Hybrid of Naive Bayes and Gaussian Naive Bayes for Classification: a Map Reduce Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statistical Modelling
Statistical Modelling Dave Woods and Antony Overstall (Chapters 1–2 closely based on original notes by Anthony Davison and Jon Forster) c 2016 StatisticalModelling ............................... ......................... 0 1. Model Selection 1 Overview............................................ .................. 2 Basic Ideas 3 Whymodel?.......................................... .................. 4 Criteriaformodelselection............................ ...................... 5 Motivation......................................... .................... 6 Setting ............................................ ................... 9 Logisticregression................................... .................... 10 Nodalinvolvement................................... .................... 11 Loglikelihood...................................... .................... 14 Wrongmodel.......................................... ................ 15 Out-of-sampleprediction ............................. ..................... 17 Informationcriteria................................... ................... 18 Nodalinvolvement................................... .................... 20 Theoreticalaspects.................................. .................... 21 PropertiesofAIC,NIC,BIC............................... ................. 22 Linear Model 23 Variableselection ................................... .................... 24 Stepwisemethods.................................... ................... 25 Nuclearpowerstationdata............................ .................... -
On Discriminative Bayesian Network Classifiers and Logistic Regression
On Discriminative Bayesian Network Classifiers and Logistic Regression Teemu Roos and Hannes Wettig Complex Systems Computation Group, Helsinki Institute for Information Technology, P.O. Box 9800, FI-02015 HUT, Finland Peter Gr¨unwald Centrum voor Wiskunde en Informatica, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands Petri Myllym¨aki and Henry Tirri Complex Systems Computation Group, Helsinki Institute for Information Technology, P.O. Box 9800, FI-02015 HUT, Finland Abstract. Discriminative learning of the parameters in the naive Bayes model is known to be equivalent to a logistic regression problem. Here we show that the same fact holds for much more general Bayesian network models, as long as the corresponding network structure satisfies a certain graph-theoretic property. The property holds for naive Bayes but also for more complex structures such as tree-augmented naive Bayes (TAN) as well as for mixed diagnostic-discriminative structures. Our results imply that for networks satisfying our property, the condi- tional likelihood cannot have local maxima so that the global maximum can be found by simple local optimization methods. We also show that if this property does not hold, then in general the conditional likelihood can have local, non-global maxima. We illustrate our theoretical results by empirical experiments with local optimization in a conditional naive Bayes model. Furthermore, we provide a heuristic strategy for pruning the number of parameters and relevant features in such models. For many data sets, we obtain good results with heavily pruned submodels containing many fewer parameters than the original naive Bayes model. Keywords: Bayesian classifiers, Bayesian networks, discriminative learning, logistic regression 1. -
Introduction to Bayesian Estimation
Introduction to Bayesian Estimation March 2, 2016 The Plan 1. What is Bayesian statistics? How is it different from frequentist methods? 2. 