observations and the rapid increase in computing re- prove the initial condition of the forecast model. An sources. However, numerical TC forecasts still suffer accurate initial condition, particularly for the initial TC from considerable errors in both track and intensity due structure and intensity, is very important for improving TC forecasts. Uncertainties in initial conditions are un- avoidable due to imperfect observations and analysis * School of Ocean and Earth Science and Technology Publication Number 8767 and International Pacific Research Center Publication methods used. In particular, initial conditions for TC Number 921. forecasts usually have large errors because most TCs occur over open oceans where observations are grossly insufficient, particularly for defining the precise location Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, Post 409G, University of Hawaii at Manoa, 1680 East–West Rd., and inner-core structure. Although observing platforms Honolulu, HI 96822. for TCs, including satellites and radar, have been sig- E-mail: [email protected] nificantly advanced in the past decade or so, they still DOI: 10.1175/MWR-D-12-00077.1 Ó 2013 American Meteorological Society Unauthenticated | Downloaded 09/26/21 06:11 PM UTC MARCH 2013 C H A A N D W A N G 965 have limitations in fully resolving the three-dimensional scale environment in which the TC is embedded. How- structure of a TC. Therefore, various initialization methods ever, to ensure a convergence to the observed TC intensity, have been developed to obtain improved initial condi- they have to specify the surface pressure field for the tions for TC forecast models. axisymmetric TC vortex during the cycle runs. The One TC initialization method involves the use of a specification of the axisymmetric vortex structure is synthetic or bogus vortex. In this method the bogus artificial because no such data are available from ob- vortex, which is generated by analytic empirical func- servations. In addition, this DI scheme spins up the dy- tions for surface pressure and wind, is used to replace the namical fields of the TC vortex only because all model vortex in the global (or regional) analysis. Using this physics are still a cold start for the forecast run. method, however, it is difficult to generate the asym- A real-time TC forecasting system has been opera- metric structure of the TC vortex associated with the TC tional at the International Pacific Research Center motion. This method might also result in physical and (IPRC) since the 2011 TC season using the Advanced dynamical inconsistencies between the initial condition Research Weather Research and Forecasting (WRF) and the forecast model. Nonetheless, a number of studies Model. To improve TC forecast skill, we recently devel- have shown that this method can reasonably reproduce oped a new DI scheme and implemented it into the real- TC features with improved track and intensity forecasts time TC forecasting system. This new DI scheme is based (Ueno 1989; Leslie and Holland 1995; Wang 1998; Ma on cycle runs as used in Nguyen and Chen (2011) but et al. 2007; Kwon and Cheong 2010). Another approach a 6-h window before the initial forecast time is used for to TC initialization is the bogus data assimilation (BDA), the cycle runs and also a large-scale spectral nudging which uses variational data assimilation with synthetic technique is utilized. We will show that there are several observations of a TC vortex that closely matches the additional advantages to using this new scheme. The ob- observed TC intensity and structure (George and Jeffries jectives of this paper are to introduce the IPRC real-time 1994; Zou and Xiao 2000; Davidson and Weber 2000; Pu TC forecasting system, introduce a new DI scheme, and and Braun 2001; Zhang et al. 2007; Wang et al. 2008). investigate the effect of the scheme on TC forecasts over Another TC initialization method is dynamical ini- the northwest Pacific. The real-time forecasting system tialization (DI) by forecast model integration (Kurihara and a new DI scheme are introduced in section 2. Model et al. 1993; Bender et al. 1993; Peng et al. 1993; Nguyen setup and experimental design are described in section 3. and Chen 2011). This method has the advantage that the The results of the forecast experiments for TCs, which initial TC vortex generated by the DI is consistent with occurred in the 2010 and 2011 TC seasons, are verified in