Paradoxes and Priors in Bayesian Regression

Total Page:16

File Type:pdf, Size:1020Kb

Paradoxes and Priors in Bayesian Regression Paradoxes and Priors in Bayesian Regression Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Agniva Som, B. Stat., M. Stat. Graduate Program in Statistics The Ohio State University 2014 Dissertation Committee: Dr. Christopher M. Hans, Advisor Dr. Steven N. MacEachern, Co-advisor Dr. Mario Peruggia c Copyright by Agniva Som 2014 Abstract The linear model has been by far the most popular and most attractive choice of a statistical model over the past century, ubiquitous in both frequentist and Bayesian literature. The basic model has been gradually improved over the years to deal with stronger features in the data like multicollinearity, non-linear or functional data pat- terns, violation of underlying model assumptions etc. One valuable direction pursued in the enrichment of the linear model is the use of Bayesian methods, which blend information from the data likelihood and suitable prior distributions placed on the unknown model parameters to carry out inference. This dissertation studies the modeling implications of many common prior distri- butions in linear regression, including the popular g prior and its recent ameliorations. Formalization of desirable characteristics for model comparison and parameter esti- mation has led to the growth of appropriate mixtures of g priors that conform to the seven standard model selection criteria laid out by Bayarri et al. (2012). The existence of some of these properties (or lack thereof) is demonstrated by examining the behavior of the prior under suitable limits on the likelihood or on the prior itself. The first part of the dissertation introduces a new form of an asymptotic limit, the conditional information asymptotic, driven by a situation arising in many practical problems when one or more groups of regression coefficients are much larger than the rest. Under this asymptotic, many prominent \g-type" priors are shown to suffer from two new unsatisfactory behaviors, the Conditional Lindley's Paradox and Essentially ii Least Squares estimation. The cause behind these unwanted behaviors is the existence of a single, common mixing parameter in these priors that induces mono-shrinkage. The novel block g priors are proposed as a collection of independent g priors on distinct groups of predictor variables and improved further through mixing distributions on the multiple scale parameters. The block hyper-g and block hyper-g=n priors are shown to overcome the deficiencies of mono-shrinkage, and simultaneously display promising performance on other important prior selection criteria. The second part of the dissertation proposes a variation of the basic block g prior, defined through a reparameterized design, which has added computational benefits and also preserves the desirable properties of the original formulation. While construction of prior distributions for linear models usually focuses on the regression parameters themselves, it is often the case that functions of the parameters carry more meaning to a researcher than do the individual regression coefficients. If prior probability is not apportioned to the parameter space in a sensible manner, the implied priors on these summaries may clash greatly with reasonable prior knowl- edge. The third part of the dissertation examines the modeling implications of many traditional priors on an important model summary, the population correlation coef- ficient that measures the strength of a linear regression. After detailing deficiencies of standard priors, a new, science driven prior is introduced that directly models the strength of the linear regression. The resulting prior on the regression coefficients belongs to the class of normal scale mixture distributions in particular situations. Utilizing a fixed-dimensional reparameterization of the model, an efficient MCMC strategy that scales well with model size and requires little storage space is developed for posterior inference. iii Dedicated to my father, Mr. Arup Kumar Som, my late mother, Mrs. Sanchaita Som and my grandmother, Mrs. Lila Som. iv Acknowledgments I would like to express my gratitude to everyone who has made it possible for me to arrive at this momentous occasion in my life. First and foremost, I wish to thank my advisors Dr. Chris Hans and Dr. Steve MacEachern for their endless support and amazing mentorship during my four years of doctoral studies. I am greatly indebted to them for their unwavering patience in me, which helped me immensely to overcome my limitations whenever I faltered. I consider myself to be very fortunate that I got the opportunity to learn about the discipline from such brilliant minds and to enhance my knowledge and understanding of statistics under their