Bayesian Model Averaging Naive Bayes (BMA-NB): Averaging Over an Exponential Number of Feature Models in Linear Time

Total Page:16

File Type:pdf, Size:1020Kb

Bayesian Model Averaging Naive Bayes (BMA-NB): Averaging Over an Exponential Number of Feature Models in Linear Time Bayesian Model Averaging Naive Bayes (BMA-NB): Averaging over an Exponential Number of Feature Models in Linear Time Ga Wu Scott Sanner Rodrigo F.S.C. Oliveira Australian National University NICTA & Australian National University University of Pernambuco Canberra, Australia Canberra, Australia Recife, Brazil [email protected] [email protected] [email protected] Abstract to different feature sets, BMA has the advantage over feature selection that its predictions tend to have lower variance in Naive Bayes (NB) is well-known to be a simple but ef- comparison to any single model. fective classifier, especially when combined with fea- ture selection. Unfortunately, feature selection methods While BMA has had some notable successes for av- are often greedy and thus cannot guarantee an optimal eraging over tree-based models such as the context-tree feature set is selected. An alternative to feature selec- (CTW) weighting (Willems, Shtarkov, and Tjalkens 1995) tion is to use Bayesian model averaging (BMA), which algorithm for sequential prediction, or prunings of decision computes a weighted average over multiple predictors; trees (Oliver and Dowe 1995), it has not been previously when the different predictor models correspond to dif- applied to averaging over all possible feature sets (i.e., the ferent feature sets, BMA has the advantage over feature exponentially sized power set) for classifiers such as NB, selection that its predictions tend to have lower vari- which would correspond to averaging over all nodes of the ance on average in comparison to any single model. feature subset lattice — a problem which defies the simpler In this paper, we show for the first time that it is pos- recursions that can be used for BMA on tree structures. sible to exactly evaluate BMA over the exponentially- sized powerset of NB feature models in linear-time in In this paper, we show the somewhat surprising result the number of features; this yields an algorithm about that it is indeed possible to exactly evaluate BMA over as expensive to train as a single NB model with all fea- the exponentially-sized powerset of NB feature models in tures, but yet provably converges to the globally optimal linear-time in the number of features; this yields an algo- feature subset in the asymptotic limit of data. We evalu- rithm no more expensive to train than a single NB model ate this novel BMA-NB classifier on a range of datasets with all features, but yet provably converges to the globally showing that it never underperforms NB (as expected) optimal feature subset in the asymptotic limit of data. and sometimes offers performance competitive (or su- While previous work has proposed algorithms for BMA perior) to classifiers such as SVMs and logistic regres- sion while taking a fraction of the time to train. over the feature subset lattice in generalized linear models such as logistic regression and linear regression (Raftery 1996; Raftery, Madigan, and Hoeting 1997; Hoeting et al. Introduction 1999), all of these methods either rely on biased approxi- mations or use MCMC methods to sample the model space Naive Bayes (NB) is well-known to be a simple but effective with no a priori bound on the mixing time of such Markov classifier in practice owing to both theoretical justifications Chains; in contrast our proposal for NB does not approxi- and extensive empirical studies (Langley, Iba, and Thomp- mate and provides an exact answer in linear-time in the num- son 1992; Friedman 1997; Domingos and Pazzani 1997; ber of features.1 Ng and Jordan 2001). At the same time, in domains such as text classification that tend to have many features, it is We evaluate our novel BMA-NB classifier on a range of also noted that NB often performs best when combined with datasets showing that it never underperforms NB (as ex- feature selection (Manning, Raghavan, and Schutze¨ 2008; pected) and sometimes offers performance competitive (or Fung, Morstatter, and Liu 2011). superior) to classifiers such as SVMs and logistic regression while taking a fraction of the time to train. Unfortunately, tractable feature selection methods are in general greedy (Guyon and Elisseeff 2003) and thus cannot guarantee that an optimal feature set is selected — even for Preliminaries the training data. An