2020 National Hurricane Operations Plan

Total Page:16

File Type:pdf, Size:1020Kb

2020 National Hurricane Operations Plan U.S. DEPARTMENT OF COMMERCE/ National Oceanic and Atmospheric Administration OFFICE OF THE FEDERAL COORDINATOR FOR METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH National Hurricane Operations Plan FCM-P12-2020 Washington, DC May 2020 Hurricane Dorian, courtesy of NOAA FEDERAL COORDINATOR FOR METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH 1325 East-West Highway, SSMC2 Silver Spring, Maryland 20910 301-628-0112 NATIONAL HURRICANE OPERATIONS PLAN FCM-P12-2020 Washington, D.C. May 2020 CHANGE AND REVIEW LOG Use this page to record changes and notices of reviews. Change Page Numbers Date Posted Initials Number (mm/dd/yyyy) 1. 2. 3. 4. 5. Changes are indicated by a vertical line in the margin next to the change or by shading and strikeouts. No. Review Date Comments Initials (mm/dd/yyyy) 1. 2. 3. 4. 5. iv FOREWORD The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) works with Federal agency stakeholders to plan hurricane observing and reconnaissance in preparation for each hurricane season. OFCM’s Working Group for Tropical Cyclone Operations and Research (WG/TCOR) manages the process of publishing an annual update to the National Hurricane Operations Plan (NHOP), which documents the agreed-upon interagency plans. The NHOP focuses primarily on the planning, execution, and use of aerial reconnaissance conducted by the Air Force Reserve Command’s 53rd Weather Reconnaissance Squadron (WRS) and NOAA’s Aircraft Operations Center (AOC); addresses meteorological satellite, weather radar, and ocean observing; and a number of other, related topics. The 2020 NHOP is the culmination of meticulous discussion conducted during the annual Working Group for Tropic Cyclone Operations and Research (WG/TCOR) includes a number of noteworthy changes, including: • Changes to Tropical Cyclone Public Advisories, Tropical Cyclone Forecast/Advisories, NHC and CPHC Continuance of Advisories and Products for Post-Tropical Cyclones • Updates to the frequency of the issuance of Tropical Cyclone Forecast/Advisories • Updated most of the Tables in Chapter 7 with new information I want to express my sincere appreciation to all the participating Federal agencies for their cooperation in reviewing last year’s NHOP, identifying and drafting necessary changes, and working together to approve and incorporate those changes into the 2020 NHOP. Considering mandatory social distancing, widespread teleworking, and a myriad of other challenges imposed by the COVID-19 pandemic protocols, I am very proud of and humbled by the team’s accomplishments. //SIGNED// Mr. Michael Bonadonna Federal Coordinator for Meteorological Services and Supporting Research v vi NATIONAL HURRICANE OPERATIONS PLAN TABLE OF CONTENTS CHANGE AND REVIEW LOG ................................................................................................... iv FOREWORD .................................................................................................................................. v TABLE OF CONTENTS .............................................................................................................. vii LIST OF FIGURES ..................................................................................................................... xiii LIST OF TABLES ........................................................................................................................ xv CHAPTER 1: INTRODUCTION ................................................................................................ 1-1 1.1 General. .................................................................................................................................. 1-1 1.2 Scope. ..................................................................................................................................... 1-1 CHAPTER 2: RESPONSIBILITIES OF COOPERATING FEDERAL AGENCIES ................ 2-1 2.1. General. ................................................................................................................................. 2-1 2.2. DOC Responsibilities............................................................................................................ 2-1 2.2.1. Forecasting and Warning Services......................................................................... 2-1 2.2.2. Support to DOD. .................................................................................................... 2-1 2.2.3. Post Analysis of Tropical Cyclones. ...................................................................... 2-2 2.2.4. Environmental Satellite Systems. .......................................................................... 2-2 2.2.5. Data Buoy Systems. ............................................................................................... 2-2 2.2.6. Weather Reconnaissance. ...................................................................................... 2-3 2.3. DOD Responsibilities. .......................................................................................................... 2-3 2.4. DOT and DHS Responsibilities. ........................................................................................... 2-4 2.4.1. Information Dissemination. ................................................................................... 2-4 2.4.2. Flight Assistance. ................................................................................................... 2-4 2.4.3. U. S. Coast Guard. ................................................................................................. 