Volcán Descabezado Grande

Total Page:16

File Type:pdf, Size:1020Kb

Volcán Descabezado Grande Volcán Descabezado Grande Región: Maule Provincia: Talca Comuna: San Clemente Coordenadas: 39°35’S – 70°45’W Poblados más cercanos: San Clemente – Vilches – Armerillo - Radal Tipo de volcán: Complejo volcánico Altura: 3830 m s.n.m. Diámetro basal: 11 km 2 Flanco oeste del volcán Descabezado Grande Área basal: 95 km (Fotografía: Carolina Silva, SERNAGEOMIN) Volumen estimado: 50 km3 Última actividad: 1933 Última erupción mayor: 1932 Ranking de riesgo 11 (alto) específico: Generalidades El volcán Descabezado Grande corresponde a un estratovolcán de cima achatada con un cráter central de 1.5 km de diámetro, relleno con hielo. Está emplazado en la alta cordillera de la región de Maule, 65 km al este de San Clemente. Este volcán es activo desde hace al menos unos 300 mil años y sus productos volcánicos corresponden principalmente a lavas, tefras y aglutinados de composición andesítica a riodacítica, que han alcanzado hasta 7 km de longitud. Registro eruptivo El único registro histórico data de 1932, después de la gran erupción de su vecino volcán Quizapu en abril de ese año. Durante esta erupción, en junio de 1932, se abre en su ladera norte el cráter “Respiradero”, de cerca de 900 m de diámetro, generando una columna de ceniza de varios kilómetros de altura y caída de piroclastos. Numerosas explosiones habrían continuado hasta fines de 1932. Estudios en curso del Programa de Riesgo Volcánico, sugieren actividad en el volcán Descabezado Grande con posterioridad a la gran erupción del volcán Quizapu en 1932, la que habría generado flujos piroclásticos de 8 km de longitud desde el cráter central. En su estado actual, el volcán Descabezado Grande no tiene actividad, salvo pequeñas fumarolas en el cráter lateral “Respiradero” en 2009. Peligros y riesgos asociados En caso de generar una erupción explosiva, generaría flujos de piroclastos, lluvia de tefra y lahares, con riesgo para las obras de ingeniería y pobladores de la hoya de los ríos Lontué, Blanquillo y Estero Barroso. Mapa de ubicación de Volcán Descabezado Grande REFERENCIAS Drake, R. 1976. Chronology of Cenozoic igneous and tectonic events in the Central Chilean Andes, latitudes 35º30’ to 36ºS. Journal of Volcanology and Geothermal Research, 1, 265-284. González-Ferrán, O. 1995. Volcanes de Chile. Instituto Geográfico Militar, Santiago, 640 p. Hildreth, W., Grunder, A., Drake, R. 1984. The Loma Seca Tuff and the Calabozos caldera: A major ash-flow and caldera complex in the southern Andes of central Chile. Geological Society of America Bulletin, v. 95, p. 45-54. Hildreth, W., Drake, R., 1992. Volcán Quizapu, Chilean Andes. Bulletin of Volcanology, 54, 93-125. Información Cartográfica: No se ha elaborado información cartográfica para este volcán. .
Recommended publications
  • University of Nevada, Reno a Study of Pleistocene Volcano Manantial
    University of Nevada, Reno A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Heather Winslow Dr. Philipp Ruprecht, Thesis Advisor May 2018 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by HEATHER WINSLOW Entitled A Study Of Pleistocene Volcano Manantial Pelado, Chile: Unique Access To A Long History Of Primitive Magmas In The Thickened Crust Of The Southern Andes be accepted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Philipp Ruprecht, Ph.D., Advisor Wenrong Cao, Ph.D., Committee Member Adam Csank, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2018 i ABSTRACT Textural and geochemical analysis of lavas and tephra from a poorly studied, glacially dissected, mafic, stratocone, Manantial Pelado, in the Southern Andean Volcanic Zone was collected to characterize the volcano’s petrogenesis and assess its primitive nature. Manantial Pelado lies within the transitional segment of the Southern Volcanic Zone (35.5°S) amidst thickened crust (~55 km) while surrounded by extensive silicic volcanism such as the Descabezado Grande-Cerro Azul Volcanic Complex. How mafic magmas reached the surface through thickened continental crust is a larger question at hand, but prior to addressing broader processes at work, initial geochemical characterization is necessary. Understanding the full extent of its primitive nature is crucial for broader insight of proximal vent interactions and relationships as well as insight towards magma genesis.