4 Bayesian Principles 3. Overview of main concepts in Bayesian analysis Main reading: Ch.1 in Gary Koop's Bayesian Econometrics Additional material: Christian P. Robert's The Bayesian Choice: From decision theoretic foundations to Computational Implementation Gelman, Carlin, Stern, Dunson, Wehtari and Rubin's Bayesian Data Analysis Probability and statistics; What's the difference? Probability is a branch of mathematics I There is little disagreement about whether the theorems follow from the axioms Statistics is an inversion problem: What is a good probabilistic description of the world, given the observed outcomes? I There is some disagreement about how we interpret data/observations and how we make inference about unobservable parameters Why probabilistic models? Is the world characterized by randomness? I Is the weather random? I Is a coin flip random? I ECB interest rates? It is difficult to say with certainty whether something is \truly" random. Two schools of statistics What is the meaning of probability, randomness and uncertainty? Two main schools of thought: I The classical (or frequentist) view is that probability corresponds to the frequency of occurrence in repeated experiments I The Bayesian view is that probabilities are statements about our state of knowledge, i.e. a subjective view. The difference has implications for how we interpret estimated statistical models and there is no general -
Lecture 5: Naive Bayes Classifier 1 Introduction
CSE517A Machine Learning Spring 2020 Lecture 5: Naive Bayes Classifier Instructor: Marion Neumann Scribe: Jingyu Xin Reading: fcml 5.2.1 (Bayes Classifier, Naive Bayes, Classifying Text, and Smoothing) Application Sentiment analysis aims at discovering people's opinions, emo- tions, feelings about a subject matter, product, or service from text. Take some time to answer the following warm-up questions: (1) Is this a regression or classification problem? (2) What are the features and how would you represent them? (3) What is the prediction task? (4) How well do you think a linear model will perform? 1 Introduction Thought: Can we model p(y j x) without model assumptions, e.g. Gaussian/Bernoulli distribution etc.? Idea: Estimate p(y j x) from the data directly, then use the Bayes classifier. Let y be discrete, Pn i=1 I(xi = x \ yi = y) p(y j x) = Pn (1) i=1 I(xi = x) where the numerator counts all examples with input x that have label y and the denominator counts all examples with input x. Figure 1: Illustration of estimatingp ^(y j x) From Figure ??, it is clear that, using the MLE method, we can estimatep ^(y j x) as jCj p^(y j x) = (2) jBj But there is a big problem with this method: The MLE estimate is only good if there are many training vectors with the same identical features as x. 1 2 This never happens for high-dimensional or continuous feature spaces. Solution: Bayes Rule. p(x j y) p(y) p(y j x) = (3) p(x) Let's estimate p(x j y) and p(y) instead! 2 Naive Bayes We have a discrete label space C that can either be binary f+1; −1g or multi-class f1; :::; Kg. -
Adjusted Probability Naive Bayesian Induction
Adjusted Probability Naive Bayesian Induction 1 2 Geo rey I. Webb and Michael J. Pazzani 1 Scho ol of Computing and Mathematics Deakin University Geelong, Vic, 3217, Australia. 2 Department of Information and Computer Science University of California, Irvine Irvine, Ca, 92717, USA. Abstract. NaiveBayesian classi ers utilise a simple mathematical mo del for induction. While it is known that the assumptions on which this mo del is based are frequently violated, the predictive accuracy obtained in discriminate classi cation tasks is surprisingly comp etitive in compar- ison to more complex induction techniques. Adjusted probability naive Bayesian induction adds a simple extension to the naiveBayesian clas- si er. A numeric weight is inferred for each class. During discriminate classi cation, the naiveBayesian probability of a class is multiplied by its weight to obtain an adjusted value. The use of this adjusted value in place of the naiveBayesian probabilityisshown to signi cantly improve predictive accuracy. 1 Intro duction The naiveBayesian classi er Duda & Hart, 1973 provides a simple approachto discriminate classi cation learning that has demonstrated comp etitive predictive accuracy on a range of learning tasks Clark & Niblett, 1989; Langley,P., Iba, W., & Thompson, 1992. The naiveBayesian classi er is also attractive as it has an explicit and sound theoretical basis which guarantees optimal induction given a set of explicit assumptions. There is a drawback, however, in that it is known that some of these assumptions will b e violated in many induction scenarios. In particular, one key assumption that is frequently violated is that the attributes are indep endent with resp ect to the class variable. -