interesting alternative to feature selec- We begin by providing a graphical model perspective of tion is to use Bayesian model averaging (BMA) (Hoeting et Naive Bayes (NB) classifiers and Bayesian Model Averag- al. 1999), which computes a weighted average over multiple ing (BMA) that simplify the subsequent presentation and predictors; when the different predictor models correspond derivation of our BMA-NB algorithm. Copyright c 2015, Association for the Advancement of Artificial 1At AAAI-15, it was pointed out that Dash and Cooper (2002) Intelligence (www.aaai.org). All rights reserved. arrived at similar results using a different derivational approach. Bayesian Model Averaging (BMA) If we had a class of models m 2 f1::Mg, each of which yi yi m yi specified a different way to generate the feature probabili- ties P (xijyi; m), then we can write down a prediction for a 2 f generative classification model m as follows: xi,k k xi,k xi k=1..K k=1..K P (y; xjm; D) = P (xjm; y; D)P (yjD): (4) i=1..N+1 i=1..N+1 i=1..N+1 While we could select a single model m according to some predefined criteria, an effective way to combine all (a) (b) (c) models to produce a lower variance prediction than any sin- gle model is to use Bayesian model averaging (Hoeting et Figure 1: Bayesian graphical model representations of (a) Naive al. 1999) and compute a weighted average over all models: Bayes (NB), (b) Bayesian model averaging (BMA) for generative X models such as NB, and (c) BMA-NB. Shaded nodes are observed. P (y; xjD) = P (xjm; y; D)P (yjD)P (mjD): (5) m Naive Bayes (NB) Classifiers Here we can view P (mjD) as the weight of model m and Assume we have N i.i.d. data points D = f(yi; xi)g (1 ≤ observe that it provides a convex combination of model pre- P i ≤ N) where yi 2 f1::Cg is the discrete class label for da- dictions, since by definition: m P (mjD) = 1. BMA has tum i and xi = (xi;1; : : : ; xi;K ) is the corresponding vector the convenient property that in the asymptotic limit of data of K features for datum i. In a probabilistic setting for clas- D, as jDj ! 1, P (mjD) ! 1 for the single best model m sification, given a new feature vector xN+1 (abbreviated x), (assuming no models are identical) meaning that asymptoti- our objective is to predict the highest probability class label cally, BMA can be viewed as optimal model selection. yN+1 (abbreviated y) based on our observed data. That is, To compute P (mjD), we can apply Bayes rule to obtain for each y, we want to compute N N+1 Y Y P (mjD) / P (Djm)P (m) = P (m) P (yi; xijm) P (yjx;D) / P (y; x;D) = P (yi; xi); (1) i=1 i=1 N Y where the first proportionality is due to the fact that D and = P (m) P (yi)P (xijm; yi): x are fixed (so the proportionality term is a constant) and i=1 QN+1 the i=1 owes to our i.i.d. assumption for D (we likewise (6) assume the N+1st data point is also drawn i.i.d.) and the fact Substituting (6) into (5) we arrive at the final simple form, that we can absorb (y; x) = (yN+1; xN+1) into the product by changing the range of i to include N + 1. where we again absorb P (xjm; yN+1;D)P (yjD) into the QN+1 The Naive Bayes independence assumption posits that all renamed N + 1st factor of i=1 : x ≤ ≤ conditionally independent features i;k (1 k K) are N+1 given the class yi. If we additionally assume that P (yi) and X Y P (y; xjD) / P (m) P (yi)P (xijm; yi): (7) P (xi;kjyi) are set to their maximum likelihood (empirical) estimates given D, we arrive at the following standard result m i=1 for NB in (3): We pause to make two simple observations on BMA be- N+1 K fore proceeding to our main result combining BMA and Y Y arg max P (yjx;D) = arg max P (yi) P (xi;kjyi) (2) NB. First, as for NB, we can represent the underlying joint y y N+1 i=1 k=1 distribution for (7) as the graphical model in Figure 1(b) K where in this case m is a latent (unobserved) variable that Y we marginalize over. Second, unlike the previous result for = arg max P (yN+1) P (xN+1;kjyN+1) (3) yN+1 NB, we observe that with BMA, we cannot simply absorb k=1 the data likelihood into the proportionality constant since it QN In (3), we dropped all factors in the i=1 from (2) since depends on the unobserved m and is hence non-constant. these correspond to data constants in D that do not affect the arg maxy. Main Result: BMA-NB Derivation Later when we derive BMA-NB, we’ll see that it is not QN Consider a naive combination of the previous sections on possible to drop the i=1 since latent feature selection vari- BMA and NB if we consider each model m to correspond to ables will critically depend on D.
