二零一七熱帶氣旋tropical Cyclones in 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dropsonde Observations of Intense Typhoons in 2017 and 2018 in the T-PARCII
EGU General Assembly 2020 May 6, 2020 Online 4-8 May 2020 Tropical meteorology and tropical cyclones (AS1.22) Dropsonde Observations of Intense Typhoons in 2017 and 2018 in the T-PARCII Kazuhisa TSUBOKI1 Institute for Space-Earth Environmental Research, Nagoya University Hiroyuki Yamada2, Tadayasu Ohigashi3, Taro Shinoda1, Kosuke Ito2, Munehiko Yamaguchi4, Tetsuo Nakazawa4, Hisayuki Kubota5, Yukihiro Takahashi5, Nobuhiro Takahashi1, Norio Nagahama6, and Kensaku Shimizu6 1Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601 Japan 2University of the Ryukyus, Okinawa, Japan 3National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan 4Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan 5Hokkaido University, Sapporo, Japan 6Meisei Electric Co. Ltd., Isesaki, Japan Violent wind and heavy rainfall associated with a typhoon cause huge disaster in East Asia including Japan. For prevention/mitigation of typhoon disaster, accurate estimation and prediction of typhoon intensity are very important as well as track forecast. However, intensity data of the intense typhoon category such as supertyphoon have large error after the US aircraft reconnaissance was terminated in 1987. Intensity prediction of typhoon also has not been improved sufficiently for the last few decades. To improve these problems, in situ observations of typhoon using an aircraft are indispensable. The main objective of the T-PARCII (Tropical cyclone-Pacific Asian Research Campaign for Improvement of Intensity estimations/forecasts) project is improvements of typhoon intensity estimations and forecasts. Violent wind and heavy rainfall associated with a typhoon cause huge disaster in East Asia including Japan. Payment of insurance due to disasters in Japan Flooding Kinu River on Sept. -
Environmental Influences on Sinking Rates and Distributions Of
www.nature.com/scientificreports OPEN Environmental infuences on sinking rates and distributions of transparent exopolymer particles after a typhoon surge at the Western Pacifc M. Shahanul Islam1,3, Jun Sun 2,3*, Guicheng Zhang3, Zhuo Chen3 & Hui Zhou 4 A multidisciplinary approach was used to investigate the causes of the distributions and sinking rates of transparent exopolymer particles (TEPs) during the period of September–October (2017) in the Western Pacifc Ocean (WPO); the study period was closely dated to a northwest typhoon surge. The present study discussed the impact of biogeophysical features on TEPs and their sinking rates (sTEP) at depths of 0–150 m. During the study, the concentration of TEPs was found to be higher in areas adjacent to the Kuroshio current and in the bottom water layer of the Mindanao upwelling zone due to the widespread distribution of cyanobacteria, i.e., Trichodesmium hildebrandti and T. theibauti. The positive signifcant regressions of TEP concentrations with Chl-a contents in eddy-driven areas (R2 = 0.73, especially at 100 m (R2 = 0.75)) support this hypothesis. However, low TEP concentrations and TEPs were observed at mixed layer depths (MLDs) in the upwelling zone (Mindanao). Conversely, high TEP concentrations and high sTEP were found at the bottom of the downwelling zone (Halmahera). The geophysical directions of eddies may have caused these conditions. In demonstrating these relations, the average interpretation showed the negative linearity of TEP concentrations with TEPs (R2 = 0.41 ~ 0.65) at such eddies. Additionally, regression curves (R2 = 0.78) indicated that atmospheric pressure played a key role in the changes in TEPs throughout the study area. -
SCIENCE CHINA Effects of Tide-Surge Interactions on Storm Surges Along
SCIENCE CHINA Earth Sciences • RESEARCH PAPER • doi: 10.1007/s11430-015-5251-y Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea XU JunLi1, ZHANG YuHong2, CAO AnZhou1, LIU Qiang2* & LV XianQing1 1 Key Laboratory of Physical Oceanography (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266100, China; 2 College of Engineering, Ocean University of China, Qingdao 266100, China Received August 27, 2015; accepted November 17, 2015 Abstract A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impacts of tide-surge interactions on storm surge elevations, Typhoon 7203 was assumed to arrive at 12 different times, with all other conditions remaining constant. This allowed simulation of tide and total water levels for 12 separate cases. Numerical simulation results for Yingkou, Huludao, Shijiusuo, and Lianyungang tidal stations were analyzed. Model results showed wide variations in storm surge elevations across the 12 cases. The largest difference between 12 extreme storm surge elevation values was of up to 58 cm and occurred at Yingkou tidal station. The results indicate that the effects of tide-surge interactions on storm surge elevations are very significant. It is therefore essential that these are taken into account when predicting storm surge elevations. Keywords Storm surges, Astronomical tides, Tide-surge interactions, Typhoon 7203, Coupled tide-surge model Citation: Xu J L, Zhang Y H, Cao A Z, Liu Q, Lv X Q. -