the dynamics and physics of the forecast model, while it section 4 and two case studies are discussed in section 5. requires additional model integration for the TC to in- Main conclusions are drawn in the last section. tensify in the model. Kurihara et al. (1993) proposed a DI method, where an axisymmetric vortex component 2. The real-time TC forecasting system and a new was generated by the integration of an axisymmetric dynamical initialization scheme version of the TC forecast model. The asymmetric vor- a. The IPRC real-time forecasting system tex component was constructed by integrating the non- for northwest Pacific TCs divergent barotropic vorticity equation model on a beta plane using the initial conditions from the constructed The IPRC real-time TC forecasting system was built symmetric vortex flow. A similar DI scheme is currently based on the WRF Model (Skamarock et al. 2005) and used in the U.S. Navy regional coupled model for TC operated since 2011 TC season (see online at http://iprc. prediction (Hendricks et al. 2011) but the vortex is spun soest.hawaii.edu/users/dhcha). In the initial version of up in a different three-dimensional TC model of Wang the real-time forecasting system, a bogus vortex with (2001) under idealized conditions. empirical idealized vortex specification (Wang 1998) Recently, Nguyen and Chen (2011) developed a TC was used for TC initialization and the model was run at initialization scheme where a TC vortex was spun up the horizontal resolution of 15 km, which was relatively through 1-h cycle runs from the initial forecast time and coarse due to the limitation of computing resources at tested the scheme for a TC case. In their work, the initial that time. Despite the better skill in the intensity fore- condition generated from the cycle runs is consistent casts compared with the global model forecast, the real- with the dynamics and physics of the forecast model time forecasting system still had low skills in track and because the model used in the cycle runs and that in the intensity forecasts due to the low model resolution and forecast run are identical. The most important advan- the simple TC initialization. tage of this scheme is that the TC vortex, generated Recently, we improved the real-time forecasting system through the cycle runs, is adapted to the actual large- by implementing a new DI scheme (see section 2b) and Unauthenticated | Downloaded 09/26/21 06:11 PM UTC 966 MONTHLY WEATHER REVIEW VOLUME 141 FIG.
Recommended publications
  • Basic Data Construction for a Typhoon Disaster Prevention Model : Monthly Characteristics of Typhoon Rusa, Maemi, Kompasu, and Bolaven
    AAS02-P10 Japan Geoscience Union Meeting 2019 Basic Data Construction for a Typhoon Disaster Prevention Model : Monthly Characteristics of Typhoon Rusa, Maemi, Kompasu, and Bolaven *HANA NA1, Woo-Sik Jung1 1. Department of Atmospheric Environment Information Engineering, Atmospheric Environment Information Research Center, Inje University, Gimhae 50834, Korea According to a typhoon report that summarized the typhoons that had affected the Korean Peninsula for approximately 100 years since the start of weather observation in the Korean Peninsula, the number of typhoons that affected the Korean Peninsula was the highest in August, followed by July, and September. A study that analyzed the period between 1953 and 2003 revealed that the number of typhoons that affected the Korean Peninsula was 62 in August, 49 in July, and 45 in September. As shown, previous studies that analyzed the typhoons that affected the Korean Peninsula by month were primarily focused on the impact frequency. This study aims to estimate the monthly impact frequency of the typhoons that affected the Korean Peninsula as well as the maximum wind speed that accompanied the typhoons. It also aims to construct the basic data of a typhoon disaster prevention model by estimating the maximum wind speed during typhoon period using Typhoon Rusa that resulted in the highest property damage, Typhoon Maemi that recorded the maximum wind speed, Typhoon Kompasu that significantly affected the Seoul metropolitan area, and Typhoon Bolaven that recently recorded severe damages. A typhoon disaster prevention model was used to estimate the maximum wind speed of the 3-second gust that may occur, and the 700 hPa wind speed estimated through WRF(Weather Research and Forecasting) numerical simulation was used as input data.