Locally Differentially Private Naive Bayes Classification
Locally Differentially Private Naive Bayes Classification EMRE YILMAZ, Case Western Reserve University MOHAMMAD AL-RUBAIE, University of South Florida J. MORRIS CHANG, University of South Florida In machine learning, classification models need to be trained in order to predict class labels. When the training data contains personal information about individuals, collecting training data becomes difficult due to privacy concerns. Local differential privacy isa definition to measure the individual privacy when there is no trusted data curator. Individuals interact with an untrusteddata aggregator who obtains statistical information about the population without learning personal data. In order to train a Naive Bayes classifier in an untrusted setting, we propose to use methods satisfying local differential privacy. Individuals send theirperturbed inputs that keep the relationship between the feature values and class labels. The data aggregator estimates all probabilities needed by the Naive Bayes classifier. Then, new instances can be classified based on the estimated probabilities. We propose solutions forboth discrete and continuous data. In order to eliminate high amount of noise and decrease communication cost in multi-dimensional data, we propose utilizing dimensionality reduction techniques which can be applied by individuals before perturbing their inputs. Our experimental results show that the accuracy of the Naive Bayes classifier is maintained even when the individual privacy is guaranteed under local differential privacy, and that using dimensionality reduction enhances the accuracy. CCS Concepts: • Security and privacy → Privacy-preserving protocols; • Computing methodologies → Supervised learning by classification; Dimensionality reduction and manifold learning. Additional Key Words and Phrases: Local Differential Privacy, Naive Bayes, Classification, Dimensionality Reduction 1 INTRODUCTION Predictive analytics is the process of making prediction about future events by analyzing the current data using statistical techniques. -
Improving Feature Selection Algorithms Using Normalised Feature Histograms
Page 1 of 10 Improving feature selection algorithms using normalised feature histograms A. P. James and A. K. Maan The proposed feature selection method builds a histogram of the most stable features from random subsets of training set and ranks the features based on a classifier based cross validation. This approach reduces the instability of features obtained by conventional feature selection methods that occur with variation in training data and selection criteria. Classification results on 4 microarray and 3 image datasets using 3 major feature selection criteria and a naive bayes classifier show considerable improvement over benchmark results. Introduction : Relevance of features selected by conventional feature selection method is tightly coupled with the notion of inter-feature redundancy within the patterns [1-3]. This essentially results in design of data-driven methods that are designed for meeting criteria of redundancy using various measures of inter-feature correlations [4-5]. These measures behave differently to different types of data, and to different levels of natural variability. This introduces instability in selection of features with change in number of samples in the training set and quality of features from one database to another. The use of large number of statistically distinct training samples can increase the quality of the selected features, although it can be practically unrealistic due to increase in computational complexity and unavailability of sufficient training samples. As an example, in realistic high dimensional databases such as gene expression databases of a rare cancer, there is a practical limitation on availability of large number of training samples. In such cases, instability that occurs with selecting features from insufficient training data would lead to a wrong conclusion that genes responsible for a cancer be strongly subject dependent and not general for a cancer. -
Naïve Bayes Lecture 17
