Bayesian Statistics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DSA 5403 Bayesian Statistics: an Advancing Introduction 16 Units – Each Unit a Week’S Work
DSA 5403 Bayesian Statistics: An Advancing Introduction 16 units – each unit a week’s work. The following are the contents of the course divided into chapters of the book Doing Bayesian Data Analysis . by John Kruschke. The course is structured around the above book but will be embellished with more theoretical content as needed. The book can be obtained from the library : http://www.sciencedirect.com/science/book/9780124058880 Topics: This is divided into three parts From the book: “Part I The basics: models, probability, Bayes' rule and r: Introduction: credibility, models, and parameters; The R programming language; What is this stuff called probability?; Bayes' rule Part II All the fundamentals applied to inferring a binomial probability: Inferring a binomial probability via exact mathematical analysis; Markov chain Monte C arlo; J AG S ; Hierarchical models; Model comparison and hierarchical modeling; Null hypothesis significance testing; Bayesian approaches to testing a point ("Null") hypothesis; G oals, power, and sample size; S tan Part III The generalized linear model: Overview of the generalized linear model; Metric-predicted variable on one or two groups; Metric predicted variable with one metric predictor; Metric predicted variable with multiple metric predictors; Metric predicted variable with one nominal predictor; Metric predicted variable with multiple nominal predictors; Dichotomous predicted variable; Nominal predicted variable; Ordinal predicted variable; C ount predicted variable; Tools in the trunk” Part 1: The Basics: Models, Probability, Bayes’ Rule and R Unit 1 Chapter 1, 2 Credibility, Models, and Parameters, • Derivation of Bayes’ rule • Re-allocation of probability • The steps of Bayesian data analysis • Classical use of Bayes’ rule o Testing – false positives etc o Definitions of prior, likelihood, evidence and posterior Unit 2 Chapter 3 The R language • Get the software • Variables types • Loading data • Functions • Plots Unit 3 Chapter 4 Probability distributions. -
Assessing Fairness with Unlabeled Data and Bayesian Inference
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference Disi Ji1 Padhraic Smyth1 Mark Steyvers2 1Department of Computer Science 2Department of Cognitive Sciences University of California, Irvine [email protected] [email protected] [email protected] Abstract We investigate the problem of reliably assessing group fairness when labeled examples are few but unlabeled examples are plentiful. We propose a general Bayesian framework that can augment labeled data with unlabeled data to produce more accurate and lower-variance estimates compared to methods based on labeled data alone. Our approach estimates calibrated scores for unlabeled examples in each group using a hierarchical latent variable model conditioned on labeled examples. This in turn allows for inference of posterior distributions with associated notions of uncertainty for a variety of group fairness metrics. We demonstrate that our approach leads to significant and consistent reductions in estimation error across multiple well-known fairness datasets, sensitive attributes, and predictive models. The results show the benefits of using both unlabeled data and Bayesian inference in terms of assessing whether a prediction model is fair or not. 1 Introduction Machine learning models are increasingly used to make important decisions about individuals. At the same time it has become apparent that these models are susceptible to producing systematically biased decisions with respect to sensitive attributes such as gender, ethnicity, and age [Angwin et al., 2017, Berk et al., 2018, Corbett-Davies and Goel, 2018, Chen et al., 2019, Beutel et al., 2019]. This has led to a significant amount of recent work in machine learning addressing these issues, including research on both (i) definitions of fairness in a machine learning context (e.g., Dwork et al. -
Bayesian Inference Chapter 4: Regression and Hierarchical Models
Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Aus´ınand Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering Conchi Aus´ınand Mike Wiper Regression and hierarchical models Masters Programmes 1 / 35 Objective AFM Smith Dennis Lindley We analyze the Bayesian approach to fitting normal and generalized linear models and introduce the Bayesian hierarchical modeling approach. Also, we study the modeling and forecasting of time series. Conchi Aus´ınand Mike Wiper Regression and hierarchical models Masters Programmes 2 / 35 Contents 1 Normal linear models 1.1. ANOVA model 1.2. Simple linear regression model 2 Generalized linear models 3 Hierarchical models 4 Dynamic models Conchi Aus´ınand Mike Wiper Regression and hierarchical models Masters Programmes 3 / 35 Normal linear models A normal linear model is of the following form: y = Xθ + ; 0 where y = (y1;:::; yn) is the observed data, X is a known n × k matrix, called 0 the design matrix, θ = (θ1; : : : ; θk ) is the parameter set and follows a multivariate normal distribution. Usually, it is assumed that: 1 ∼ N 0 ; I : k φ k A simple example of normal linear model is the simple linear regression model T 1 1 ::: 1 where X = and θ = (α; β)T . x1 x2 ::: xn Conchi Aus´ınand Mike Wiper Regression and hierarchical models Masters Programmes 4 / 35 Normal linear models Consider a normal linear model, y = Xθ + . A conjugate prior distribution is a normal-gamma distribution: -