    [Show full text]
  • Sitting on Top of the World
    Notes from Mineralogy lecture on the chemistry and structure of various minerals (pyroxenes and amphiboles) that could crystallize from slowly cooling ers of lava flows and ash flows basalt magma. The different that built up the mountain. minerals reflect the changing In the regions exposed by conditions (temperature and erosion of these half-million- composition) in a magma chamber deep in the earth's year-old volcanoes, Dr. Wulff is crust. able to sample the lavas that poured out of the vents and built up the volcano, flow upon flow. “Sampling each flow allows us to evaluate the separate cycles of eruptive activity. By looking at the mineral compositions and whole- rock chemistry of the ancient PHOTO BY RYAN FILLOON Andrew Wulff and several undergraduate students take a break from sampling lavas, we can tell something about lava flows to plan the next traverse, under the imposing edifice of Volcan Cerro how the volcano has behaved over Azul in the Chilean Andes. time. This means we can make more accurate predictions of what will happen in the future,” he said. Two of his WKU undergraduate students are working with Chilean lava samples to determine whether SITTING ON TOP the volcanic complex is currently in a period of rapid growth or slower growth. “By compiling all these eruptive events into a composite OF THE WORLD history, we can get a good idea of how this complex behaves, and we can model individual eruptive B Y T O M M Y N E W T O N episodes. That’s a different approach from what most others are doing.” SOMEHOW IT SEEMS FITTING THAT Dr.
    [Show full text]
  • Assessment of Exploitable Geothermal Resources Using Magmatic Heat Transfer Method, Maule Region, Southern Volcanic Zone, Chile
    GRC Transactions, Vol. 36, 2012 Assessment of Exploitable Geothermal Resources Using Magmatic Heat Transfer Method, Maule Region, Southern Volcanic Zone, Chile Diego Aravena and Alfredo Lahsen Departamento de Geología, Universidad de Chile, Centro de Excelencia en Geotermia de los Andes (CEGA) Keywords ment, and establishes a semi-logarithmic correlation between the Resource assessment, Maule, Southern Volcanic Zone, vol- resources and the volume of magma emplaced in the upper crust. canic arc, magmatic heat transfer, volcanic system, Monte Other heat-in-place techniques have been developed for estimat- Carlo, Chile ing geothermal resource size (e.g., Williams et al., 2008; Garg and Combs, 2010; 2011), but these methods are better suited for explored and identified geothermal systems. Abstract The mean calculated resources for the Maule region are ~1,400 MWe. These values are distributed between five main eruptive The Andean volcanic arc includes over 200 active strato- complexes with individual values that range from 177 to 392 volcanoes and at least 12 giant caldera systems. Nevertheless, MWe for 30 years. there is not a standard procedure for estimating geothermal resources associated with unexplored volcanic systems. The 1. Introduction study area corresponds to the main cordillera in the Maule re- gion, Chile, along the Southern Volcanic Zone (SVZ) between The Andean volcanic arc includes over 200 potentially active 34.8º and 36.5º S. The tectonic style and magma emplacement Quaternary volcanoes, and at least 12 giant caldera/ignimbrite model of this zone favors the occurrence of volcanic associated systems, occurring in four separate segments referred to as the geothermal systems, due to the presence of shallow magmatic Northern (ZVN; 2ºN-5ºS), Central (ZVC; 14-28ºS), Southern chambers and Cenozoic thrust faults that generate secondary (ZVS; 33-46ºS) and Austral (ZVA; 49-55ºS) Volcanic Zones.
    [Show full text]
  • Early British Ascents in the Andes (1831-1946)
    61 Early British Ascents in the Andes (1831-1946) Evelio Echevarria Plate 27 The purpose of this short contribution is to summarize those British ascents that took place in the Andes of South America, from 1831, year of the first British Andean ascent, until 1946. Most of these ascents are probably known to the readers of this journal, but some may be wholly new. A few ascents that for several reasons should no longer be included in this chronicle are discussed at the end. Readers who may feel inclined to study this survey are asked to maintain a proper sense of proportions and of time. A peak that 30 years ago demanded a long and frustrating approach may today be reached in a few hours of driving; a nOOm peak in S Chile has far more glaciation than a 5700m mountain of the Peruvian desert; what was considered to be a difficult ascent some seven decades ago may be regarded today as an easy one-day excursion for a hiker; and a mountain at present devoid of snow may have been snowclad until the end of last century. And so on. In the following list, names of climbers, peaks climbed (with height and location) and exact date of ascent are given whenever possible. A short comment is added when it may provide some useful or interesting additional information. Hall, 1831. Col Francis Hall joined French explorer Jean-Baptiste Boussing­ ault to attempt several peaks in the Ecuadorian Andes, but only one actual ascent took place, that of Pichincha (4791m), in the Cordillera Occidental.