Recommended publications
  • On Discriminative Bayesian Network Classifiers and Logistic Regression
    On Discriminative Bayesian Network Classifiers and Logistic Regression Teemu Roos and Hannes Wettig Complex Systems Computation Group, Helsinki Institute for Information Technology, P.O. Box 9800, FI-02015 HUT, Finland Peter Gr¨unwald Centrum voor Wiskunde en Informatica, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands Petri Myllym¨aki and Henry Tirri Complex Systems Computation Group, Helsinki Institute for Information Technology, P.O. Box 9800, FI-02015 HUT, Finland Abstract. Discriminative learning of the parameters in the naive Bayes model is known to be equivalent to a logistic regression problem. Here we show that the same fact holds for much more general Bayesian network models, as long as the corresponding network structure satisfies a certain graph-theoretic property. The property holds for naive Bayes but also for more complex structures such as tree-augmented naive Bayes (TAN) as well as for mixed diagnostic-discriminative structures. Our results imply that for networks satisfying our property, the condi- tional likelihood cannot have local maxima so that the global maximum can be found by simple local optimization methods. We also show that if this property does not hold, then in general the conditional likelihood can have local, non-global maxima. We illustrate our theoretical results by empirical experiments with local optimization in a conditional naive Bayes model. Furthermore, we provide a heuristic strategy for pruning the number of parameters and relevant features in such models. For many data sets, we obtain good results with heavily pruned submodels containing many fewer parameters than the original naive Bayes model. Keywords: Bayesian classifiers, Bayesian networks, discriminative learning, logistic regression 1.
    [Show full text]
  • Lecture 5: Naive Bayes Classifier 1 Introduction
    CSE517A Machine Learning Spring 2020 Lecture 5: Naive Bayes Classifier Instructor: Marion Neumann Scribe: Jingyu Xin Reading: fcml 5.2.1 (Bayes Classifier, Naive Bayes, Classifying Text, and Smoothing) Application Sentiment analysis aims at discovering people's opinions, emo- tions, feelings about a subject matter, product, or service from text. Take some time to answer the following warm-up questions: (1) Is this a regression or classification problem? (2) What are the features and how would you represent them? (3) What is the prediction task? (4) How well do you think a linear model will perform? 1 Introduction Thought: Can we model p(y j x) without model assumptions, e.g. Gaussian/Bernoulli distribution etc.? Idea: Estimate p(y j x) from the data directly, then use the Bayes classifier. Let y be discrete, Pn i=1 I(xi = x \ yi = y) p(y j x) = Pn (1) i=1 I(xi = x) where the numerator counts all examples with input x that have label y and the denominator counts all examples with input x. Figure 1: Illustration of estimatingp ^(y j x) From Figure ??, it is clear that, using the MLE method, we can estimatep ^(y j x) as jCj p^(y j x) = (2) jBj But there is a big problem with this method: The MLE estimate is only good if there are many training vectors with the same identical features as x. 1 2 This never happens for high-dimensional or continuous feature spaces. Solution: Bayes Rule. p(x j y) p(y) p(y j x) = (3) p(x) Let's estimate p(x j y) and p(y) instead! 2 Naive Bayes We have a discrete label space C that can either be binary f+1; −1g or multi-class f1; :::; Kg.
