A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P

Total Page:16

File Type:pdf, Size:1020Kb

A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P Land of the living Mountains A geo-referenced visual guide to 70 Chilean volcanoes Photography by Gerard Prins Mission Impossible Corcovado volcano (p. 98) Ever since, in 1990, I laid eyes on “my first volcano” – Vol- that will likely take the rest of my life and still be grossly in- Additional handicaps are that I’m no mountaineer nor an ex- cán Villarrica in the Chilean South – I have been impressed by complete. pert by any measure and, thus, constantly fear to be wrong. their beauty as well as by the imposing forces that lie behind Especially because even detailed maps of the Chilean In- their creation, and have, willingly or unwillingly, pointed In the process, I have picked up some passing knowledge stituto Geográfico Militar – or Google Earth for that mat- my camera at them over and again. on geology and volcanism. However, “passing” is the opera- ter – provide precious little info on mountain names and Unwillingly, because in a country that is part of the Pacific tive word here, which is why I am relying on shameless (but locations. Ring of Fire and counts with over 600 volcanic phenomena, often edited) copy/paste from the Global Volcanism Program Moreover, I have been chasing the González-Ferrán Chil- it is virtually impossible to look towards the Andes Cordill- Web site to textually accompany the images, and generate at ean volcano “Bible” for the last ten years or so, to no avail. era and not capture something that is somehow related with least some sort of context. Still, I hope this document will be a source of entertain- the incessant subduction of the Nazca Plate under the South Although this presentation visually documents roughly ment and reason enough for travellers to either get a good tour American- and Antarctica Plates. 70 Chilean volcanoes, only a fraction of the country’s geo- guide or ask for a window seat to contemplate the remark- Willingly, because about twenty years ago I realized that, graphic wealth and slightly over half of those recognized by able geological phenomena of the 4.270 km of the central while written documentation of their existence is rather ex- the Smithsonian Institution, quite a few images are not up to southern Andes Cordillera contained within that skinny tensive, even though not exhaustive, visual documentation to par technically – especially the aerials – which is a mere strip of territory called Chile. is, photographically speaking, “good-willing” at best. reminder of the task pending. Which is why since I made it my mission to visually doc- That said, in some cases aerials are the only way to docu- While my visual documentation of these living mountains ument Chilean “Living Mountains”, wherever I walked, ment certain mountains, because they are virtually inacces- is as abundant on some as scarce on others, funny as it may drove or flew. sible by any other means; most notably the volcanoes of the seem, the – active – Villarrica volcano is still conspicuously Even though the mission is to photograph only those vol- southern Chilean archipelago, but also some that are hidden absent in the collection. canoes catalogued as such by the Smithsonian Institution’s deep inside the Andes Cordillera, such as Haliaque (p. 93), Global Volcanism Program, this is already a Herculean task which is very hard to visualize even from the air. Enjoy! Northern Chile From the Nevados de Putre to volcán Copiapó Tacora Deslinde Cordón de Puntas Negras Nevados de Putre - Taapaca Tatio Miñiques Nevados de Paya Chata - Parinacota Cerro La Torta Tujle Maar Nevados de Quimsa Chata Cerros de Tocorpuri Tuyac to Guallatiri Putana Caichinique Isluga Colorado El Negrillar Irruputuncu Curiquinca Cerros Pular - Pajonales Olca-Paruma Escalante (Apagado) Socompa Miño Ojos del Toro Llullaillaco Aucanchilca Azufrera Saciel Cerro Escorial Ollagüe Saire Cábur Lastarria Cerro del Azufre Lican Cabur Cordón del Azufre Pabellón (Chanca) Juriques Cerro Bayo complex Aguilucho Guayaques complex Sierra Nevada complex San Pedro & San Pablo Puricó complex Falso Azufre complex Incaliri Colachi Nevado de Incahuasi Paniri Laguna Verde Tres Cruces Apagado Norte Acamarachi El Solo Cerro del León Aguas Calientes Nevadas Ojos del Salado Toconce Lascar Copiapó Linzor Chiliques Geyseres del Tatio Miscanti Nevados de Putre, volcán Taapacá. 18.08ºS 69.43ºW Nevados de Paya Chata, volcán Parinacota 18.17ºS 69.15ºW The Parinacota volcano is the southernmost and youngest Holocene eruptive activity has subsequently reconstruct- of a pair forming the Nevados de Payachata (Ayamara: Two ed the Parinacota stratovolcano, which contains a pristine, sisters) volcanic group along the Chilean-Bolivian border. 