watchful guidance. My advisors are greatly responsible for instilling in me the tenacity and passion toward research work that is needed to be successful at this high level. Fond memories of our meetings, including the serious discussions that frequently opened my mind to new perspectives on approaching unresolved questions as well as the light hearted chats on non-academic topics, will remain with me forever. I am grateful to Dr. Mario Peruggia for serving on my doctoral and candidacy exam committees and and to Dr. Xinyi Xu for serving on my candidacy exam commit- tee. Their comments and suggestions helped to broaden the scope of my dissertation research. A word of thanks should go to Dr. Radu Herbei as well for introducing me to new areas of statistics in my first year of graduate school and for helping me v to develop a fascination for research in this field. I am thankful to NSF for par- tially supporting my research under grant numbers DMS-1007682, DMS-1209194 and DMS-1310294. My family has always been a great source of love and support and without their immense influence this would never have been possible. Maa, Baba, Dida and Dada have always been there for me whenever I needed them, especially during the tough times that I experienced in my first year living so far away from home for the first time in my life. It was my parents' dream that I get a doctorate degree, but now that I am so close to receiving one, I feel heartbroken that my mother is no longer with us to enjoy this moment with the rest of the family. I dedicate this dissertation to my dad, who has been a constant source of my inspiration, and my mother and my grandmother, both of whom sacrificed so much for me to achieve this cherished dream. I would also like to thank all my wonderful friends who made life in graduate school and in Columbus enjoyable and worth cherishing all my life. There is a long list of friends without whom my life in the last four years would not have been as much fun. Thank you Abrez, Aritra, Arjun, Arka, Casey, Dani, Grant, Indrajit, Jingjing, John, Matt, Parichoy, Prasenjit, Puja, Steve and the many others who I did not mention here (but have been equally important to me in recent years), for helping me get through the thick and thin of life as a graduate student. And most importantly, thank you Sarah, the most special person in my life, for our wonderful times together. I am highly appreciative of Sarah's support, who stood by me throughout, in happiness and in sorrow, and put up with my craziness the past few years. vi Vita August 4, 1987 . Born - Kolkata, India. 2005-2008 . B. Stat. (Hons.), Indian Statistical Institute, Kolkata, India. 2008-2010 . M. Stat., Indian Statistical Institute, Kolkata, India. 2010-2014 . Graduate Teaching Associate, The Ohio State University. Publications Research Publications Som, A., Hans, C. M., MacEachern, S. N. \Block Hyper-g Priors in Bayesian Regres- sion". Technical Report No. 879, Department of Statistics, The Ohio State University, 2014. Fields of Study Major Field: Statistics. vii Table of Contents Page Abstract . ii Dedication . iv Acknowledgments . .v Vita......................................... vii List of Tables . xii List of Figures . xiv Chapters Page 1. Introduction . .1 1.1 Prior Specification in the Linear Model . .3 1.2 Problems with Mono-Shrinkage . .6 1.3 Implications of the Prior on Other Regression Summaries . .9 2. Review of Popular Priors in Bayesian Regression Problems . 12 2.1 Variable Selection Priors . 13 2.1.1 \Spike and Slab"-type Priors . 14 2.1.2 Stochastic Search Algorithms . 16 2.1.3 Priors on the Model Space . 17 2.2 Shrinkage Priors . 19 2.2.1 Scale Mixture Representation . 19 2.3 Classification Based on Prior Knowledge . 24 2.3.1 Subjective Priors . 24 2.3.2 Objective Priors . 25 2.4 Other Discussions on Bayesian Regression . 26 viii 3. Block g Priors . 27 3.1 Review of g Priors . 27 3.1.1 Zellner's g Prior . 28 3.1.2 Mixtures of g Priors . 29 3.2 Asymptotic Evaluations: Paradoxes, Old and New . 31 3.2.1 A Conditional Information Asymptotic ............ 33 3.2.2 A Conditional Lindley's Paradox ............... 34 3.2.3 The CLP in Other Mixtures of g Priors . 36 3.2.4 Avoiding ELS and CLP Behaviors . 39 3.3 Block g Priors . 40 3.3.1 The Block Hyper-g Prior . 42 3.3.2 Sampling from the Block Hyper-g Prior . 42 3.3.3 Expansion with respect to Least Squares Estimates under the Block g prior . 46 3.4 Asymptotic Evaluations of the Block Hyper-g Prior . 52 3.5 Consistency of the Block Hyper-g Prior . 57 3.5.1 Information Consistency . 58 3.5.2 Conditions and Assumptions . 59 3.5.3 Model Selection Consistency . 60 3.5.4 Prediction Consistency . 61 3.6 The Block Hyper-g=n Prior . 64 3.6.1 The Conditional Information Asymptotic in the Block Hyper- g=n Prior . 65 3.6.2 Consistency of the Block Hyper-g=n Prior .