    [Show full text]
  • Hybrid of Naive Bayes and Gaussian Naive Bayes for Classification: a Map Reduce Approach
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8, Issue-6S3, April 2019 Hybrid of Naive Bayes and Gaussian Naive Bayes for Classification: A Map Reduce Approach Shikha Agarwal, Balmukumd Jha, Tisu Kumar, Manish Kumar, Prabhat Ranjan Abstract: Naive Bayes classifier is well known machine model could be used without accepting Bayesian probability learning algorithm which has shown virtues in many fields. In or using any Bayesian methods. Despite their naive design this work big data analysis platforms like Hadoop distributed and simple assumptions, Naive Bayes classifiers have computing and map reduce programming is used with Naive worked quite well in many complex situations. An analysis Bayes and Gaussian Naive Bayes for classification. Naive Bayes is manily popular for classification of discrete data sets while of the Bayesian classification problem showed that there are Gaussian is used to classify data that has continuous attributes. sound theoretical reasons behind the apparently implausible Experimental results show that Hybrid of Naive Bayes and efficacy of types of classifiers[5]. A comprehensive Gaussian Naive Bayes MapReduce model shows the better comparison with other classification algorithms in 2006 performance in terms of classification accuracy on adult data set showed that Bayes classification is outperformed by other which has many continuous attributes. approaches, such as boosted trees or random forests [6]. An Index Terms: Naive Bayes, Gaussian Naive Bayes, Map Reduce, Classification. advantage of Naive Bayes is that it only requires a small number of training data to estimate the parameters necessary I. INTRODUCTION for classification. The fundamental property of Naive Bayes is that it works on discrete value.
    [Show full text]
  • Locally Differentially Private Naive Bayes Classification
    Locally Differentially Private Naive Bayes Classification EMRE YILMAZ, Case Western Reserve University MOHAMMAD AL-RUBAIE, University of South Florida J. MORRIS CHANG, University of South Florida In machine learning, classification models need to be trained in order to predict class labels. When the training data contains personal information about individuals, collecting training data becomes difficult due to privacy concerns. Local differential privacy isa definition to measure the individual privacy when there is no trusted data curator. Individuals interact with an untrusteddata aggregator who obtains statistical information about the population without learning personal data. In order to train a Naive Bayes classifier in an untrusted setting, we propose to use methods satisfying local differential privacy. Individuals send theirperturbed inputs that keep the relationship between the feature values and class labels. The data aggregator estimates all probabilities needed by the Naive Bayes classifier. Then, new instances can be classified based on the estimated probabilities. We propose solutions forboth discrete and continuous data. In order to eliminate high amount of noise and decrease communication cost in multi-dimensional data, we propose utilizing dimensionality reduction techniques which can be applied by individuals before perturbing their inputs. Our experimental results show that the accuracy of the Naive Bayes classifier is maintained even when the individual privacy is guaranteed under local differential privacy, and that using dimensionality reduction enhances the accuracy. CCS Concepts: • Security and privacy → Privacy-preserving protocols; • Computing methodologies → Supervised learning by classification; Dimensionality reduction and manifold learning. Additional Key Words and Phrases: Local Differential Privacy, Naive Bayes, Classification, Dimensionality Reduction 1 INTRODUCTION Predictive analytics is the process of making prediction about future events by analyzing the current data using statistical techniques.
    [Show full text]
  • Improving Feature Selection Algorithms Using Normalised Feature Histograms
    Page 1 of 10 Improving feature selection algorithms using normalised feature histograms A. P. James and A. K. Maan The proposed feature selection method builds a histogram of the most stable features from random subsets of training set and ranks the features based on a classifier based cross validation. This approach reduces the instability of features obtained by conventional feature selection methods that occur with variation in training data and selection criteria. Classification results on 4 microarray and 3 image datasets using 3 major feature selection criteria and a naive bayes classifier show considerable improvement over benchmark results. Introduction : Relevance of features selected by conventional feature selection method is tightly coupled with the notion of inter-feature redundancy within the patterns [1-3]. This essentially results in design of data-driven methods that are designed for meeting criteria of redundancy using various measures of inter-feature correlations [4-5]. These measures behave differently to different types of data, and to different levels of natural variability. This introduces instability in selection of features with change in number of samples in the training set and quality of features from one database to another. The use of large number of statistically distinct training samples can increase the quality of the selected features, although it can be practically unrealistic due to increase in computational complexity and unavailability of sufficient training samples. As an example, in realistic high dimensional databases such as gene expression databases of a rare cancer, there is a practical limitation on availability of large number of training samples. In such cases, instability that occurs with selecting features from insufficient training data would lead to a wrong conclusion that genes responsible for a cancer be strongly subject dependent and not general for a cancer.