    [Show full text]
  • NICAM Predictability of the Monsoon Gyre Over The
    EARLY ONLINE RELEASE This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release. This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below. The DOI for this manuscript is DOI:10.2151/jmsj.2019-017 J-STAGE Advance published date: December 7th, 2018 The final manuscript after publication will replace the preliminary version at the above DOI once it is available. 1 NICAM predictability of the monsoon gyre over the 2 western North Pacific during August 2016 3 4 Takuya JINNO1 5 Department of Earth and Planetary Science, Graduate School of Science, 6 The University of Tokyo, Bunkyo-ku, Tokyo, Japan 7 8 Tomoki MIYAKAWA 9 Atmosphere and Ocean Research Institute 10 The University of Tokyo, Tokyo, Japan 11 12 and 13 Masaki SATOH 14 Atmosphere and Ocean Research Institute 15 The University of Tokyo, Tokyo, Japan 16 17 18 19 20 Sep 30, 2018 21 22 23 24 25 ------------------------------------ 26 1) Corresponding author: Takuya Jinno, School of Science, 7-3-1, Hongo, Bunkyo-ku, 27 Tokyo 113-0033 JAPAN. 28 Email: [email protected] 29 Tel(domestic): 03-5841-4298 30 Abstract 31 In August 2016, a monsoon gyre persisted over the western North Pacific and was 32 associated with the genesis of multiple devastating tropical cyclones.
    [Show full text]
  • Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong
    78 BAVI AUG : ,- HAISHEN JANGMI SEP AUG 6 KUJIRA MAYSAK SEP SEP HAGUPIT AUG DOLPHIN SEP /1 CHAN-HOM OCT TD.. MEKKHALA AUG TD.. AUG AUG ATSANI Hong Kong HIGOS NOV AUG DOLPHIN() 2012 SEP : 78 HAISHEN() 2010 NURI ,- /1 BAVI() 2008 SEP JUN JANGMI CHAN-HOM() 2014 NANGKA HIGOS(2007) VONGFONG AUG ()2005 OCT OCT AUG MAY HAGUPIT() 2004 + AUG SINLAKU AUG AUG TD.. JUL MEKKHALA VAMCO ()2006 6 NOV MAYSAK() 2009 AUG * + NANGKA() 2016 AUG TD.. KUJIRA() 2013 SAUDEL SINLAKU() 2003 OCT JUL 45 SEP NOUL OCT JUL GONI() 2019 SEP NURI(2002) ;< OCT JUN MOLAVE * OCT LINFA SAUDEL(2017) OCT 45 LINFA() 2015 OCT GONI OCT ;< NOV MOLAVE(2018) ETAU OCT NOV NOUL(2011) ETAU() 2021 SEP NOV VAMCO() 2022 ATSANI() 2020 NOV OCT KROVANH(2023) DEC KROVANH DEC VONGFONG(2001) MAY 二零二零年 熱帶氣旋 TROPICAL CYCLONES IN 2020 2 二零二一年七月出版 Published July 2021 香港天文台編製 香港九龍彌敦道134A Prepared by: Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong © 版權所有。未經香港天文台台長同意,不得翻印本刊物任何部分內容。 © Copyright reserved. No part of this publication may be reproduced without the permission of the Director of the Hong Kong Observatory. 知識產權公告 Intellectual Property Rights Notice All contents contained in this publication, 本刊物的所有內容,包括但不限於所有 including but not limited to all data, maps, 資料、地圖、文本、圖像、圖畫、圖片、 text, graphics, drawings, diagrams, 照片、影像,以及數據或其他資料的匯編 photographs, videos and compilation of data or other materials (the “Materials”) are (下稱「資料」),均受知識產權保護。資 subject to the intellectual property rights 料的知識產權由香港特別行政區政府 which are either owned by the Government of (下稱「政府」)擁有,或經資料的知識產 the Hong Kong Special Administrative Region (the “Government”) or have been licensed to 權擁有人授予政府,為本刊物預期的所 the Government by the intellectual property 有目的而處理該等資料。任何人如欲使 rights’ owner(s) of the Materials to deal with 用資料用作非商業用途,均須遵守《香港 such Materials for all the purposes contemplated in this publication.