Recommended publications
  • Practical Statistics for Particle Physics Lecture 1 AEPS2018, Quy Nhon, Vietnam
    Practical Statistics for Particle Physics Lecture 1 AEPS2018, Quy Nhon, Vietnam Roger Barlow The University of Huddersfield August 2018 Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 1 / 34 Lecture 1: The Basics 1 Probability What is it? Frequentist Probability Conditional Probability and Bayes' Theorem Bayesian Probability 2 Probability distributions and their properties Expectation Values Binomial, Poisson and Gaussian 3 Hypothesis testing Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 2 / 34 Question: What is Probability? Typical exam question Q1 Explain what is meant by the Probability PA of an event A [1] Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 3 / 34 Four possible answers PA is number obeying certain mathematical rules. PA is a property of A that determines how often A happens For N trials in which A occurs NA times, PA is the limit of NA=N for large N PA is my belief that A will happen, measurable by seeing what odds I will accept in a bet. Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 4 / 34 Mathematical Kolmogorov Axioms: For all A ⊂ S PA ≥ 0 PS = 1 P(A[B) = PA + PB if A \ B = ϕ and A; B ⊂ S From these simple axioms a complete and complicated structure can be − ≤ erected. E.g. show PA = 1 PA, and show PA 1.... But!!! This says nothing about what PA actually means. Kolmogorov had frequentist probability in mind, but these axioms apply to any definition. Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 5 / 34 Classical or Real probability Evolved during the 18th-19th century Developed (Pascal, Laplace and others) to serve the gambling industry.
    [Show full text]
  • 3.3 Bayes' Formula
    Ismor Fischer, 5/29/2012 3.3-1 3.3 Bayes’ Formula Suppose that, for a certain population of individuals, we are interested in comparing sleep disorders – in particular, the occurrence of event A = “Apnea” – between M = Males and F = Females. S = Adults under 50 M F A A ∩ M A ∩ F Also assume that we know the following information: P(M) = 0.4 P(A | M) = 0.8 (80% of males have apnea) prior probabilities P(F) = 0.6 P(A | F) = 0.3 (30% of females have apnea) Given here are the conditional probabilities of having apnea within each respective gender, but these are not necessarily the probabilities of interest. We actually wish to calculate the probability of each gender, given A. That is, the posterior probabilities P(M | A) and P(F | A). To do this, we first need to reconstruct P(A) itself from the given information. P(A | M) P(A ∩ M) = P(A | M) P(M) P(M) P(Ac | M) c c P(A ∩ M) = P(A | M) P(M) P(A) = P(A | M) P(M) + P(A | F) P(F) P(A | F) P(A ∩ F) = P(A | F) P(F) P(F) P(Ac | F) c c P(A ∩ F) = P(A | F) P(F) Ismor Fischer, 5/29/2012 3.3-2 So, given A… P(M ∩ A) P(A | M) P(M) P(M | A) = P(A) = P(A | M) P(M) + P(A | F) P(F) (0.8)(0.4) 0.32 = (0.8)(0.4) + (0.3)(0.6) = 0.50 = 0.64 and posterior P(F ∩ A) P(A | F) P(F) P(F | A) = = probabilities P(A) P(A | M) P(M) + P(A | F) P(F) (0.3)(0.6) 0.18 = (0.8)(0.4) + (0.3)(0.6) = 0.50 = 0.36 S Thus, the additional information that a M F randomly selected individual has apnea (an A event with probability 50% – why?) increases the likelihood of being male from a prior probability of 40% to a posterior probability 0.32 0.18 of 64%, and likewise, decreases the likelihood of being female from a prior probability of 60% to a posterior probability of 36%.
    [Show full text]
  • Numerical Physics with Probabilities: the Monte Carlo Method and Bayesian Statistics Part I for Assignment 2
    Numerical Physics with Probabilities: The Monte Carlo Method and Bayesian Statistics Part I for Assignment 2 Department of Physics, University of Surrey module: Energy, Entropy and Numerical Physics (PHY2063) 1 Numerical Physics part of Energy, Entropy and Numerical Physics This numerical physics course is part of the second-year Energy, Entropy and Numerical Physics mod- ule. It is online at the EENP module on SurreyLearn. See there for assignments, deadlines etc. The course is about numerically solving ODEs (ordinary differential equations) and PDEs (partial differential equations), and introducing the (large) part of numerical physics where probabilities are used. This assignment is on numerical physics of probabilities, and looks at the Monte Carlo (MC) method, and at the Bayesian statistics approach to data analysis. It covers MC and Bayesian statistics, in that order. MC is a widely used numerical technique, it is used, amongst other things, for modelling many random processes. MC is used in fields from statistical physics, to nuclear and particle physics. Bayesian statistics is a powerful data analysis method, and is used everywhere from particle physics to spam-email filters. Data analysis is fundamental to science. For example, analysis of the data from the Large Hadron Collider was required to extract a most probable value for the mass of the Higgs boson, together with an estimate of the region of masses where the scientists think the mass is. This region is typically expressed as a range of mass values where the they think the true mass lies with high (e.g., 95%) probability. Many of you will be analysing data (physics data, commercial data, etc) for your PTY or RY, or future careers1 .