Practical Statistics for Particle Physics Lecture 1 AEPS2018, Quy Nhon, Vietnam
Practical Statistics for Particle Physics Lecture 1 AEPS2018, Quy Nhon, Vietnam Roger Barlow The University of Huddersfield August 2018 Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 1 / 34 Lecture 1: The Basics 1 Probability What is it? Frequentist Probability Conditional Probability and Bayes' Theorem Bayesian Probability 2 Probability distributions and their properties Expectation Values Binomial, Poisson and Gaussian 3 Hypothesis testing Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 2 / 34 Question: What is Probability? Typical exam question Q1 Explain what is meant by the Probability PA of an event A [1] Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 3 / 34 Four possible answers PA is number obeying certain mathematical rules. PA is a property of A that determines how often A happens For N trials in which A occurs NA times, PA is the limit of NA=N for large N PA is my belief that A will happen, measurable by seeing what odds I will accept in a bet. Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 4 / 34 Mathematical Kolmogorov Axioms: For all A ⊂ S PA ≥ 0 PS = 1 P(A[B) = PA + PB if A \ B = ϕ and A; B ⊂ S From these simple axioms a complete and complicated structure can be − ≤ erected. E.g. show PA = 1 PA, and show PA 1.... But!!! This says nothing about what PA actually means. Kolmogorov had frequentist probability in mind, but these axioms apply to any definition. Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 5 / 34 Classical or Real probability Evolved during the 18th-19th century Developed (Pascal, Laplace and others) to serve the gambling industry. -
Statistical Modelling
Statistical Modelling Dave Woods and Antony Overstall (Chapters 1–2 closely based on original notes by Anthony Davison and Jon Forster) c 2016 StatisticalModelling ............................... ......................... 0 1. Model Selection 1 Overview............................................ .................. 2 Basic Ideas 3 Whymodel?.......................................... .................. 4 Criteriaformodelselection............................ ...................... 5 Motivation......................................... .................... 6 Setting ............................................ ................... 9 Logisticregression................................... .................... 10 Nodalinvolvement................................... .................... 11 Loglikelihood...................................... .................... 14 Wrongmodel.......................................... ................ 15 Out-of-sampleprediction ............................. ..................... 17 Informationcriteria................................... ................... 18 Nodalinvolvement................................... .................... 20 Theoreticalaspects.................................. .................... 21 PropertiesofAIC,NIC,BIC............................... ................. 22 Linear Model 23 Variableselection ................................... .................... 24 Stepwisemethods.................................... ................... 25 Nuclearpowerstationdata............................ .................... -
Common Quandaries and Their Practical Solutions in Bayesian Network Modeling
Ecological Modelling 358 (2017) 1–9 Contents lists available at ScienceDirect Ecological Modelling journa l homepage: www.elsevier.com/locate/ecolmodel Common quandaries and their practical solutions in Bayesian network modeling Bruce G. Marcot U.S. Forest Service, Pacific Northwest Research Station, 620 S.W. Main Street, Suite 400, Portland, OR, USA a r t i c l e i n f o a b s t r a c t Article history: Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many Received 21 December 2016 common problems remain. Here, I summarize key problems in BN model construction and interpretation, Received in revised form 12 May 2017 along with suggested practical solutions. Problems in BN model construction include parameterizing Accepted 13 May 2017 probability values, variable definition, complex network structures, latent and confounding variables, Available online 24 May 2017 outlier expert judgments, variable correlation, model peer review, tests of calibration and validation, model overfitting, and modeling wicked problems. Problems in BN model interpretation include objec- Keywords: tive creep, misconstruing variable influence, conflating correlation with causation, conflating proportion Bayesian networks and expectation with probability, and using expert opinion. Solutions are offered for each problem and Modeling problems researchers are urged to innovate and share further solutions. Modeling solutions Bias Published by Elsevier B.V. Machine learning Expert knowledge 1. Introduction other fields. Although the number of generally accessible journal articles on BN modeling has continued to increase in recent years, Bayesian network (BN) models are essentially graphs of vari- achieving an exponential growth at least during the period from ables depicted and linked by probabilities (Koski and Noble, 2011). -