    [Show full text]
  • Prediction of Typhoon-Induced Flood Flows at Ungauged Catchments Using Simple Regression and Generalized Estimating Equation Approaches
    water Article Prediction of Typhoon-Induced Flood Flows at Ungauged Catchments Using Simple Regression and Generalized Estimating Equation Approaches Hyosang Lee 1, Neil McIntyre 2 ID , Joungyoun Kim 3 ID , Sunggu Kim 1 and Hojin Lee 1,* 1 School of Civil Engineering, Chungbuk National University, Cheongju 28644, Korea; [email protected] (H.L.); [email protected] (S.K.) 2 Centre for Water in the Minerals Industry, University of Queensland, Brisbane 4072, Australia; [email protected] 3 Department of Information & Statistics, Chungbuk National University, Cheongju 28644, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-43-261-2379 Received: 29 March 2018; Accepted: 14 May 2018; Published: 16 May 2018 Abstract: Typhoons are the main type of natural disaster in Korea, and accurately predicting typhoon-induced flood flows at gauged and ungauged locations remains an important challenge. Flood flows caused by six typhoons since 2002 (typhoons Rusa, Maemi, Nari, Dienmu, Kompasu and Bolaven) are modeled at the outlets of 24 Geum River catchments using the Probability Distributed Moisture model. The Monte Carlo Analysis Toolbox is applied with the Nash Sutcliffe Efficiency as the criterion for model parameter estimation. Linear regression relationships between the parameters of the Probability Distributed Moisture model and catchment characteristics are developed for the purpose of generalizing the parameter estimates to ungauged locations. These generalized parameter estimates are tested in terms of ability to predict the flood hydrographs over the 24 catchments using a leave-one-out validation approach. We then test the hypothesis that a more complex generalization approach, the Generalized Estimating Equation, which includes properties of the typhoons as well as catchment characteristics as predictors of PDM model parameters, will provide more accurate predictions.
    [Show full text]
  • WMO Statement on the Status of the Global Climate in 2010
    WMO statement on the status of the global climate in 2010 WMO-No. 1074 WMO-No. 1074 © World Meteorological Organization, 2011 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] ISBN 978-92-63-11074-9 WMO in collaboration with Members issues since 1993 annual statements on the status of the global climate. This publication was issued in collaboration with the Hadley Centre of the UK Meteorological Office, United Kingdom of Great Britain and Northern Ireland; the Climatic Research Unit (CRU), University of East Anglia, United Kingdom; the Climate Prediction Center (CPC), the National Climatic Data Center (NCDC), the National Environmental Satellite, Data, and Information Service (NESDIS), the National Hurricane Center (NHC) and the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration (NOAA), United States of America; the Goddard Institute for Space Studies (GISS) operated by the National Aeronautics and Space Administration (NASA), United States; the National Snow and Ice Data Center (NSIDC), United States; the European Centre for Medium-Range Weather Forecasts (ECMWF), United Kingdom; the Global Precipitation Climatology Centre (GPCC), Germany; and the Dartmouth Flood Observatory, United States.