2-4 2.5. Annual Liaison with Other Nations. ..................................................................................... 2-4 2.6. Air Traffic Control/Flight Operations Coordination............................................................. 2-5 2.6.1. Gulf of Mexico Weather Reconnaissance.............................................................. 2-5 2.6.2. Air Traffic Control Assistance. .............................................................................. 2-5 CHAPTER 3: GENERAL OPERATIONS AND PROCEDURES OF THE NATIONAL WEATHER SERVICE HURRICANE CENTERS ..................................................................... 3-1 3.1. General. ................................................................................................................................. 3-1 3.2. Products................................................................................................................................. 3-1 vii 3.2.1. Tropical Weather Outlook (TWO). ............................................................................ 3-1 3.2.2. Tropical Cyclone Public Advisories (TCP). .............................................................. 3-1 3.2.3. Tropical Cyclone Forecast/Advisories (TCM). ......................................................... 3-2 3.2.4. Tropical Cyclone Discussions (TCD). ....................................................................... 3-2 3.2.5. Tropical Cyclone Updates (TCU). ............................................................................. 3-2 3.2.6. Graphical Tropical Cyclone Surface Wind Speed Probabilities. ............................... 3-3 3.2.7. Tropical Cyclone Surface Wind Speed Probabilities Text Product (PWS). .............. 3-3 3.2.8. Tropical Cyclone Watch Warning Product (TCV). ................................................... 3-3 3.2.9. Weather Prediction Center (WPC) Public Advisories (TCP). ................................... 3-4 3.2.10. Other Tropical Cyclone Products............................................................................. 3-4 3.2.11. NHC and CPHC Continuance of Advisories and Products for Post-Tropical Cyclones. .............................................................................................................................. 3-4 3.3. Numbering and Naming of Tropical and Subtropical Cyclones. .......................................... 3-4 3.3.1. Atlantic Basin............................................................................................................. 3-5 3.3.2. Pacific East of 140°W. ............................................................................................... 3-5 3.3.3. Pacific West of 140°W and East of 180°. .................................................................. 3-5 3.3.4. Pacific West of 180° and North of 0°. ....................................................................... 3-6 3.3.5. South Pacific South of Equator and East of 160°E. ................................................... 3-6 3.3.6. Subtropical Depressions............................................................................................. 3-6 3.4. Transfer of Warning Responsibility...................................................................................... 3-6 3.4.1. NHC to CPHC............................................................................................................ 3-6 3.4.2. CPHC to JTWC/(RSMC, Tokyo)/WFO Guam. ........................................................ 3-6 3.4.3. JTWC/RSMC, Tokyo to CPHC. ................................................................................ 3-6 3.5. Alternate Warning Responsibilities. ..................................................................................... 3-6 3.5.1. Transfer to Alternate. ................................................................................................. 3-6 3.5.2. Notification. ..............................................................................................................
Recommended publications
  • Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear
    1290 MONTHLY WEATHER REVIEW VOLUME 142 Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear ERIC W. UHLHORN NOAA/AOML/Hurricane Research Division, Miami, Florida BRADLEY W. KLOTZ Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida TOMISLAVA VUKICEVIC,PAUL D. REASOR, AND ROBERT F. ROGERS NOAA/AOML/Hurricane Research Division, Miami, Florida (Manuscript received 6 June 2013, in final form 19 November 2013) ABSTRACT Wavenumber-1 wind speed asymmetries in 35 hurricanes are quantified in terms of their amplitude and phase, based on aircraft observations from 128 individual flights between 1998 and 2011. The impacts of motion and 850–200-mb environmental vertical shear are examined separately to estimate the resulting asymmetric structures at the sea surface and standard 700-mb reconnaissance flight level. The surface asymmetry amplitude is on average around 50% smaller than found at flight level, and while the asymmetry amplitude grows in proportion to storm translation speed at the flight level, no significant growth at the surface is observed, contrary to conventional assumption. However, a significant upwind storm-motion- relative phase rotation is found at the surface as translation speed increases, while the flight-level phase remains fairly constant. After removing the estimated impact of storm motion on the asymmetry, a significant residual shear direction-relative asymmetry is found, particularly at the surface, and, on average, is located downshear to the left of shear. Furthermore, the shear-relative phase has a significant downwind rotation as shear magnitude increases, such that the maximum rotates from the downshear to left-of-shear azimuthal location.