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]
  • Supplementary Material
    Supplementary Material In the following, the relevant data sets and test results, together with the corresponding figures, are shown for each volcano, together with a short comment on the volcano characteristics and the fit quality. The names adopted for the repose time fit parameters are exponential distribution: Weibull distribution: log-logistic distribution: Tupungatito year VEI year VEI year VEI Tupungatito Volcano is located in the high Andes east of Chile's capital 1829 2 1925 2 1961 2 Santiago, which is inhabited by six million people and by far Chile's 1835 2? 1946 2 1964 2 most important industrial and commercial centre. The volcano built up 1861 2 1958 2 1968 2 since Pleistocene times in the Nevado Sin Nombre Caldera (Siebert and 1889 2 1959 2 1980 2 Simkin, 2002), its recent activity consists of 18 smaller historical 1897 2 1959 2 1986 1 eruptions, which produced a total erupted volume of about 6 km³ 1901 2 1960 2 1987 2 (Sruoga et al., 1993). 1907 2 2 fit A t k d x0 p ²/DoF R KS-diff. AICc exp. 15.17±0.36 10.57±0.39 0.384 0.978 0.097 14.0 16± 0 9.97±0.27 0.442 0.974 0.095 14.0 WB 15.37±0.98 0.0970 0.9297 0.364 0.975 0.108 15.1 ±0.009 ±0.092 16± 0 0.1023 0.8811 0.356 0.975 0.126 13.3 ±0.003 ±0.039 log 15.04±0.51 6.881 1.494 0.445 0.976 0.134 17.1 ±0.470 ±0.097 16± 0 6.140 1.385 0.479 0.973 0.177 16.5 ±0.247 ±0.072 KS-threshold: 0.328 all fits pass the K-S-test The difference in AICc for fixed vs.
    [Show full text]
  • Evolución Geomorfológica Del Valle Del Indio, Región Del Maule, Chile: Procesos Glaciales Y Volcánicos
    UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS QUÍMICAS DEPARTAMENTO CIENCIAS DE LA TIERRA EVOLUCIÓN GEOMORFOLÓGICA DEL VALLE DEL INDIO, REGIÓN DEL MAULE, CHILE: PROCESOS GLACIALES Y VOLCÁNICOS Memoria para optar al Título de Geóloga Paulina Victoria Henry Osorio Profesor Patrocinante: Dr. Joaquín Alejandro Cortés Aranda Profesionales Guía: Dra. María Hinia Mardones Flores Sr. Pablo Antonio Salas Reyes Profesores Comisión: MSc. Abraham Elías González Martínez Dra. Verónica Laura Oliveros Clavijo CONCEPCIÓN, 2019 A mi familia. ÍNDICE RESUMEN Página 1. INTRODUCCIÓN ………………………………………………………... 1 1.1. Presentación del problema ………………………………………… 1 1.2. Hipótesis ……………………………………………………………….. 2 1.3. Objetivos ………………………………………………………………. 2 1.3.1. Objetivo general ………………………………………………….. 2 1.3.2. Objetivos específicos ……………………………………………… 2 1.4. Metodología …………………………………………………………… 3 1.4.1. Etapa de gabinete pre-terreno …………………………………… 3 1.4.2. Etapa de terreno ………………………………………………….. 3 1.4.3. Etapa de gabinete post-terreno ………………………………….. 3 1.5. Ubicación y accesos ………………………………………………….. 4 1.6. Trabajos anteriores …………………………………………………. 5 1.7. Marco teórico …………………………………………………………. 7 1.8. Agradecimientos ……………………………………………………… 7 2. REVISIÓN BIBLIOGRÁFICA ……………………………………….. 9 2.1. Síntesis estratigráfica ………………………………………………. 9 2.1.1. Formación Abanico (Eoceno superior- Mioceno inferior) …….. 9 2.1.2. Formación Cola de Zorro (Plioceno inferior- Pleistoceno inferior) …………………………………………………………... 9 2.1.3. Depósitos cuaternarios recientes ………………………………... 10 2.2. Zona Volcánica
    [Show full text]
  • Crustal Contributions to Arc Magmatism in the Andes of Central Chile
    Contributions to Contrib Mineral Petrol (1988) 98:455M89 Mineralogy and Petrology Springer-Verlag 1988 Crustal contributions to arc magmatism in the Andes of Central Chile Wes Hildreth 1 and Stephen Moorbath 2 1 USGS, Menlo Park, California 94025, USA 2 Department of Earth Sciences, University of Oxford, OX1 3PR, UK Abstract. Fifteen andesite-dacite stratovolcanoes on the vol- ascending magmas, but the base-level geochemical signature canic front of a single segment of the Andean arc show at each center reflects the depth of its MASH zone and along-arc changes in isotopic and elemental ratios that dem- the age, composition, and proportional contribution of the onstrate large crustal contributions to magma genesis. All lowermost crust. 15 centers lie 90 km above the Benioff zone and 280 _+ 20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and sea- floor are nearly constant along the segment. Nonetheless, Introduction from S to N along the volcanic front (at 57.5% SiO2) K20 rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Despite growing acceptance that several mantle, crustal, Ce from 25 to 50 ppm, whereas FeO*/MgO declines from and subducted reservoirs contribute to arc magmas along >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part continental margins, there is still no real consensus concern- reflecting suppression of HREE enrichment by deep-crustal ing the proportions of the various contributions nor con- garnet. Rb, Cs, Th, and U contents all rise markedly from cerning the loci and mechanisms of mixing among source S to N, but Rb/Cs values double northward opposite components or among variably evolved magma batches.