    [Show full text]
  • 二零一七熱帶氣旋tropical Cyclones in 2017
    => TALIM TRACKS OF TROPICAL CYCLONES IN 2017 <SEP (), ! " Daily Positions at 00 UTC(08 HKT), :; SANVU the number in the symbol represents <SEP the date of the month *+ Intermediate 6-hourly Positions ,')% Super Typhoon NORU ')% *+ Severe Typhoon JUL ]^ BANYAN LAN AUG )% Typhoon OCT '(%& Severe Tropical Storm NALGAE AUG %& Tropical Storm NANMADOL JUL #$ Tropical Depression Z SAOLA( 1722) OCT KULAP JUL HAITANG JUL NORU( 1705) JUL NESAT JUL MERBOK Hong Kong / JUN PAKHAR @Q NALGAE(1711) ,- AUG ? GUCHOL AUG KULAP( 1706) HATO ROKE MAWAR <SEP JUL AUG JUL <SEP T.D. <SEP @Q GUCHOL( 1717) <SEP T.D. ,- MUIFA TALAS \ OCT ? HATO( 1713) APR JUL HAITANG( 1710) :; KHANUN MAWAR( 1716) AUG a JUL ROKE( 1707) SANVU( 1715) XZ[ OCT HAIKUI AUG JUL NANMADOL AUG NOV (1703) DOKSURI JUL <SEP T.D. *+ <SEP BANYAN( 1712) TALAS(1704) \ SONCA( 1708) JUL KHANUN( 1720) AUG SONCA JUL MERBOK (1702) => OCT JUL JUN TALIM( 1718) / <SEP T.D. PAKHAR( 1714) OCT XZ[ AUG NESAT( 1709) T.D. DOKSURI( 1719) a JUL APR <SEP _` HAIKUI( 1724) DAMREY NOV NOV de bc KAI-( TAK 1726) MUIFA (1701) KIROGI DEC APR NOV _` DAMREY( 1723) OCT T.D. APR bc T.D. KIROGI( 1725) T.D. T.D. JAN , ]^ NOV Z , NOV JAN TEMBIN( 1727) LAN( 1721) TEMBIN SAOLA( 1722) DEC OCT DEC OCT T.D. OCT de KAI- TAK DEC 更新記錄 Update Record 更新日期: 二零二零年一月 Revision Date: January 2020 頁 3 目錄 更新 頁 189 表 4.10: 二零一七年熱帶氣旋在香港所造成的損失 更新 頁 217 附件一: 超強颱風天鴿(1713)引致香港直接經濟損失的 新增 估算 Page 4 CONTENTS Update Page 189 TABLE 4.10: DAMAGE CAUSED BY TROPICAL CYCLONES IN Update HONG KONG IN 2017 Page 219 Annex 1: Estimated Direct Economic Losses in Hong Kong Add caused by Super Typhoon Hato (1713) 二零一 七 年 熱帶氣旋 TROPICAL CYCLONES IN 2017 2 二零一九年二月出版 Published February 2019 香港天文台編製 香港九龍彌敦道134A Prepared by: Hong Kong Observatory 134A Nathan Road Kowloon, Hong Kong © 版權所有。未經香港天文台台長同意,不得翻印本刊物任何部分內容。 ©Copyright reserved.
    [Show full text]
  • 2. Annual Summaries of the Climate System in 2010
    2. Annual summaries of the climate system in (c) Summer (June – August 2010, Fig. 2.1.4c) 2010 Japan experienced its hottest summer in more than 100 years. The seasonal mean temperature in 2.1 Climate in Japan Japan, which is the average value for 17 observatory 2.1.1 Average surface temperature, precipitation stations deemed to be relatively unaffected by the amounts and sunshine durations urban heat island effect, was the highest on record The annual anomaly of the average surface since 1898. In particular, August was so hot that temperature over Japan (averaged over 17 monthly mean temperature records for August were observatories confirmed as being relatively unaffected broken at 77 out of 154 observatories in Japan. by urbanization) in 2010 was 0.86°C above normal Seasonal precipitation amounts were significantly (based on the 1971 – 2000 average), and was the above normal on the Sea of Japan side of northern fourth highest since 1898. On a longer time scale, Japan due to the influence of a series of fronts. average surface temperatures have risen at a rate of (d) Autumn (September – November 2010, Fig. about 1.15°C per century since 1898 (Fig. 2.1.1). 2.1.4d) Seasonal mean temperatures were above normal 2.1.2 Seasonal features nationwide and significantly above normal in northern (a) Winter (December 2009 – February 2010, Fig. Japan. Due to severe late summer heat in the first half 2.1.4a) of September, records for the frequency of extremely Although seasonal mean temperatures were hot days (defined as those with maximum daily above normal nationwide, the intraseasonal temperatures of 35°C or over) for September were temperature variation was large.