3.3 Bayes' Formula
Ismor Fischer, 5/29/2012 3.3-1 3.3 Bayes’ Formula Suppose that, for a certain population of individuals, we are interested in comparing sleep disorders – in particular, the occurrence of event A = “Apnea” – between M = Males and F = Females. S = Adults under 50 M F A A ∩ M A ∩ F Also assume that we know the following information: P(M) = 0.4 P(A | M) = 0.8 (80% of males have apnea) prior probabilities P(F) = 0.6 P(A | F) = 0.3 (30% of females have apnea) Given here are the conditional probabilities of having apnea within each respective gender, but these are not necessarily the probabilities of interest. We actually wish to calculate the probability of each gender, given A. That is, the posterior probabilities P(M | A) and P(F | A). To do this, we first need to reconstruct P(A) itself from the given information. P(A | M) P(A ∩ M) = P(A | M) P(M) P(M) P(Ac | M) c c P(A ∩ M) = P(A | M) P(M) P(A) = P(A | M) P(M) + P(A | F) P(F) P(A | F) P(A ∩ F) = P(A | F) P(F) P(F) P(Ac | F) c c P(A ∩ F) = P(A | F) P(F) Ismor Fischer, 5/29/2012 3.3-2 So, given A… P(M ∩ A) P(A | M) P(M) P(M | A) = P(A) = P(A | M) P(M) + P(A | F) P(F) (0.8)(0.4) 0.32 = (0.8)(0.4) + (0.3)(0.6) = 0.50 = 0.64 and posterior P(F ∩ A) P(A | F) P(F) P(F | A) = = probabilities P(A) P(A | M) P(M) + P(A | F) P(F) (0.3)(0.6) 0.18 = (0.8)(0.4) + (0.3)(0.6) = 0.50 = 0.36 S Thus, the additional information that a M F randomly selected individual has apnea (an A event with probability 50% – why?) increases the likelihood of being male from a prior probability of 40% to a posterior probability 0.32 0.18 of 64%, and likewise, decreases the likelihood of being female from a prior probability of 60% to a posterior probability of 36%. -
3 Autocorrelation
3 Autocorrelation Autocorrelation refers to the correlation of a time series with its own past and future values. Autocorrelation is also sometimes called “lagged correlation” or “serial correlation”, which refers to the correlation between members of a series of numbers arranged in time. Positive autocorrelation might be considered a specific form of “persistence”, a tendency for a system to remain in the same state from one observation to the next. For example, the likelihood of tomorrow being rainy is greater if today is rainy than if today is dry. Geophysical time series are frequently autocorrelated because of inertia or carryover processes in the physical system. For example, the slowly evolving and moving low pressure systems in the atmosphere might impart persistence to daily rainfall. Or the slow drainage of groundwater reserves might impart correlation to successive annual flows of a river. Or stored photosynthates might impart correlation to successive annual values of tree-ring indices. Autocorrelation complicates the application of statistical tests by reducing the effective sample size. Autocorrelation can also complicate the identification of significant covariance or correlation between time series (e.g., precipitation with a tree-ring series). Autocorrelation implies that a time series is predictable, probabilistically, as future values are correlated with current and past values. Three tools for assessing the autocorrelation of a time series are (1) the time series plot, (2) the lagged scatterplot, and (3) the autocorrelation function. 3.1 Time series plot Positively autocorrelated series are sometimes referred to as persistent because positive departures from the mean tend to be followed by positive depatures from the mean, and negative departures from the mean tend to be followed by negative departures (Figure 3.1). -
Introduction to Bayesian Estimation
Introduction to Bayesian Estimation March 2, 2016 The Plan 1. What is Bayesian statistics? How is it different from frequentist methods? 2. 4 Bayesian Principles 3. Overview of main concepts in Bayesian analysis Main reading: Ch.1 in Gary Koop's Bayesian Econometrics Additional material: Christian P. Robert's The Bayesian Choice: From decision theoretic foundations to Computational Implementation Gelman, Carlin, Stern, Dunson, Wehtari and Rubin's Bayesian Data Analysis Probability and statistics; What's the difference? Probability is a branch of mathematics I There is little disagreement about whether the theorems follow from the axioms Statistics is an inversion problem: What is a good probabilistic description of the world, given the observed outcomes? I There is some disagreement about how we interpret data/observations and how we make inference about unobservable parameters Why probabilistic models? Is the world characterized by randomness? I Is the weather random? I Is a coin flip random? I ECB interest rates? It is difficult to say with certainty whether something is \truly" random. Two schools of statistics What is the meaning of probability, randomness and uncertainty? Two main schools of thought: I The classical (or frequentist) view is that probability corresponds to the frequency of occurrence in repeated experiments I The Bayesian view is that probabilities are statements about our state of knowledge, i.e. a subjective view. The difference has implications for how we interpret estimated statistical models and there is no general -