300-m-wide summit crater and youthful lava flows on the The symmetrical, 6.348 m. Parinacota (Flamigo Lake) western flanks. Taapacá complex volcano (5.861 m picture right) is part E-W, with Taapacá located on the eastern side and Nevados A lava flow from the youngest eruptive phase was Ar-Ar volcano forms a twin volcano with the dominantly Pleis- Although no historical eruptions are known from Pari- of the Nevados de Putre volcanic chain, which towers to the de Putre itself on the west. The town of Putre is built on top dated at about 38.000 years (Wörner et al., 2000). tocene, 6.222 m. Pomerape volcano, which towers above a nacota, Helium surface-exposure dates have been obtained NE over the northern Chilean of town of Putre. of debris-avalanche deposits from Taapacá. The Nevados de Putre volcanic center to the WSW also low saddle to the NE. for eruptions during the past two thousand years, both from The elongated volcanic massif consists of a dacitic lava- Taapacá was considered to be of probable Holocene age displays vigorous hot springs and solfataras. Collapse of Parinacota less than 8.000 years ago produced the main cone and the Ajata group of satellite cones and lava dome complex. and contains hot springs and sulfur deposits that were mined a 6 cu km debris avalanche that traveled 22 km. to the west flows on the south and SW flanks. It overlies Pleistocene ignimbrite deposits and trends roughly from 1933 to 1956 (González-Ferrán, 1974, 1995). and blocked drainages, forming Lake Chungará. Nevados de Quimsa Chata and volcán Guallatiri Nevados de Quimsa Chata. 18.37°S 69.05°W Volcán Guallatiri (active). 18.72ºS 69.14ºW Volcán Acotango, along with Volcán Humarata to the north high Humarata (L), and 5.990-m-high Cerro Capurata (R) Humarata, with a summit crater breached to the ESE, Guallatiri , one of northern Chile’s most active volcanoes, complex, with the active vent situated at its southern side. Intense fumarolic activity with “jet-like” noises continues, and Cerro Capurata to the south, comprises the Nevados de they straddle the Chile-Bolivia boundary along a roughly and Capurata, a complex of lava domes and associated py- is a symmetrical ice-clad stratovolcano that lies at the SW end Thick lava flows are prominent on the lower northern and and numerous solfataras extend more than 300 m down the Quimsachata volcanic group, Quimsachata meaning Three N-S line. roclastic-flow deposits, may also have been active during of the Nevados de Quimsachata volcanic group. western flanks of the andesitic-to-rhyolitic volcano. west flank. in the Andean Aymara language. Acotango is in a fairly advanced stage of dissection, but the Holocene. The 6.071-m-high Guallatiri lies just west of the border Minor explosive eruptions have been reported from Gual- The 6.052-m-high Acotango stratovolcano is the central a morphologically youthful lava flow on its northern flank with Bolivia and is capped by a central dacitic dome or lava latiri since the beginning of the 19th. Century. and highest of three stratovolcanoes; together with 5.730-m- suggests Holocene activity (de Silva and Francis, 1991). Cerro Paniri. 21.08ºS 68.25ºW Cerro Paniri is a complex stratovolcano located about 30 olitic ignimbritic fields and voluminous domes of dacitic-to- Between Paniri and Cerro de León, 13.5 km to the SE, km SE of San Pedro volcano and forms, together with Cerro rhyolitic composition (de Silva, 1989). lies the gigantic Chao lava dome. de León and Cerro Toconce, part of the 65 km-long San The summit of 5.946-m-high Paniri contains three The age of andesitic-to-dacitic Paniri was considered to Pedro-Linzor volcanic chain. craters separated by about 4 km, along a NW-SE trend. be Pleistocene-Holocene (González-Ferrán, 1995). This chain is characterized by extensive rhyodacitic-to-rhy- Cerro Paniri Cerro de León Cerro Toconce Vn. San Pedro Chao lava dome Cerro del León, cerro Toconce. 21.08ºS 68.25ºW Cerro del León (L) is a 5.760-m-high andesitic stratovol- The massive Chao lava dome and flow is the world’s larg- 1991). The eruption of less than 1 cu km of dacitic pyroclastic cano which lies immediately north of the Toconce compos- est of its type. The 14.5-km-long dacitic lava flow has dis- flows preceded the initial lava extrusion, which formed the ite volcano (5.435 m). González-Ferrán (1995) considered El tal margins that are 350-400 m high and features dramatic 22 cu km compound main flow. León to be of Pleistocene-Holocene age. 30-m-high flow ridges on its surface. Eruption of a small amount of rhyolitic airfall and growth The volcano is flanked by two massive dacitic lava domes, The age of the flows was considered to be post-glacial of a pumice cone was followed by effusion of the final 3 cu 2,6 cu km Chillahuita to the SE and 26 cu km Chao to the (Guest 1981, pers. comm.), but Argon-Argon dates indicate km of lava.