    [Show full text]
  • CMOS Bulletin SCMO Volume 38 No. 6 December 2010
    ISSN 1195-8898 . CMOS Canadian Meteorological BULLETIN and Oceanographic Society SCMO La Société canadienne de météorologie et December / décembre 2010 Vol.38 No.6 d'océanographie Hurricane IGOR Track with Sea Surface Temperatures Trajectoire de l’ouragan IGOR et les températures de surface de la mer Canadian Meteorological and Oceanographic Society Société canadienne de météorologie et d’océanographie ....from the President’s Desk CMOS Bulletin SCMO Volume 38 No.6 Friends and colleagues: December 2010 — décembre 2010 Canada’s Federal Inside / En Bref Science and Technology (S&T) from the President’s desk / Allocution du président Strategy, as by/par David Fissel page 197 introduced by the present government Cover page description in 2007, provides a Description de la page couverture page 198 framework for Canada’s S&T Highlights of Recent CMOS Meetings page 199 policies. The 2009 Articles government policy Note 1 update speaks of What I Want to Do in Canada “... making Canada a by Doug Wallace page 200 leader in S&T and David Fissel research and a Ode to a Mackerel Sky by Chris Murphy page 202 CMOS President source of Président de la SCMO entrepreneurial The Canadian Societies for the Geophysical Sciences innovation and creativity” through our Science and (CSGS): Present and Potential Future Expansion Technology programs. As well as the substantial economic by David Fissel page 202 benefits realized from S&T, it was stated that “new Summer 2010: Wettest on the Canadian knowledge and technologies will help us meet many of the Prairies in 60 Years! challenges of the 21st century - from preserving the quality by Ray Garrett and Madhav Khandekar page 204 of the environment to enhancing our health, protecting our safety and security, and managing our energy and natural Census of Marine Life Report page 208 resources”.
    [Show full text]
  • An Efficient Method for Simulating Typhoon Waves Based on A
    Journal of Marine Science and Engineering Article An Efficient Method for Simulating Typhoon Waves Based on a Modified Holland Vortex Model Lvqing Wang 1,2,3, Zhaozi Zhang 1,*, Bingchen Liang 1,2,*, Dongyoung Lee 4 and Shaoyang Luo 3 1 Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; [email protected] 2 College of Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China 3 NAVAL Research Academy, Beijing 100070, China; [email protected] 4 Korea Institute of Ocean, Science and Technology, Busan 600-011, Korea; [email protected] * Correspondence: [email protected] (Z.Z.); [email protected] (B.L.) Received: 20 January 2020; Accepted: 23 February 2020; Published: 6 March 2020 Abstract: A combination of the WAVEWATCH III (WW3) model and a modified Holland vortex model is developed and studied in the present work. The Holland 2010 model is modified with two improvements: the first is a new scaling parameter, bs, that is formulated with information about the maximum wind speed (vms) and the typhoon’s forward movement velocity (vt); the second is the introduction of an asymmetric typhoon structure. In order to convert the wind speed, as reconstructed by the modified Holland model, from 1-min averaged wind inputs into 10-min averaged wind inputs to force the WW3 model, a gust factor (gf) is fitted in accordance with practical test cases. Validation against wave buoy data proves that the combination of the two models through the gust factor is robust for the estimation of typhoon waves.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • Ud5020-October-2020.Pdf
    2 | | UD5020 UD5020 | | 3 DISTRICT COUNCIL OFFICERS 2020-2021 GOVERNOR Greg Horn (Lakewood) UNITE - It is all about serving [email protected] Highlighting inspirational news and successes CHIEF OF STAFF Mary Horn (Lakewood) to UNITE Rotarians with a common mission [email protected] within District 5020. COUNCIL CHAIR Caleb Summerfelt (Gateway) [email protected] GOVERNOR ELECT Lorna Curtis (Oak Bay) Caleb Summerfelt [email protected] Gateway Rotary UD5020 EDITOR GOVERNOR NOMINEE Dale Roberts (Comox Valley) [email protected] IMMEDIATE PAST GOVERNOR Maureen Fritz-Roberts (Comox) [email protected] SECRETARY Judith Marriott (Courtenay) [email protected] TREASURER Roan Blacker (Bainbridge Island) [email protected] ON THE COVER Rotary Club of Ladysmith, Celebrating 50 Years of Service - Forrest Field All Access Walking Trail: Paul Williams (left) Brian King (front middle) and Suzanne Otterson (right). 4 | | UD5020 UD5020 | | 5 TABLE OF CONTENTS DISTRICT 5020 CLUB NEWS ON THE COVER ������������������������������������������������������������������������ 3 FEATURE ARTICLES 20 YEARS OF PREPAREDNESS: HURRICANE THANK YOU, GOVERNOR HORN ......................................... 66 SEASON IS HERE ����������������������������������������������������������������� 38 BY JEFF HARRIS OCTOBER GOVERNORS MESSAGE ....................................... 6 BY ALLISON KINGSTON BY GREG HORN GIG HARBOR MIDDAY SOUP & SANDWICH DRIVE ............ 68 DROP INTO THE DREAM ������������������������������������������������������ 40