Naïve Bayes Lecture 17 David Sontag New York University Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Mehryar Mohri Brief ArticleBrief Article The Author The Author January 11, 2012January 11, 2012 θˆ =argmax ln P ( θ) θˆ =argmax ln P ( θ) θ D| θ D| ln θαH ln θαH d d d ln P ( θ)= [ln θαH (1 θ)αT ] = [α ln θ + α ln(1 θ)] d d dθ D| dθ d − dθ H T − ln P ( θ)= [ln θαH (1 θ)αT ] = [α ln θ + α ln(1 θ)] dθ D| dθ − dθ H T − d d αH αT = αH ln θ + αT ln(1 θ)= =0 d d dθ αH dθ αT− θ − 1 θ = αH ln θ + αT ln(1 θ)= =0 − dθ dθ − θ −2N12 θ δ 2e− − P (mistake) ≥ ≥ 2N2 δ 2e− P (mistake) ≥ ≥ ln δ ln 2 2N2 Bayesian Learning ≥ − Prior • Use Bayes’ rule! 2 Data Likelihood ln δ ln 2 2N ln(2/δ) ≥ − N ≥ 22 Posterior ln(2/δ) N ln(2/0.05) 3.8 ≥ 22N Normalization= 190 ≥ 2 0.12 ≈ 0.02 × ln(2• /Or0. equivalently:05) 3.8 N • For uniform priors, this= 190 reducesP (θ) to 1 ≥ 2 0.12 ≈ 0.02 ∝ ×maximum likelihood estimation! P (θ) 1 P (θ ) P ( θ) ∝ |D ∝ D| 1 1 Brief ArticleBrief Article Brief Article Brief Article The Author The Author The Author January 11, 2012 JanuaryThe Author 11, 2012 January 11, 2012 January 11, 2012 θˆ =argmax ln Pθˆ( =argmaxθ) ln P ( θ) θ D| θ D| ˆ =argmax ln (θˆ =argmax) ln P ( θ) θ P θ θ θ D| αH D| ln θαH ln θ αH ln θαH ln θ d d α α d d d lnαP ( θ)=α [lndθ H (1 θ) T ] = [α ln θ + α ln(1 θ)] ln P ( θ)= [lndθ H (1 θ) T ]d= [α ln θ + α ln(1d Hθ)] T d d dθ D| dθ d αH H − αT T dθ − dθ D| dθ αlnH P ( − θα)=T [lndθθ (1 θ) ] = [α−H ln θ + αT ln(1 θ)] ln P ( θ)= [lndθθ (1 D|θ) ] =dθ [αH ln θ−+ αT ln(1dθ θ)] − dθ D| dθ − d dθ d −α -
Last Time Today Bayesian Learning Naïve Bayes the Distributions We
Last Time CSE 446 • Learning Gaussians Gaussian Naïve Bayes & • Naïve Bayes Logistic Regression Winter 2012 Today • Gaussians Naïve Bayes Dan Weld • Logistic Regression Some slides from Carlos Guestrin, Luke Zettlemoyer 2 Text Classification Bayesian Learning Bag of Words Representation Prior aardvark 0 Use Bayes rule: Data Likelihood about 2 all 2 Africa 1 Posterior P(Y | X) = P(X |Y) P(Y) apple 0 P(X) anxious 0 ... Normalization gas 1 ... oil 1 Or equivalently: P(Y | X) P(X | Y) P(Y) … Zaire 0 Naïve Bayes The Distributions We Love Discrete Continuous • Naïve Bayes assumption: – Features are independent given class: Binary {0, 1} k Values Single Bernouilli Event – More generally: Sequence Binomial Multinomial (N trials) N= H+T • How many parameters now? • Suppose X is composed of n binary features Conjugate Beta Dirichlet Prior 6 1 NB with Bag of Words for Text Classification Easy to Implement • Learning phase: – Prior P(Ym) • But… • Count how many documents from topic m / total # docs – P(Xi|Ym) • Let Bm be a bag of words formed from all the docs in topic m • Let #(i, B) be the number of times word iis in bag B • If you do… it probably won’t work… • P(Xi | Ym) = (#(i, Bm)+1) / (W+j#(j, Bm)) where W=#unique words • Test phase: – For each document • Use naïve Bayes decision rule 8 Probabilities: Important Detail! Naïve Bayes Posterior Probabilities • Classification results of naïve Bayes • P(spam | X … X ) = P(spam | X ) 1 n i i – I.e. the class with maximum posterior probability… Any more potential problems here? – Usually fairly accurate (?!?!?) • However, due to the inadequacy of the . -
The Bayesian New Statistics: Hypothesis Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective
Published online: 2017-Feb-08 Corrected proofs submitted: 2017-Jan-16 Accepted: 2016-Dec-16 Published version at http://dx.doi.org/10.3758/s13423-016-1221-4 Revision 2 submitted: 2016-Nov-15 View only at http://rdcu.be/o6hd Editor action 2: 2016-Oct-12 In Press, Psychonomic Bulletin & Review. Revision 1 submitted: 2016-Apr-16 Version of November 15, 2016. Editor action 1: 2015-Aug-23 Initial submission: 2015-May-13 The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective John K. Kruschke and Torrin M. Liddell Indiana University, Bloomington, USA In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty, on the other hand. Among frequentists in psychology a shift of emphasis from hypothesis testing to estimation has been dubbed “the New Statistics” (Cumming, 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis. Keywords: Null hypothesis significance testing, Bayesian inference, Bayes factor, confidence interval, credible interval, highest density interval, region of practical equivalence, meta-analysis, power analysis, effect size, randomized controlled trial. he New Statistics emphasizes a shift of empha- phasis. Bayesian methods provide a coherent framework for sis away from null hypothesis significance testing hypothesis testing, so when null hypothesis testing is the crux T (NHST) to “estimation based on effect sizes, confi- of the research then Bayesian null hypothesis testing should dence intervals, and meta-analysis” (Cumming, 2014, p. -