    [Show full text]
  • Naïve Bayes Lecture 17
    Naïve Bayes Lecture 17 David Sontag New York University Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Mehryar Mohri Brief ArticleBrief Article The Author The Author January 11, 2012January 11, 2012 θˆ =argmax ln P ( θ) θˆ =argmax ln P ( θ) θ D| θ D| ln θαH ln θαH d d d ln P ( θ)= [ln θαH (1 θ)αT ] = [α ln θ + α ln(1 θ)] d d dθ D| dθ d − dθ H T − ln P ( θ)= [ln θαH (1 θ)αT ] = [α ln θ + α ln(1 θ)] dθ D| dθ − dθ H T − d d αH αT = αH ln θ + αT ln(1 θ)= =0 d d dθ αH dθ αT− θ − 1 θ = αH ln θ + αT ln(1 θ)= =0 − dθ dθ − θ −2N12 θ δ 2e− − P (mistake) ≥ ≥ 2N2 δ 2e− P (mistake) ≥ ≥ ln δ ln 2 2N2 Bayesian Learning ≥ − Prior • Use Bayes’ rule! 2 Data Likelihood ln δ ln 2 2N ln(2/δ) ≥ − N ≥ 22 Posterior ln(2/δ) N ln(2/0.05) 3.8 ≥ 22N Normalization= 190 ≥ 2 0.12 ≈ 0.02 × ln(2• /Or0. equivalently:05) 3.8 N • For uniform priors, this= 190 reducesP (θ) to 1 ≥ 2 0.12 ≈ 0.02 ∝ ×maximum likelihood estimation! P (θ) 1 P (θ ) P ( θ) ∝ |D ∝ D| 1 1 Brief ArticleBrief Article Brief Article Brief Article The Author The Author The Author January 11, 2012 JanuaryThe Author 11, 2012 January 11, 2012 January 11, 2012 θˆ =argmax ln Pθˆ( =argmaxθ) ln P ( θ) θ D| θ D| ˆ =argmax ln (θˆ =argmax) ln P ( θ) θ P θ θ θ D| αH D| ln θαH ln θ αH ln θαH ln θ d d α α d d d lnαP ( θ)=α [lndθ H (1 θ) T ] = [α ln θ + α ln(1 θ)] ln P ( θ)= [lndθ H (1 θ) T ]d= [α ln θ + α ln(1d Hθ)] T d d dθ D| dθ d αH H − αT T dθ − dθ D| dθ αlnH P ( − θα)=T [lndθθ (1 θ) ] = [α−H ln θ + αT ln(1 θ)] ln P ( θ)= [lndθθ (1 D|θ) ] =dθ [αH ln θ−+ αT ln(1dθ θ)] − dθ D| dθ − d dθ d −α
    [Show full text]
  • Last Time Today Bayesian Learning Naïve Bayes the Distributions We
    Last Time CSE 446 • Learning Gaussians Gaussian Naïve Bayes & • Naïve Bayes Logistic Regression Winter 2012 Today • Gaussians Naïve Bayes Dan Weld • Logistic Regression Some slides from Carlos Guestrin, Luke Zettlemoyer 2 Text Classification Bayesian Learning Bag of Words Representation Prior aardvark 0 Use Bayes rule: Data Likelihood about 2 all 2 Africa 1 Posterior P(Y | X) = P(X |Y) P(Y) apple 0 P(X) anxious 0 ... Normalization gas 1 ... oil 1 Or equivalently: P(Y | X) P(X | Y) P(Y) … Zaire 0 Naïve Bayes The Distributions We Love Discrete Continuous • Naïve Bayes assumption: – Features are independent given class: Binary {0, 1} k Values Single Bernouilli Event – More generally: Sequence Binomial Multinomial (N trials) N= H+T • How many parameters now? • Suppose X is composed of n binary features Conjugate Beta Dirichlet Prior 6 1 NB with Bag of Words for Text Classification Easy to Implement • Learning phase: – Prior P(Ym) • But… • Count how many documents from topic m / total # docs – P(Xi|Ym) • Let Bm be a bag of words formed from all the docs in topic m • Let #(i, B) be the number of times word iis in bag B • If you do… it probably won’t work… • P(Xi | Ym) = (#(i, Bm)+1) / (W+j#(j, Bm)) where W=#unique words • Test phase: – For each document • Use naïve Bayes decision rule 8 Probabilities: Important Detail! Naïve Bayes Posterior Probabilities • Classification results of naïve Bayes • P(spam | X … X ) = P(spam | X ) 1 n i i – I.e. the class with maximum posterior probability… Any more potential problems here? – Usually fairly accurate (?!?!?) • However, due to the inadequacy of the .