    [Show full text]
  • Ed Phelps Logs His 1,000 DTV Station Using Just Himself and His DTV Box. No Autologger Needed
    The Magazine for TV and FM DXers October 2020 The Official Publication of the Worldwide TV-FM DX Association Being in the right place at just the right time… WKMJ RF 34 Ed Phelps logs his 1,000th DTV Station using just himself and his DTV Box. No autologger needed. THE VHF-UHF DIGEST The Worldwide TV-FM DX Association Serving the TV, FM, 30-50mhz Utility and Weather Radio DXer since 1968 THE VHF-UHF DIGEST IS THE OFFICIAL PUBLICATION OF THE WORLDWIDE TV-FM DX ASSOCIATION DEDICATED TO THE OBSERVATION AND STUDY OF THE PROPAGATION OF LONG DISTANCE TELEVISION AND FM BROADCASTING SIGNALS AT VHF AND UHF. WTFDA IS GOVERNED BY A BOARD OF DIRECTORS: DOUG SMITH, SAUL CHERNOS, KEITH MCGINNIS, JAMES THOMAS AND MIKE BUGAJ Treasurer: Keith McGinnis wtfda.org/info Webmaster: Tim McVey Forum Site Administrator: Chris Cervantez Creative Director: Saul Chernos Editorial Staff: Jeff Kruszka, Keith McGinnis, Fred Nordquist, Nick Langan, Doug Smith, John Zondlo and Mike Bugaj The WTFDA Board of Directors Doug Smith Saul Chernos James Thomas Keith McGinnis Mike Bugaj [email protected] [email protected] [email protected] [email protected] [email protected] Renewals by mail: Send to WTFDA, P.O. Box 501, Somersville, CT 06072. Check or MO for $10 payable to WTFDA. Renewals by Paypal: Send your dues ($10USD) from the Paypal website to [email protected] or go to https://www.paypal.me/WTFDA and type 10.00 or 20.00 for two years in the box. Our WTFDA.org website webmaster is Tim McVey, [email protected].
    [Show full text]
  • UB Powerpoint Template
    converge.colorado.edu CONVERGE ethical, coordinated, and scientifically rigorous social science, engineering, and interdisciplinary extreme events research Lori Peek Principal Investigator, CONVERGE, SSEER, and ISEEER Director, Natural Hazards Center Professor, Department of Sociology University of Colorado Boulder Session 2: Collecting, Managing, and Archiving Social and Behavioral Science Data Describe opportunities for identifying and coordinating social science researchers so that we can best share information and publish our data as well as data collection protocols using DOIs, repositories, etc. Discuss some of the overarching challenges and concerns with sharing social science data, such as privacy, data management plans and related IRB policies, duplication vs. replication, etc. converge.colorado.edu 4 Things converge.colorado.edu 1. NSF has funded the CONVERGE initiative converge.colorado.edu Why CONVERGE? Why CONVERGE? • identify and coordinate researchers and research teams; • advance hazards and disaster research; • encourage the publication of data and data collection instruments and protocols (DesignSafe Cyberinfrastructure + CONVERGE). • support and accelerate training and mentoring; • fund virtual reconnaissance, field research, and the development of novel research instruments and data collection protocols; • accelerate the development of mobile applications for social science data collection (NHERI RAPID); Why CONVERGE? 2. NSF Supports Extreme Events Research (EER) Networks converge.colorado.edu Why the EER’s? Disciplinary
    [Show full text]
  • A Summary of Palau's Typhoon History 1945-2013
    A Summary of Palau’s Typhoon History 1945-2013 Coral Reef Research Foundation, Palau Dec, 2014 © Coral Reef Research Foundation 2014 Suggested citation: Coral Reef Research Foundation, 2014. A Summary of Palau’s Typhoon History. Technical Report, 17pp. www.coralreefpalau.org Additions and suggestions welcome. Please email: [email protected] 2 Summary: Since 1945 Palau has had 68 recorded typhoons, tropical storms or tropical depressions come within 200 nmi of its islands or reefs. At their nearest point to Palau, 20 of these were typhoon strength with winds ≥64kts, or an average of 1 typhoon every 3 years. November and December had the highest number of significant storms; July had none over 40 kts and August had no recorded storms. Data Compilation: Storms