Generalized Naive Bayes Classifiers
Generalized Naive Bayes Classifiers Kim Larsen Concord, California [email protected] ABSTRACT This paper presents a generalization of the Naive Bayes Clas- sifier. The method is called the Generalized Naive Bayes This paper presents a generalization of the Naive Bayes Clas- Classifier (GNBC) and extends the NBC by relaxing the sifier. The method is specifically designed for binary clas- assumption of conditional independence between the pre- sification problems commonly found in credit scoring and dictors. This reduces the bias in the estimated class prob- marketing applications. The Generalized Naive Bayes Clas- abilities and improves the fit, while greatly enhancing the sifier turns out to be a powerful tool for both exploratory descriptive value of the model. The generalization is done in and predictive analysis. It can generate accurate predictions a fully non-parametric fashion without putting any restric- through a flexible, non-parametric fitting procedure, while tions on the relationship between the independent variables being able to uncover hidden patterns in the data. In this and the dependent variable. This makes the GNBC much paper, the Generalized Naive Bayes Classifier and the orig- more flexible than traditional linear and non-linear regres- inal Bayes Classifier will be demonstrated. Also, important sion, and allows it to uncover hidden patterns in the data. ties to logistic regression, the Generalized Additive Model Moreover, the GNBC retains the additive structure of the (GAM), and Weight Of Evidence will be discussed. NBC which means that it does not suffer from the prob- lems of dimensionality that are common with other non- 1. INTRODUCTION parametric techniques. -
Applied Bayesian Inference
Applied Bayesian Inference Prof. Dr. Renate Meyer1;2 1Institute for Stochastics, Karlsruhe Institute of Technology, Germany 2Department of Statistics, University of Auckland, New Zealand KIT, Winter Semester 2010/2011 Prof. Dr. Renate Meyer Applied Bayesian Inference 1 Prof. Dr. Renate Meyer Applied Bayesian Inference 2 1 Introduction 1.1 Course Overview 1 Introduction 1.1 Course Overview Overview: Applied Bayesian Inference A Overview: Applied Bayesian Inference B I Conjugate examples: Poisson, Normal, Exponential Family I Bayes theorem, discrete – continuous I Specification of prior distributions I Conjugate examples: Binomial, Exponential I Likelihood Principle I Introduction to R I Multivariate and hierarchical models I Simulation-based posterior computation I Techniques for posterior computation I Introduction to WinBUGS I Normal approximation I Regression, ANOVA, GLM, hierarchical models, survival analysis, state-space models for time series, copulas I Non-iterative Simulation I Markov Chain Monte Carlo I Basic model checking with WinBUGS I Bayes Factors, model checking and determination I Convergence diagnostics with CODA I Decision-theoretic foundations of Bayesian inference Prof. Dr. Renate Meyer Applied Bayesian Inference 3 Prof. Dr. Renate Meyer Applied Bayesian Inference 4 1 Introduction 1.1 Course Overview 1 Introduction 1.2 Why Bayesian Inference? Computing Why Bayesian Inference? Or: What is wrong with standard statistical inference? I R – mostly covered in class The two mainstays of standard/classical statistical inference are I WinBUGS – completely covered in class I confidence intervals and I Other – at your own risk I hypothesis tests. Anything wrong with them? Prof. Dr. Renate Meyer Applied Bayesian Inference 5 Prof. Dr. Renate Meyer Applied Bayesian Inference 6 1 Introduction 1.2 Why Bayesian Inference? 1 Introduction 1.2 Why Bayesian Inference? Example: Newcomb’s Speed of Light Newcomb’s Speed of Light: CI Example 1.1 Let us assume that the individual measurements 2 2 Light travels fast, but it is not transmitted instantaneously.