    [Show full text]
  • The Bayesian Approach to Statistics
    THE BAYESIAN APPROACH TO STATISTICS ANTHONY O’HAGAN INTRODUCTION the true nature of scientific reasoning. The fi- nal section addresses various features of modern By far the most widely taught and used statisti- Bayesian methods that provide some explanation for the rapid increase in their adoption since the cal methods in practice are those of the frequen- 1980s. tist school. The ideas of frequentist inference, as set out in Chapter 5 of this book, rest on the frequency definition of probability (Chapter 2), BAYESIAN INFERENCE and were developed in the first half of the 20th century. This chapter concerns a radically differ- We first present the basic procedures of Bayesian ent approach to statistics, the Bayesian approach, inference. which depends instead on the subjective defini- tion of probability (Chapter 3). In some respects, Bayesian methods are older than frequentist ones, Bayes’s Theorem and the Nature of Learning having been the basis of very early statistical rea- Bayesian inference is a process of learning soning as far back as the 18th century. Bayesian from data. To give substance to this statement, statistics as it is now understood, however, dates we need to identify who is doing the learning and back to the 1950s, with subsequent development what they are learning about. in the second half of the 20th century. Over that time, the Bayesian approach has steadily gained Terms and Notation ground, and is now recognized as a legitimate al- ternative to the frequentist approach. The person doing the learning is an individual This chapter is organized into three sections.
    [Show full text]
  • A Compendium of Conjugate Priors
    A Compendium of Conjugate Priors Daniel Fink Environmental Statistics Group Department of Biology Montana State Univeristy Bozeman, MT 59717 May 1997 Abstract This report reviews conjugate priors and priors closed under sampling for a variety of data generating processes where the prior distributions are univariate, bivariate, and multivariate. The effects of transformations on conjugate prior relationships are considered and cases where conjugate prior relationships can be applied under transformations are identified. Univariate and bivariate prior relationships are verified using Monte Carlo methods. Contents 1 Introduction Experimenters are often in the position of having had collected some data from which they desire to make inferences about the process that produced that data. Bayes' theorem provides an appealing approach to solving such inference problems. Bayes theorem, π(θ) L(θ x ; : : : ; x ) g(θ x ; : : : ; x ) = j 1 n (1) j 1 n π(θ) L(θ x ; : : : ; x )dθ j 1 n is commonly interpreted in the following wayR. We want to make some sort of inference on the unknown parameter(s), θ, based on our prior knowledge of θ and the data collected, x1; : : : ; xn . Our prior knowledge is encapsulated by the probability distribution on θ; π(θ). The data that has been collected is combined with our prior through the likelihood function, L(θ x ; : : : ; x ) . The j 1 n normalized product of these two components yields a probability distribution of θ conditional on the data. This distribution, g(θ x ; : : : ; x ) , is known as the posterior distribution of θ. Bayes' j 1 n theorem is easily extended to cases where is θ multivariate, a vector of parameters.
    [Show full text]
  • A Widely Applicable Bayesian Information Criterion
    JournalofMachineLearningResearch14(2013)867-897 Submitted 8/12; Revised 2/13; Published 3/13 A Widely Applicable Bayesian Information Criterion Sumio Watanabe [email protected] Department of Computational Intelligence and Systems Science Tokyo Institute of Technology Mailbox G5-19, 4259 Nagatsuta, Midori-ku Yokohama, Japan 226-8502 Editor: Manfred Opper Abstract A statistical model or a learning machine is called regular if the map taking a parameter to a prob- ability distribution is one-to-one and if its Fisher information matrix is always positive definite. If otherwise, it is called singular. In regular statistical models, the Bayes free energy, which is defined by the minus logarithm of Bayes marginal likelihood, can be asymptotically approximated by the Schwarz Bayes information criterion (BIC), whereas in singular models such approximation does not hold. Recently, it was proved that the Bayes free energy of a singular model is asymptotically given by a generalized formula using a birational invariant, the real log canonical threshold (RLCT), instead of half the number of parameters in BIC. Theoretical values of RLCTs in several statistical models are now being discovered based on algebraic geometrical methodology. However, it has been difficult to estimate the Bayes free energy using only training samples, because an RLCT depends on an unknown true distribution. In the present paper, we define a widely applicable Bayesian information criterion (WBIC) by the average log likelihood function over the posterior distribution with the inverse temperature 1/logn, where n is the number of training samples. We mathematically prove that WBIC has the same asymptotic expansion as the Bayes free energy, even if a statistical model is singular for or unrealizable by a statistical model.