within 200 nmi (nautical miles) of Palau were identified from the Digital Typhoon, National Institute of Informatics, Japan web site (http://agora.ex.nii.ac.jp/digital- typhoon/reference/besttrack.html.en). The storm tracks and intensities were then obtained from the Joint Typhoon Warning Center (JTWC) (https://metoc.ndbc.noaa.gov/en/JTWC/). Three storm categories were used following the JTWC: Tropical Depression, winds ≤ 33 kts; Tropical Storm, winds 34-63 kts; Typhoon ≥64kts. All track data was from the JTWC archives. Tracks were plotted on Google Earth and the nearest distance to land or reef, and bearing from Palau, were measured; maximum sustained wind speed in knots (nautical miles/hr) at that point was recorded. Typhoon names were taken from the Digital Typhoon site, but typhoon numbers for the same typhoon were from the JTWC archives.
    [Show full text]
  • Basic Data Construction for a Typhoon Disaster Prevention Model : Monthly Characteristics of Typhoon Rusa, Maemi, Kompasu, and Bolaven
    AAS02-P10 Japan Geoscience Union Meeting 2019 Basic Data Construction for a Typhoon Disaster Prevention Model : Monthly Characteristics of Typhoon Rusa, Maemi, Kompasu, and Bolaven *HANA NA1, Woo-Sik Jung1 1. Department of Atmospheric Environment Information Engineering, Atmospheric Environment Information Research Center, Inje University, Gimhae 50834, Korea According to a typhoon report that summarized the typhoons that had affected the Korean Peninsula for approximately 100 years since the start of weather observation in the Korean Peninsula, the number of typhoons that affected the Korean Peninsula was the highest in August, followed by July, and September. A study that analyzed the period between 1953 and 2003 revealed that the number of typhoons that affected the Korean Peninsula was 62 in August, 49 in July, and 45 in September. As shown, previous studies that analyzed the typhoons that affected the Korean Peninsula by month were primarily focused on the impact frequency. This study aims to estimate the monthly impact frequency of the typhoons that affected the Korean Peninsula as well as the maximum wind speed that accompanied the typhoons. It also aims to construct the basic data of a typhoon disaster prevention model by estimating the maximum wind speed during typhoon period using Typhoon Rusa that resulted in the highest property damage, Typhoon Maemi that recorded the maximum wind speed, Typhoon Kompasu that significantly affected the Seoul metropolitan area, and Typhoon Bolaven that recently recorded severe damages. A typhoon disaster prevention model was used to estimate the maximum wind speed of the 3-second gust that may occur, and the 700 hPa wind speed estimated through WRF(Weather Research and Forecasting) numerical simulation was used as input data.
    [Show full text]
  • Hurricane Dorian
    eVENT Hurricane Tracking Advisory Hurricane Dorian Information from NHC Advisory 20, 5:00 AM AST Thu Aug 29, 2019 On the forecast track, Dorian should move over the Atlantic well east of the southeastern and central Bahamas today and on Friday, and approach the northwestern Bahamas on Saturday. Maximum sustained winds are near 85 mph (140 km/h) with higher gusts. Strengthening is forecast during the next few days, and Dorian is expected to become a major hurricane on Friday. Intensity Measures Position & Heading U.S. Landfall (NHC) Max Sustained Wind 85 mph Position Relative to 150 mi NNW of San Juan, PR Speed: (Category 1) Land: Est. Time & Region: Monday on Florida Min Central Pressure: 991 mb Coordinates: 20.5 N, 66.6 W Trop. Storm Force Est. Max Sustained 90 miles Bearing/Speed: NW or 325 degrees at 13 mph 111+ mph (Category 3) Winds Extent: Wind Speed: Forecast Summary ■ The NHC forecast map (below left) and the wind-field map (below right), which is based on the NHC’s forecast track, both show Dorian passing east of the central Bahamas today and Friday, and approaching the northwestern Bahamas on Saturday. To illustrate the uncertainty in Dorian’s forecast track, Ï!D Trop Dep forecast tracks for all current models are shown on the wind-field map in pale gray. ■ Maximum sustained winds are near 85 mph with higher gusts. Strengthening is forecast during the next few days, and Dorian is expectedÏ!S Trop Storm to become a 1 major hurricane on Friday. Ï! Ca t 1 ■ Dorian is expected to produce total rain accumulations of 2 to 4 inches in the central Bahamas, 4 to 8 inches in the northwestern BahamasÏ!D Trop Dep and coastal 2 Ï! Ca t 2 sections of the southeast United States Ï!S Trop Storm ■ Swells around the U.S.