Naïve Bayes Classifier
CS 60050 Machine Learning Naïve Bayes Classifier Some slides taken from course materials of Tan, Steinbach, Kumar Bayes Classifier ● A probabilistic framework for solving classification problems ● Approach for modeling probabilistic relationships between the attribute set and the class variable – May not be possible to certainly predict class label of a test record even if it has identical attributes to some training records – Reason: noisy data or presence of certain factors that are not included in the analysis Probability Basics ● P(A = a, C = c): joint probability that random variables A and C will take values a and c respectively ● P(A = a | C = c): conditional probability that A will take the value a, given that C has taken value c P(A,C) P(C | A) = P(A) P(A,C) P(A | C) = P(C) Bayes Theorem ● Bayes theorem: P(A | C)P(C) P(C | A) = P(A) ● P(C) known as the prior probability ● P(C | A) known as the posterior probability Example of Bayes Theorem ● Given: – A doctor knows that meningitis causes stiff neck 50% of the time – Prior probability of any patient having meningitis is 1/50,000 – Prior probability of any patient having stiff neck is 1/20 ● If a patient has stiff neck, what’s the probability he/she has meningitis? P(S | M )P(M ) 0.5×1/50000 P(M | S) = = = 0.0002 P(S) 1/ 20 Bayesian Classifiers ● Consider each attribute and class label as random variables ● Given a record with attributes (A1, A2,…,An) – Goal is to predict class C – Specifically, we want to find the value of C that maximizes P(C| A1, A2,…,An ) ● Can we estimate -
Bayesian Network Modelling with Examples
Bayesian Network Modelling with Examples Marco Scutari [email protected] Department of Statistics University of Oxford November 28, 2016 What Are Bayesian Networks? Marco Scutari University of Oxford What Are Bayesian Networks? A Graph and a Probability Distribution Bayesian networks (BNs) are defined by: a network structure, a directed acyclic graph G = (V;A), in which each node vi 2 V corresponds to a random variable Xi; a global probability distribution X with parameters Θ, which can be factorised into smaller local probability distributions according to the arcs aij 2 A present in the graph. The main role of the network structure is to express the conditional independence relationships among the variables in the model through graphical separation, thus specifying the factorisation of the global distribution: p Y P(X) = P(Xi j ΠXi ;ΘXi ) where ΠXi = fparents of Xig i=1 Marco Scutari University of Oxford What Are Bayesian Networks? How the DAG Maps to the Probability Distribution Graphical Probabilistic DAG separation independence A B C E D F Formally, the DAG is an independence map of the probability distribution of X, with graphical separation (??G) implying probabilistic independence (??P ). Marco Scutari University of Oxford What Are Bayesian Networks? Graphical Separation in DAGs (Fundamental Connections) separation (undirected graphs) A B C d-separation (directed acyclic graphs) A B C A B C A B C Marco Scutari University of Oxford What Are Bayesian Networks? Graphical Separation in DAGs (General Case) Now, in the general case we can extend the patterns from the fundamental connections and apply them to every possible path between A and B for a given C; this is how d-separation is defined. -
Numerical Physics with Probabilities: the Monte Carlo Method and Bayesian Statistics Part I for Assignment 2
Numerical Physics with Probabilities: The Monte Carlo Method and Bayesian Statistics Part I for Assignment 2 Department of Physics, University of Surrey module: Energy, Entropy and Numerical Physics (PHY2063) 1 Numerical Physics part of Energy, Entropy and Numerical Physics This numerical physics course is part of the second-year Energy, Entropy and Numerical Physics mod- ule. It is online at the EENP module on SurreyLearn. See there for assignments, deadlines etc. The course is about numerically solving ODEs (ordinary differential equations) and PDEs (partial differential equations), and introducing the (large) part of numerical physics where probabilities are used. This assignment is on numerical physics of probabilities, and looks at the Monte Carlo (MC) method, and at the Bayesian statistics approach to data analysis. It covers MC and Bayesian statistics, in that order. MC is a widely used numerical technique, it is used, amongst other things, for modelling many random processes. MC is used in fields from statistical physics, to nuclear and particle physics. Bayesian statistics is a powerful data analysis method, and is used everywhere from particle physics to spam-email filters. Data analysis is fundamental to science. For example, analysis of the data from the Large Hadron Collider was required to extract a most probable value for the mass of the Higgs boson, together with an estimate of the region of masses where the scientists think the mass is. This region is typically expressed as a range of mass values where the they think the true mass lies with high (e.g., 95%) probability. Many of you will be analysing data (physics data, commercial data, etc) for your PTY or RY, or future careers1 .