    [Show full text]
  • Improvement Measure of Integrated Disaster Management System Considering Disaster Damage Characteristics: Focusing on the Republic of Korea
    sustainability Article Improvement Measure of Integrated Disaster Management System Considering Disaster Damage Characteristics: Focusing on the Republic of Korea Young Seok Song 1 , Moo Jong Park 2 , Jung Ho Lee 3, Byung Sik Kim 4 and Yang Ho Song 3,* 1 Department of Civil Engineering and Landscape Architectural, Daegu Technical University, Daegu 42734, Korea; [email protected] 2 Department of Aeronautics and Civil Engineering, Hanseo University, Seosan 31962, Korea; [email protected] 3 Department of Civil and Environmental Engineering, Hanbat National University, Daejeon 34158, Korea; [email protected] 4 Department of Urban Environment & Disaster Management, School of Disaster Prevention, Kangwon National University, Kangwon 25913, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-070-8238-5646 Received: 25 October 2019; Accepted: 30 December 2019; Published: 1 January 2020 Abstract: Recently, the Republic of Korea has experienced natural disasters, such as typhoons and heavy rainfall, as well as social accidents, such as large-scale accidents and infectious diseases, which are continuously occurring. Despite repeated disasters, problems such as inefficient early response and overlapping command systems occur continuously. In this study, we analyzed the characteristics of disaster management systems by foreign countries, and the status of the damages by disasters for the past 10 years in the Republic of Korea, to suggest possible measures to improve the Republic of Korea’s integrated disaster management system. When a disaster occurs in the Republic of Korea, the Si/Gun/Gu Disaster Safety Measure Headquarters, under the command of the local governments, become the responsible agencies for disaster response while the central government supervises and controls the overall disaster support and disaster management.
    [Show full text]
  • Typhoon Blows up Korean Fruit Prices
    For fresh fruit and vegetable marketing and distribution in Asia By Fruitnet.com Staff Friday 31st August 2012, 4:01 GMT Typhoon blows up Korean fruit prices Fruit prices in South Korea are likely to soar after a typhoon hit the country earlier this week, with another expected in the coming days he price of fruit in South Korea is The damage is estimated to be twice that be cheaper this autumn because the harvest T expected to rise in the wake of incurred when typhoon Kompasu hit the looked to be good this year but the supply typhoon bolaven that damaged country two years ago causing losses of suddenly dropped due to the typhoon. pipfruit crops when it swept across the W39.1bn. Fruit prices will soar,” an insider at Seoul country earlier this week. Agricultural and Marine Products Traders told the Korea Herald they Corporation told the newspaper. The Korea Herald has reported insurance expected prices to spike as a result of the payouts to affected farmers are expected typhoon, especially as demand increased to reach W80bn (US$70.5m) with insurance ahead of Chuseok – or Korean provider Nonghyup estimating damage to Thanksgiving, that takes place next month. 9,424ha of orchards. Compounding Fruit is typically used for gifting over the problems for growers, a second typhoon, three-day festival. Tembin, is expected to hit the country in the coming days. “Fruits were expected to http://www.fruitnet.com/americafruit/article/1474/parts-of-san-diego-quarantined-as-psyllid-count-mounts © Copyright Market Intelligence Ltd - Fruitnet.com 2014.