    [Show full text]
  • Part IV: Monte Carlo and Nonparametric Bayes Outline
    Part IV: Monte Carlo and nonparametric Bayes Outline Monte Carlo methods Nonparametric Bayesian models Outline Monte Carlo methods Nonparametric Bayesian models The Monte Carlo principle • The expectation of f with respect to P can be approximated by 1 n E P(x)[ f (x)] " # f (xi ) n i=1 where the xi are sampled from P(x) • Example: the average # of spots on a die roll ! The Monte Carlo principle The law of large numbers n E P(x)[ f (x)] " # f (xi ) i=1 Average number of spots ! Number of rolls Two uses of Monte Carlo methods 1. For solving problems of probabilistic inference involved in developing computational models 2. As a source of hypotheses about how the mind might solve problems of probabilistic inference Making Bayesian inference easier P(d | h)P(h) P(h | d) = $P(d | h ") P(h ") h " # H Evaluating the posterior probability of a hypothesis requires considering all hypotheses ! Modern Monte Carlo methods let us avoid this Modern Monte Carlo methods • Sampling schemes for distributions with large state spaces known up to a multiplicative constant • Two approaches: – importance sampling (and particle filters) – Markov chain Monte Carlo Importance sampling Basic idea: generate from the wrong distribution, assign weights to samples to correct for this E p(x)[ f (x)] = " f (x)p(x)dx p(x) = f (x) q(x)dx " q(x) n ! 1 p(xi ) " # f (xi ) for xi ~ q(x) n i=1 q(xi ) ! ! Importance sampling works when sampling from proposal is easy, target is hard An alternative scheme… n 1 p(xi ) E p(x)[ f (x)] " # f (xi ) for xi ~ q(x) n i=1 q(xi ) n p(xi
    [Show full text]
  • A Review of Bayesian Optimization
    Taking the Human Out of the Loop: A Review of Bayesian Optimization The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. 2016. “Taking the Human Out of the Loop: A Review of Bayesian Optimization.” Proc. IEEE 104 (1) (January): 148– 175. doi:10.1109/jproc.2015.2494218. Published Version doi:10.1109/JPROC.2015.2494218 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27769882 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP 1 Taking the Human Out of the Loop: A Review of Bayesian Optimization Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas Abstract—Big data applications are typically associated with and the analytics company that sits between them. The analyt- systems involving large numbers of users, massive complex ics company must develop procedures to automatically design software systems, and large-scale heterogeneous computing and game variants across millions of users; the objective is to storage architectures. The construction of such systems involves many distributed design choices. The end products (e.g., rec- enhance user experience and maximize the content provider’s ommendation systems, medical analysis tools, real-time game revenue. engines, speech recognizers) thus involves many tunable config- The preceding examples highlight the importance of au- uration parameters.
    [Show full text]
  • Marginal Likelihood
    STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 2 Last Class •" In our last class, we looked at: -" Statistical Decision Theory -" Linear Regression Models -" Linear Basis Function Models -" Regularized Linear Regression Models -" Bias-Variance Decomposition •" We will now look at the Bayesian framework and Bayesian Linear Regression Models. Bayesian Approach •" We formulate our knowledge about the world probabilistically: -" We define the model that expresses our knowledge qualitatively (e.g. independence assumptions, forms of distributions). -" Our model will have some unknown parameters. -" We capture our assumptions, or prior beliefs, about unknown parameters (e.g. range of plausible values) by specifying the prior distribution over those parameters before seeing the data. •" We observe the data. •" We compute the posterior probability distribution for the parameters, given observed data. •" We use this posterior distribution to: -" Make predictions by averaging over the posterior distribution -" Examine/Account for uncertainly in the parameter values. -" Make decisions by minimizing expected posterior loss. (See Radford Neal’s NIPS tutorial on ``Bayesian Methods for Machine Learning'’) Posterior Distribution •" The posterior distribution for the model parameters can be found by combining the prior with the likelihood for the parameters given the data. •" This is accomplished using Bayes’
    [Show full text]
  • Naïve Bayes Classifier