    [Show full text]
  • A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P
    Land of the living Mountains A geo-referenced visual guide to 70 Chilean volcanoes Photography by Gerard Prins Mission Impossible Corcovado volcano (p. 98) Ever since, in 1990, I laid eyes on “my first volcano” – Vol- that will likely take the rest of my life and still be grossly in- Additional handicaps are that I’m no mountaineer nor an ex- cán Villarrica in the Chilean South – I have been impressed by complete. pert by any measure and, thus, constantly fear to be wrong. their beauty as well as by the imposing forces that lie behind Especially because even detailed maps of the Chilean In- their creation, and have, willingly or unwillingly, pointed In the process, I have picked up some passing knowledge stituto Geográfico Militar – or Google Earth for that mat- my camera at them over and again. on geology and volcanism. However, “passing” is the opera- ter – provide precious little info on mountain names and Unwillingly, because in a country that is part of the Pacific tive word here, which is why I am relying on shameless (but locations. Ring of Fire and counts with over 600 volcanic phenomena, often edited) copy/paste from the Global Volcanism Program Moreover, I have been chasing the González-Ferrán Chil- it is virtually impossible to look towards the Andes Cordill- Web site to textually accompany the images, and generate at ean volcano “Bible” for the last ten years or so, to no avail. era and not capture something that is somehow related with least some sort of context. Still, I hope this document will be a source of entertain- the incessant subduction of the Nazca Plate under the South Although this presentation visually documents roughly ment and reason enough for travellers to either get a good tour American- and Antarctica Plates.
    [Show full text]
  • Plan Regulador Intercomunal De Talca
    PLAN REGULADOR INTERCOMUNAL DE TALCA SEREMI MINVU REGIÓN DEL MAULE INFORME DE RIESGOS Edición 1 Septiembre 2019 Desiderio Alejandro Velis Cabello Geógrafo Especialista en riesgos Informe de Riesgos Fuente Imágenes portada: Registro URBE 2018 ESTUDIO PLAN REGULADOR INTERCOMUNAL DE TALCA, SEREMI MINVU REGIÓN DEL MAULE 2 Informe de Riesgos ÍNDICE 1 ESTUDIO DE RIESGOS NATURALES Y PROTECIÓN AMBIENTAL .................... 7 1.1 Introducción ..................................................................................................................... 7 1.2 Objetivos del estudio ....................................................................................................... 7 1.3 Área de estudio ............................................................................................................... 8 1.4 Alcances y limitaciones ................................................................................................... 8 1.5 Marco jurídico .................................................................................................................. 9 2 Línea de base medio físico y natural .................................................................. 12 2.1 Clima ............................................................................................................................. 12 2.2 Hidrografía ..................................................................................................................... 17 2.3 Hidrogeología ...............................................................................................................
    [Show full text]
  • Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
    Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers.
    [Show full text]
  • Catalogue of Satellite Photography of the Active Volcanoes of the World
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) LA-6279-1 Informal Report UC-11 Reporting Date: March 1976 Issued: March 1976 63AS 1H Catalogue of Satellite Photography of the Active Volcanoes of the World by Grant Heiken IO5\MAlofIamoS scientific laboratory of the University of California LOS ALAMOS, NEW MEXICO 87545 An Affirmative Action/Equal Opportunity Employer UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W7185 •ENO. DS DISTRIBUTION OF THI S DOCUMENT IS UNLIMITED RW^]CavSt.Y.:..wyr^trlaF....^ewa..k^. ,..a_,. zv.ieJ SR .t ^_...,^.. ... ..a.,, .pRsnxa3.s .;.., ., .^... _.. .. _.. - ._. ... .-.^., .r.. ,°1 , ;a ^ Kul h Ij t: z. u ;' i a t 1 n e (^1 BLANKPA GE d 1 Ati.. j: 3 h ^ YC f .w 5 Y6t..a.>. •gym ... .. [...a...... ,.I .. rt... \ ,. .. .. fi 1 L 4 t Earlier stages of this compilation were made while the i) author was employed by the National Aeronautics and Space i Administration.
    [Show full text]