Kowloon West Job Fair 2019
Kowloon West Job Fair Date: 15 & 16 August 2019 (Thursday and Friday) Time: 11:00 a.m. – 5:30 p.m. (Last admission at 5:00 p.m.) Venue: Atrium 1/F, Dragon Centre (37 K, Yen Chow Street, Sham Shui Po, Kowloon; MTR Sham Shui Po Station, Exit C1) Employers conduct on-the-spot recruitment of over 3 200 vacancies! Different participating organisations on each day! Free admission! Welcome to join! You can get a souvenir for joining the event while stock lasts! Subscribe for latest information on large-scale job fairs at “MyGovHK” (www.gov.hk/mygovhk/en)! 15 August 2019 (Thursday) Participating Organisation Job Vacancy Location Cheung Sha Wan , Ho Man Nixon Cleaning Company Limited Cleaner Tin , Hung Hom , Sham Shui Po Dussmann Service Hong Kong Building Attendant /Security Guard Cheung Sha Wan Limited (Night Shift) Dormitory Security Guard (Night Shift) Kennedy Town Mall Security Guard (Day/Night Shift) Kwun Tong Residential Security Guard Mid-level (Day/Night Shift) Residential Security Guard (Night Shift) Happy Valley Security Guard (Day/Night Shift) Pokfulam Hospital Cleaner Tseung Kwan O Red Cross Security Yau Ma Tei (Evening/Night Shift) Hong Kong Housing Society Senior Building Attendant Diamond Hill Senior Technician Hung Hom , To Kwa Wan Technician I Hung Hom , Tuen Mun Kwai Chung , Shatin , Yau Building Supervisor Ma Tei Technician I (plumbing & drainage) Ngau Tau Kok 1 Participating Organisation Job Vacancy Location Hong Kong Housing Society Customer Services Officer North Point (Leasing)(11-Month) Control Centre Officer North Point Personal Care Worker (11-month) Tseung Kwan O Personal Care Worker North Point Beyond Korea Limited Waiter/ Waitress (Full-time/Part-time) Anywhere in H.K. -
U.S. Customs Service
U.S. Customs Service General Notices PROPOSED COLLECTION; COMMENT REQUEST RECORD OF VESSEL FOREIGN REPAIR OR EQUIPMENT PURCHASE ACTION: Notice and request for comments. SUMMARY: As part of its continuing effort to reduce paperwork and reĆ spondent burden, Customs invites the general public and other Federal agencies to comment on an information collection requirement conĆ cerning Record of Vessel Foreign Repair or Equipment Purchase. This request for comment is being made pursuant to the Paperwork ReducĆ tion Act of 1995 (Public Law 104ć13; 44 U.S.C. 3505(c)(2)). DATES: Written comments should be received on or before May 21, 2002, to be assured of consideration. ADDRESS: Direct all written comments to U.S. Customs Service, InforĆ mation Services Group, Attn.: Tracey Denning, 1300 Pennsylvania AveĆ nue, NW, Room 3.2C, Washington, D.C. 20229. FOR FURTHER INFORMATION CONTACT: Requests for additional information should be directed to U.S. Customs Service, Attn.: Tracey Denning, 1300 Pennsylvania Avenue NW, Room 3.2C, Washington, D.C. 20229, Tel. (202) 927ć1429. SUPPLEMENTARY INFORMATION: Customs invites the general public and other Federal agencies to comĆ ment on proposed and/or continuing information collections pursuant to the Paperwork Reduction Act of 1995 (Public Law 104ć13; 44 U.S.C. 3505(c)(2)). The comments should address: (1) whether the collection of information is necessary for the proper performance of the functions of the agency, including whether the information shall have practical utilĆ ity; (b) the accuracy of the agency's estimates of the burden of the collecĆ tion of information; (c) ways to enhance the quality, utility, and clarity of the information to be collected; (d) ways to minimize the burden includĆ ing the use of automated collection techniques or the use of other forms of information technology; and (e) estimates of capital or startĆup costs and costs of operations, maintenance, and purchase of services to proĆ vide information. -
An Efficient Method for Simulating Typhoon Waves Based on A