    NAÏVE BAYES CLASSIFIER Professor Tom Fomby Department of Economics Southern Methodist University Dallas, Texas 75275 April 2008 The Naïve Bayes classifier is a classification method based on Bayes Theorem. Let C j denote that an output belongs to the j-th class, j 1,2, J out of J possible classes. Let P(C j | X1, X 2 ,, X p ) denote the (posterior) probability of belonging in the j-th class given the individual characteristics X1, X 2 ,, X p . Furthermore, let P(X1, X 2 ,, X p | C j )denote the probability of a case with individual characteristics belonging to the j-th class and P(C j ) denote the unconditional (i.e. without regard to individual characteristics) prior probability of belonging to the j-th class. For a total of J classes, Bayes theorem gives us the following probability rule for calculating the case-specific probability of falling into the j-th class: P(X , X ,, X | C ) P(C ) P(C | X , X ,, X ) 1 2 p j j (1) j 1 2 p Denom where Denom P(X1, X 2 ,, X p | C1 )P(C1 ) P(X1, X 2 ,, X p | CJ )P(CJ ) . Of course the conditional class probabilities of (1) are exhaustive in that a case J (X1, X 2 ,, X p ) has to fall in one of the J cases. That is, P(C j | X1 , X 2 ,, X p ) 1. j1 The difficulty with using (1) is that in situations where the number of cases (X1, X 2 ,, X p ) is few and distinct and the number of classes J is large, there may be many instances where the probabilities of cases falling in specific classes, , are frequently equal to zero for the majority of classes.
    [Show full text]
  • Constraints Versus Priors † Philip B
    SIAM/ASA J. UNCERTAINTY QUANTIFICATION c 2015 Society for Industrial and Applied Mathematics Vol. 3, pp. 586–598 and American Statistical Association ∗ Constraints versus Priors † Philip B. Stark Abstract. There are deep and important philosophical differences between Bayesian and frequentist approaches to quantifying uncertainty. However, some practitioners choose between these approaches primar- ily on the basis of convenience. For instance, the ability to incorporate parameter constraints is sometimes cited as a reason to use Bayesian methods. This reflects two misunderstandings: First, frequentist methods can indeed incorporate constraints on parameter values. Second, it ignores the crucial question of what the result of the analysis will mean. Bayesian and frequentist measures of uncertainty have similar sounding names but quite different meanings. For instance, Bayesian uncertainties typically involve expectations with respect to the posterior distribution of the param- eter, holding the data fixed; frequentist uncertainties typically involve expectations with respect to the distribution of the data, holding the parameter fixed. Bayesian methods, including methods incorporating parameter constraints, require supplementing the constraints with a prior probability distribution for parameter values. This can cause frequentist and Bayesian estimates and their nom- inal uncertainties to differ substantially, even when the prior is “uninformative.” This paper gives simple examples where “uninformative” priors are, in fact, extremely informative, and sketches how to measure how much information the prior adds to the constraint. Bayesian methods can have good frequentist behavior, and a frequentist can use Bayesian methods and quantify the uncertainty by frequentist means—but absent a meaningful prior, Bayesian uncertainty measures lack meaning. The paper ends with brief reflections on practice.
    [Show full text]
  • 9 Introduction to Hierarchical Models
    9 Introduction to Hierarchical Models One of the important features of a Bayesian approach is the relative ease with which hierarchical models can be constructed and estimated using Gibbs sampling. In fact, one of the key reasons for the recent growth in the use of Bayesian methods in the social sciences is that the use of hierarchical models has also increased dramatically in the last two decades. Hierarchical models serve two purposes. One purpose is methodological; the other is substantive. Methodologically, when units of analysis are drawn from clusters within a population (communities, neighborhoods, city blocks, etc.), they can no longer be considered independent. Individuals who come from the same cluster will be more similar to each other than they will be to individuals from other clusters. Therefore, unobserved variables may in- duce statistical dependence between observations within clusters that may be uncaptured by covariates within the model, violating a key assumption of maximum likelihood estimation as it is typically conducted when indepen- dence of errors is assumed. Recall that a likelihood function, when observations are independent, is simply the product of the density functions for each ob- servation taken over all the observations. However, when independence does not hold, we cannot construct the likelihood as simply. Thus, one reason for constructing hierarchical models is to compensate for the biases—largely in the standard errors—that are introduced when the independence assumption is violated. See Ezell, Land, and Cohen (2003) for a thorough review of the approaches that have been used to correct standard errors in hazard model- ing applications with repeated events, one class of models in which repeated measurement yields hierarchical clustering.
    [Show full text]