    [Show full text]
  • Generalized Naive Bayes Classifiers
    Generalized Naive Bayes Classifiers Kim Larsen Concord, California [email protected] ABSTRACT This paper presents a generalization of the Naive Bayes Clas- sifier. The method is called the Generalized Naive Bayes This paper presents a generalization of the Naive Bayes Clas- Classifier (GNBC) and extends the NBC by relaxing the sifier. The method is specifically designed for binary clas- assumption of conditional independence between the pre- sification problems commonly found in credit scoring and dictors. This reduces the bias in the estimated class prob- marketing applications. The Generalized Naive Bayes Clas- abilities and improves the fit, while greatly enhancing the sifier turns out to be a powerful tool for both exploratory descriptive value of the model. The generalization is done in and predictive analysis. It can generate accurate predictions a fully non-parametric fashion without putting any restric- through a flexible, non-parametric fitting procedure, while tions on the relationship between the independent variables being able to uncover hidden patterns in the data. In this and the dependent variable. This makes the GNBC much paper, the Generalized Naive Bayes Classifier and the orig- more flexible than traditional linear and non-linear regres- inal Bayes Classifier will be demonstrated. Also, important sion, and allows it to uncover hidden patterns in the data. ties to logistic regression, the Generalized Additive Model Moreover, the GNBC retains the additive structure of the (GAM), and Weight Of Evidence will be discussed. NBC which means that it does not suffer from the prob- lems of dimensionality that are common with other non- 1. INTRODUCTION parametric techniques.
    [Show full text]
  • A Comparison of Three Different Methods for Classification of Breast
    A Comparison of Three Different Methods for Classification of Breast Cancer Data Daniele Soria Jonathan M. Garibaldi Elia Biganzoli University of Nottingham National Cancer Institute of Milan School of Computer Science Unit of Medical Statistics and Biometry Jubilee Campus, Wollaton Road, Via Vanzetti 5, 20133 Milan, Italy Nottingham, NG8 1BB, UK [email protected] fdqs,[email protected] Ian O. Ellis University of Nottingham School of Molecular Medical Sciences Queens Medical Centre, Derby Road, Nottingham, NG7 2UH, UK [email protected] Abstract tumour information from the databases. Among the exist- ing techniques, supervised learning methods are the most The classification of breast cancer patients is of great popular in cancer diagnosis [8]. importance in cancer diagnosis. During the last few years, According to John and Langley [6], methods for in- many algorithms have been proposed for this task. In ducing probabilistic descriptions from training data have this paper, we review different supervised machine learn- emerged as a major alternative to more established ap- ing techniques for classification of a novel dataset and per- proaches to machine learning, such as decision-tree induc- form a methodological comparison of these. We used the tion and neural networks. However, some of the most im- C4.5 tree classifier, a Multilayer Perceptron and a naive pressive results to date have come from a much simpler – Bayes classifier over a large set of tumour markers. We and much older – approach to probabilistic induction known found good performance of the Multilayer Perceptron even as the naive Bayesian classifier. Despite the simplifying as- when we reduced the number of features to be classified.