    [Show full text]
  • Appendix (PDF:4.3MB)
    APPENDIX TABLE OF CONTENTS: APPENDIX 1. Overview of Japan’s National Land Fig. A-1 Worldwide Hypocenter Distribution (for Magnitude 6 and Higher Earthquakes) and Plate Boundaries ..................................................................................................... 1 Fig. A-2 Distribution of Volcanoes Worldwide ............................................................................ 1 Fig. A-3 Subduction Zone Earthquake Areas and Major Active Faults in Japan .......................... 2 Fig. A-4 Distribution of Active Volcanoes in Japan ...................................................................... 4 2. Disasters in Japan Fig. A-5 Major Earthquake Damage in Japan (Since the Meiji Period) ....................................... 5 Fig. A-6 Major Natural Disasters in Japan Since 1945 ................................................................. 6 Fig. A-7 Number of Fatalities and Missing Persons Due to Natural Disasters ............................. 8 Fig. A-8 Breakdown of the Number of Fatalities and Missing Persons Due to Natural Disasters ......................................................................................................................... 9 Fig. A-9 Recent Major Natural Disasters (Since the Great Hanshin-Awaji Earthquake) ............ 10 Fig. A-10 Establishment of Extreme Disaster Management Headquarters and Major Disaster Management Headquarters ........................................................................... 21 Fig. A-11 Dispatchment of Government Investigation Teams (Since
    [Show full text]
  • An Improved Conversion Relationship Between
    remote sensing Article An Improved Conversion Relationship between Tropical Cyclone Intensity Index and Maximum Wind Speed for the Advanced Dvorak Technique in the Northwestern Pacific Ocean Using SMAP Data Sumin Ryu 1, Sung-Eun Hong 2 , Jun-Dong Park 3 and Sungwook Hong 1,4,* 1 Department of Environment, Energy and Geoinfomatics, Sejong University, Seoul 05006, Korea; [email protected] 2 Department of Research and Development, GI E&S Co., Ltd., Seoul 04173, Korea; [email protected] 3 National Meteorological Satellite Center, Korea Meteorological Administration, Jincheon-gun, Chungcheongbuk-do 27803, Korea; [email protected] 4 Department of Research and Development, DeepThoTh Co., Ltd., Seoul 05006, Korea * Correspondence: [email protected]; Tel.: +82-2-6935-2430 Received: 13 July 2020; Accepted: 10 August 2020; Published: 11 August 2020 Abstract: The Advanced Dvorak Technique (ADT) uses geostationary satellite data to estimate tropical cyclone (TC) intensity owing to the difficulty in directly observing a TC’s internal structure. This study presents a new relationship (Hong and Ryu scale) between the current intensity (CI) number and estimated maximum wind speed (MWS) of TCs over the northwestern Pacific region; the CI number is the TC intensity index retrieved from the ADT. The Soil Moisture Active Passive (SMAP) with the L-band (1.4 GHz) microwave radiometer, is used to calibrate and produce the new Hong and Ryu scale for the ADT algorithm. Japan Meteorological Agency (JMA) best track MWS data, SMAP sea surface wind speed estimates, and ADT’s TC intensity data between 2015–2018 are spatiotemporally collocated for the calibration process.
    [Show full text]
  • NOTES and CORRESPONDENCE NICAM Predictability of the Monsoon Gyre Over the Western North Pacific During August 2016
    JournalApril 2019 of the Meteorological Society of Japan, 97(2),T. 533−540, JINNO et 2019. al. doi:10.2151/jmsj.2019-017 533 Special Edition on Tropical Cyclones in 2015 − 2016 NOTES and CORRESPONDENCE NICAM Predictability of the Monsoon Gyre over the Western North Pacific during August 2016 Takuya JINNO Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan Tomoki MIYAKAWA Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan and Masaki SATOH Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan (Manuscript received 9 February 2018, in final form 17 November 2018) Abstract In August 2016, a monsoon gyre persisted over the western North Pacific and was associated with the genesis of multiple devastating tropical cyclones (TCs). A series of hindcast simulations were performed using the non- hydrostatic icosahedral atmospheric model (NICAM) to reproduce the temporal evolution of this monsoon gyre. The simulations that were initiated at dates during the mature stage of the monsoon gyre successfully reproduced its termination and the subsequent intensification of the Bonin high, whereas the simulations initiated before the formation and during the developing stage of the gyre failed to reproduce subsequent gyre evolution even at a short lead time. These experiments further suggest a possibility that the development of the Bonin high is related to the termination of the monsoon gyre. The high predictability of the termination is likely due to the predictable midlatitudinal signals that intensify the Bonin high. Keywords monsoon gyre; Bonin high; monsoon circulation; tropical cyclogenesis Citation Jinno, T., T.
    [Show full text]