Journal of Marine Science and Engineering Article An Efficient Method for Simulating Typhoon Waves Based on a Modified Holland Vortex Model Lvqing Wang 1,2,3, Zhaozi Zhang 1,*, Bingchen Liang 1,2,*, Dongyoung Lee 4 and Shaoyang Luo 3 1 Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; [email protected] 2 College of Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China 3 NAVAL Research Academy, Beijing 100070, China; [email protected] 4 Korea Institute of Ocean, Science and Technology, Busan 600-011, Korea; [email protected] * Correspondence: [email protected] (Z.Z.); [email protected] (B.L.) Received: 20 January 2020; Accepted: 23 February 2020; Published: 6 March 2020 Abstract: A combination of the WAVEWATCH III (WW3) model and a modified Holland vortex model is developed and studied in the present work. The Holland 2010 model is modified with two improvements: the first is a new scaling parameter, bs, that is formulated with information about the maximum wind speed (vms) and the typhoon’s forward movement velocity (vt); the second is the introduction of an asymmetric typhoon structure. In order to convert the wind speed, as reconstructed by the modified Holland model, from 1-min averaged wind inputs into 10-min averaged wind inputs to force the WW3 model, a gust factor (gf) is fitted in accordance with practical test cases. Validation against wave buoy data proves that the combination of the two models through the gust factor is robust for the estimation of typhoon waves. -
4. the TROPICS—HJ Diamond and CJ Schreck, Eds
4. THE TROPICS—H. J. Diamond and C. J. Schreck, Eds. Pacific, South Indian, and Australian basins were a. Overview—H. J. Diamond and C. J. Schreck all particularly quiet, each having about half their The Tropics in 2017 were dominated by neutral median ACE. El Niño–Southern Oscillation (ENSO) condi- Three tropical cyclones (TCs) reached the Saffir– tions during most of the year, with the onset of Simpson scale category 5 intensity level—two in the La Niña conditions occurring during boreal autumn. North Atlantic and one in the western North Pacific Although the year began ENSO-neutral, it initially basins. This number was less than half of the eight featured cooler-than-average sea surface tempera- category 5 storms recorded in 2015 (Diamond and tures (SSTs) in the central and east-central equatorial Schreck 2016), and was one fewer than the four re- Pacific, along with lingering La Niña impacts in the corded in 2016 (Diamond and Schreck 2017). atmospheric circulation. These conditions followed The editors of this chapter would like to insert two the abrupt end of a weak and short-lived La Niña personal notes recognizing the passing of two giants during 2016, which lasted from the July–September in the field of tropical meteorology. season until late December. Charles J. Neumann passed away on 14 November Equatorial Pacific SST anomalies warmed con- 2017, at the age of 92. Upon graduation from MIT siderably during the first several months of 2017 in 1946, Charlie volunteered as a weather officer in and by late boreal spring and early summer, the the Navy’s first airborne typhoon reconnaissance anomalies were just shy of reaching El Niño thresh- unit in the Pacific. -
'State Visit-Plus' for Trump in China
BEIJING Your Beijing Bible • Insightful and interactive – real voices from the capital’s expat community • Issues, life and style • Culture, eating, nightlife and more Metro Beijing appears in the English edition of the Global Times here in Beijing, Monday to Friday. Nation InDepth Life Business Path out Common Plunder Dandong of poverty destiny & rescue angry at US 6 12-13 20 sanctions B1 www.globaltimes.com.cn VOLUME 9 • NO. 2432 • TUESDAY NOVEMBER 7, 2017 PRICE 2 YUAN Vigil for the victims A candlelight vigil is observed on Sunday following the mass shooting at the First Baptist Church in Sutherland Springs, Texas, that left 26 people dead (see stories on pages 3 and 10). Photo: AFP Chinese public keenly follows Asia trip Beidou navigation system to ‘outperform GPS by 2020’ ‘State visit-plus’ for dou Navigation Satellite Sys- By Liu Yang in Xichang and Zhang Hui in Beijing tem. Beidou will lead the world China used a single carrier and outperform the GPS sys- Trump in China rocket Sunday night to launch tem by around 2020 when two state-of-the-art satellites Beidou goes global, into space, marking the global Chinese space ex- 2 network expansion of its Bei- perts said. Global By Li Ruohan first foreign head of state to vis- communication on significant it China after the 19th National issues of common concern to Amid tremendous public curi- Congress of the Communist build a new consensus, en- osity over the visit of US Presi- Party of China. hance mutual understanding Inside dent Donald Trump, China is China and the US are and friendship, and promote pulling out all the stops in its working to ensure President bilateral relations in all spheres, Top News: Chinese fear rising US gun violence 3 preparations for the leader who Trump’s state visit is a “historic Zheng said. -
Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data