    [Show full text]
  • Hurricane Dorian Hits Eastern NC by Chris Collins, Meteorologist
    National Weather Service, Newport/Morehead City, NC http://weather.gov/Newport —> Bookmark it!! Fall 2019 Edition Hurricane Dorian hits Eastern NC By Chris Collins, Meteorologist Hurricane Dorian was the fourth named storm, second hurricane, and first major hurri- cane of the 2019 Atlantic hurricane season. Dorian formed on August 24, 2019 from a tropical wave in the Central Atlantic and gradually strengthened as it moved toward the Lesser Antilles, becoming a hurricane on August 28. Rapid intensification occurred, and on August 31, Dorian became a Category 4 hurricane. On September 1, Dorian reached Category 5 intensity, with maximum sustained winds of 185 mph, and a minimum central pressure of 910 mb, while making landfall in Elbow Cay, Bahamas. The ridge of high pressure steering Dorian westward collapsed on September 2, causing Dorian to stall just north of Grand Bahama for about a day. It is the strongest known tropical system to impact the Bahamas. On the morning of September 3, Dorian began to move slowly to- wards the north-northwest. Dorian moved over warmer waters, regaining Category 3 in- tensity by midnight on September 5. In the early hours of September 6, Dorian weakened to Category 1 intensity as it picked up speed and turned northeast. Dorian would pick up speed and move northeast along the North Carolina coast September 6, moving just south of the Crystal Coast, clipping Cape Lookout and eventually making landfall at Cape Hat- teras. CONTENTS Hurricane Dorian 1-2 Skywarn Recognition Day 3 Summer Volunteer 2019 4 Saharan Dust 5 July Heat 6 Path of Hurricane Dorian, August 24-September 6, 2019.
    [Show full text]
  • Typhoon Sarika
    Emergency Plan of Action (EPoA) Philippines: Typhoon Sarika DREF Operation: MDRPH021 Glide n° TC-2016-000108-PHL Date of issue: 19 October 2016 Date of disaster: 16 October 2016 Operation manager: Point of contact: Patrick Elliott, operations manager Atty. Oscar Palabyab, secretary general IFRC Philippines country office Philippine Red Cross Operation start date: 16 October 2016 Expected timeframe: 3 months (to 31 January 2017) Overall operation budget: CHF 169,011 Number of people affected: 52,270 people (11,926 Number of people to be assisted: 8,000 people families) (1,600 families) Host National Society: Philippine Red Cross (PRC) is the nation’s largest humanitarian organization and works through 100 chapters covering all administrative districts and major cities in the country. It has at least 1,000 staff at national headquarters and chapter levels, and approximately one million volunteers and supporters, of whom some 500,000 are active volunteers. At chapter level, a programme called Red Cross 143, has volunteers in place to enhance the overall capacity of the National Society to prepare for and respond in disaster situations. Red Cross Red Crescent Movement partners actively involved in the operation: PRC is working with the International Federation of Red Cross and Red Crescent Societies (IFRC) in this operation. The National Society also works with the International Committee of the Red Cross (ICRC) as well as American Red Cross, Australian Red Cross, British Red Cross, Canadian Red Cross, Finnish Red Cross, German Red Cross, Japanese Red Cross Society, The Netherlands Red Cross, Norwegian Red Cross, Qatar Red Crescent Society, Spanish Red Cross, and Swiss Red Cross in-country.
    [Show full text]