    [Show full text]
  • Foundations of Bayesian Learning
    Introduction Foundations of Bayesian Learning Davide Bacciu Computational Intelligence & Machine Learning Group Dipartimento di Informatica Università di Pisa [email protected] Introduzione all’Intelligenza Artificiale - A.A. 2012/2013 Introduction Lecture Outline 1 Introduction 2 Probability Theory Probabilities and Random Variables Bayes Theorem and Independence 3 Bayesian Inference Hypothesis Selection Candy Box Example 4 Parameters Learning 5 Naive Bayes Classifier The Model Learning Text Classification Example 6 Bayesian Networks Introduction Bayesian Learning Why Bayesian? Easy, because of frequent use of Bayes theorem... Bayesian Inference A powerful approach to probabilistic reasoning Bayesian Networks An expressive model for describing probabilistic relationships Why bothering? Real-world is uncertain Data (noisy measurements and partial knowledge) Beliefs (concepts and their relationships) Probability as a measure of our beliefs Conceptual framework for describing uncertainty in world representation Learning and reasoning become matters of probabilistic inference Probabilistic weighting of the hypothesis Probability Theory Part I Probability and Learning Probabilities and Random Variables Probability Theory Bayes Theorem and Independence Random Variables A Random Variable (RV) is a function describing the outcome of a random process by assigning unique values to all possible outcomes of the experiment Random Process =) Coin Toss 0 if heads Discrete RV =) X = 1 if tails The sample space S of a random process is the set of all possible outcomes, e.g. S = fheads; tailsg An event e is a subset e 2 S, i.e. a set of outcomes, that may occur or not as a result of the experiment Random variables are the building blocks for representing our world Probabilities and Random Variables Probability Theory Bayes Theorem and Independence Probability Functions A probability function P(X = x) 2 [0; 1] (P(x) in short) measures the probability of a RV X attaining the value x, i.e.
    [Show full text]
  • Bayesian Learning
    SC4/SM8 Advanced Topics in Statistical Machine Learning Bayesian Learning Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/ Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 1 / 14 Bayesian Learning Review of Bayesian Inference The Bayesian Learning Framework Bayesian learning: treat parameter vector θ as a random variable: process of learning is then computation of the posterior distribution p(θjD). In addition to the likelihood p(Djθ) need to specify a prior distribution p(θ). Posterior distribution is then given by the Bayes Theorem: p(Djθ)p(θ) p(θjD) = p(D) Likelihood: p(Djθ) Posterior: p(θjD) Prior: p(θ) Marginal likelihood: p(D) = Θ p(Djθ)p(θ)dθ ´ Summarizing the posterior: MAP Posterior mode: θb = argmaxθ2Θ p(θjD) (maximum a posteriori). mean Posterior mean: θb = E [θjD]. Posterior variance: Var[θjD]. Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 2 / 14 Bayesian Learning Review of Bayesian Inference Bayesian Inference on the Categorical Distribution Suppose we observe the with yi 2 f1;:::; Kg, and model them as i.i.d. with pmf π = (π1; : : : ; πK): n K Y Y nk p(Djπ) = πyi = πk i=1 k=1 Pn PK with nk = i=1 1(yi = k) and πk > 0, k=1 πk = 1. The conjugate prior on π is the Dirichlet distribution Dir(α1; : : : ; αK) with parameters αk > 0, and density PK K Γ( αk) Y p(π) = k=1 παk−1 QK k k=1 Γ(αk) k=1 PK on the probability simplex fπ : πk > 0; k=1 πk = 1g.
    [Show full text]
  • Improving the Naive Bayes Classifier Via a Quick Variable Selection
    Article Improving the Naive Bayes Classifier via a Quick Variable Selection Method Using Maximum of Entropy Joaquín Abellán * and Javier G. Castellano Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-958-242-376 Academic Editor: Dawn E. Holmes Received: 24 March 2017; Accepted: 19 May 2017; Published: 25 May 2017 Abstract: Variable selection methods play an important role in the field of attribute mining. The Naive Bayes (NB) classifier is a very simple and popular classification method that yields good results in a short processing time. Hence, it is a very appropriate classifier for very large datasets. The method has a high dependence on the relationships between the variables. The Info-Gain (IG) measure, which is based on general entropy, can be used as a quick variable selection method. This measure ranks the importance of the attribute variables on a variable under study via the information obtained from a dataset. The main drawback is that it is always non-negative and it requires setting the information threshold to select the set of most important variables for each dataset. We introduce here a new quick variable selection method that generalizes the method based on the Info-Gain measure. It uses imprecise probabilities and the maximum entropy measure to select the most informative variables without setting a threshold. This new variable selection method, combined with the Naive Bayes classifier, improves the original method and provides a valuable tool for handling datasets with a very large number of features and a huge amount of data, where more complex methods are not computationally feasible.
    [Show full text]