remote sensing Article Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data Juhyun Lee 1, Jungho Im 1,* , Dong-Hyun Cha 1, Haemi Park 2 and Seongmun Sim 1 1 School of Urban & Environmental Engineering in Ulsan National Institute of Science and Technology, Ulsan 44919, Korea; [email protected] (J.L.); [email protected] (D.-H.C.); [email protected] (S.S.) 2 Institute of Industrial Science in the University of Tokyo, A building, 4 Chome-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan; [email protected] * Correspondence: [email protected]; Tel.: +82-52-217-2824 Received: 25 November 2019; Accepted: 25 December 2019; Published: 28 December 2019 Abstract: For a long time, researchers have tried to find a way to analyze tropical cyclone (TC) intensity in real-time. Since there is no standardized method for estimating TC intensity and the most widely used method is a manual algorithm using satellite-based cloud images, there is a bias that varies depending on the TC center and shape. In this study, we adopted convolutional neural networks (CNNs) which are part of a state-of-art approach that analyzes image patterns to estimate TC intensity by mimicking human cloud pattern recognition. Both two dimensional-CNN (2D-CNN) and three-dimensional-CNN (3D-CNN) were used to analyze the relationship between multi-spectral geostationary satellite images and TC intensity. Our best-optimized model produced a root mean squared error (RMSE) of 8.32 kts, resulting in better performance (~35%) than the existing model using the CNN-based approach with a single channel image. -
Action Proposed
ESCAP/WMO Typhoon Committee FOR PARTICIPANTS ONLY Fiftieth Session WRD/TC.50/7.2 28 February - 3 March 2018 28 February 2018 Ha Noi, Viet Nam ENGLISH ONLY SUMMARY OF MEMBERS’ REPORTS 2017 (submitted by AWG Chair) Summary and Purpose of Document: This document presents an overall view of the progress and issues in meteorology, hydrology and DRR aspects among TC Members with respect to tropical cyclones and related hazards in 2017. Action Proposed The Committee is invited to: (a) take note of the major progress and issues in meteorology, hydrology and DRR aspects under the Key Result Areas (KRAs) of TC as reported by Members in 2017; and (b) review the Summary of Members’ Reports 2017 in APPENDIX B with the aim of adopting a “Executive Summary” for distribution to Members’ governments and other collaborating or potential sponsoring agencies for information and reference. APPENDICES: 1) Appendix A – DRAFT TEXT FOR INCLUSION IN THE SESSION REPORT 2) Appendix B – SUMMARY OF MEMBERS’ REPORTS 2017 1 APPENDIX A: DRAFT TEXT FOR INCLUSION IN THE SESSION REPORT 6.2 SUMMARY OF MEMBERS’ REPORTS 1. The Committee took note of the Summary of Members’ Reports 2017 as submitted for the 12th IWS in Jeju, Republic of Koreq, highlighting the key tropical cyclone impacts on Members in 2017 and the major activities undertaken by Members under the various KRAs and components during the year. 2. The Committee expressed its appreciation to AWG Chair for preparinG the Summary of Members’ Reports. It is noted the new KRA and supportinG Priorities structure contained developed in the new TC StrateGic Plan 2017-2021 caused some confusion in the format of the Member Reports. -
Appendix 8: Damages Caused by Natural Disasters
Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall. -
Basic Data Construction for a Typhoon Disaster Prevention Model : Monthly Characteristics of Typhoon Rusa, Maemi, Kompasu, and Bolaven
AAS02-P10 Japan Geoscience Union Meeting 2019 Basic Data Construction for a Typhoon Disaster Prevention Model : Monthly Characteristics of Typhoon Rusa, Maemi, Kompasu, and Bolaven *HANA NA1, Woo-Sik Jung1 1. Department of Atmospheric Environment Information Engineering, Atmospheric Environment Information Research Center, Inje University, Gimhae 50834, Korea According to a typhoon report that summarized the typhoons that had affected the Korean Peninsula for approximately 100 years since the start of weather observation in the Korean Peninsula, the number of typhoons that affected the Korean Peninsula was the highest in August, followed by July, and September. A study that analyzed the period between 1953 and 2003 revealed that the number of typhoons that affected the Korean Peninsula was 62 in August, 49 in July, and 45 in September. As shown, previous studies that analyzed the typhoons that affected the Korean Peninsula by month were primarily focused on the impact frequency. This study aims to estimate the monthly impact frequency of the typhoons that affected the Korean Peninsula as well as the maximum wind speed that accompanied the typhoons. It also aims to construct the basic data of a typhoon disaster prevention model by estimating the maximum wind speed during typhoon period using Typhoon Rusa that resulted in the highest property damage, Typhoon Maemi that recorded the maximum wind speed, Typhoon Kompasu that significantly affected the Seoul metropolitan area, and Typhoon Bolaven that recently recorded severe damages. A typhoon disaster prevention model was used to estimate the maximum wind speed of the 3-second gust that may occur, and the 700 hPa wind speed estimated through WRF(Weather Research and Forecasting) numerical simulation was used as input data.