Recommended publications
  • Leader in Metals That Facilitate the Future
    Chile Leader in metals that facilitate the future Chile Leader in metals that facilitate the future The Projects section of this document has been prepared based on information provided by third parties. The Ministry of Mining has conducted a review limited to validate the existence and ownership of the projects, but the scope of this process does not confirm the accuracy or veracity of the technical data submitted by the parties. Therefore, the information on each project remains the exclusive responsibility of the interested parties identified on each data sheet. The Ministry of Mining is not responsible for the use and/or misuse of this information, and takes no responsibility for any commercial conditions that may be agreed between sellers and potential purchasers. Second edition Santiago, 2020 Editorial board Francisco Jofré, Ministry of Mining Bastián Espinosa, Ministry of Mining Javier Jara, Ministry of Mining We thank the collaboration of Empresa Nacional de Minería (Enami). Invest Chile. Instituto de Ingenieros en Minas. Colegio de Geólogos. Kura Minerals. Minería Activa. Design, layout and illustration Motif Diseño Integral SpA Photographs Ministry of Mining Printing Imprex Chile Leader in metals that facilitate the future 3 Table of Contents Letter from the Authorities ................................................................ 6 Prologue ............................................................................................. 9 Acknowledgments ...........................................................................
    [Show full text]
  • Chronology and Impact of the 2011 Cordón Caulle Eruption, Chile
    Nat. Hazards Earth Syst. Sci., 16, 675–704, 2016 www.nat-hazards-earth-syst-sci.net/16/675/2016/ doi:10.5194/nhess-16-675-2016 © Author(s) 2016. CC Attribution 3.0 License. Chronology and impact of the 2011 Cordón Caulle eruption, Chile Manuela Elissondo1, Valérie Baumann1, Costanza Bonadonna2, Marco Pistolesi3, Raffaello Cioni3, Antonella Bertagnini4, Sébastien Biass2, Juan-Carlos Herrero1, and Rafael Gonzalez1 1Servicio Geológico Minero Argentino (SEGEMAR), Buenos Aires, Argentina 2Department of Earth Sciences, University of Geneva, Geneva, Switzerland 3Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italia 4Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italia Correspondence to: Costanza Bonadonna ([email protected]) Received: 7 July 2015 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 8 September 2015 Accepted: 29 January 2016 – Published: 10 March 2016 Abstract. We present a detailed chronological reconstruction 1 Introduction of the 2011 eruption of the Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific re- Recent volcanic crises (e.g. Chaitén 2008, Cordón Caulle ports and satellite images. Chronology of associated volcanic 2011 and Calbuco 2015, Chile; Eyjafjallajökull 2010, Ice- processes and their local and regional effects (i.e. precursory land) clearly demonstrated that even small–moderate to sub- activity, tephra fallout, lahars, pyroclastic density currents, plinian eruptions, particularly if long-lasting, can paralyze lava flows) are also presented. The eruption had a severe entire sectors of societies with a significant economic im- impact on the ecosystem and on various economic sectors, pact. The increasing complexity of the impact of eruptions on including aviation, tourism, agriculture and fishing industry.
    [Show full text]
  • Universita' Degli Studi Di Milano Bicocca
    Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra Università degli studi di Milano-Bicocca Dottorato di Ricerca in Scienze della Terra XXVI ciclo Earthquake-induced static stress change in promoting eruptions Tutore: Prof. Alessandro TIBALDI Co-tutore: Dott.ssa Claudia CORAZZATO Fabio Luca BONALI Matr. Nr. 040546 This work is dedicated to my uncle Eugenio Marcora who led my interest in Earth Sciences and Astronomy during my childhood Abstract The aim of this PhD work is to study how earthquakes could favour new eruptions, focusing the attention on earthquake-induced static effects in three different case sites. As a first case site, I studied how earthquake-induced crustal dilatation could trigger new eruptions at mud volcanoes in Azerbaijan. Particular attention was then devoted to contribute to the understanding of how earthquake-induced magma pathway unclamping could favour new volcanic activity along the Alaska-Aleutian and Chilean volcanic arcs, where 9 seismic events with Mw ≥ 8 occurred in the last century. Regarding mud volcanoes, I studied the effects of two earthquakes of Mw 6.18 and 6.08 occurred in the Caspian Sea on November 25, 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the five years following the earthquakes. Results show that crustal dilatation might have triggered only 7 eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Dynamic rather than static strain is thus likely to have been the dominating “promoting” factor because it affected all the studied unrested volcanoes and its magnitude was much larger.
    [Show full text]
  • Cantidades De Votantes Por Grupos Etarios En Cada Sexo Por Comuna Y
    CANTIDADES DE VOTANTES POR GRUPOS ETARIOS Página 1 de 25 EN CADA SEXO POR COMUNA Y TOTALES DEL PAIS ELECCIONES MUNICIPALES 23 DE OCTUBRE DE 2016 Comuna Sexo [ 18 - 19 ][ 20 - 24 ][ 25 - 29 ][ 30 - 34 ][ 35 - 39 ][ 40 - 44 ][ 45 - 49 ][ 50 - 54 ][ 55 - 59 ][ 60 - 64 ][ 65 - 69 ][ 70 - 74 ][ 75 - 79 ] [ 80 + ] Total REGION DE TARAPACA ALTO HOSPICIO M 242 693 766 742 748 824 988 1.030 770 591 376 243 138 76 8.227 ALTO HOSPICIO V 181 435 549 462 494 544 648 769 636 512 379 181 87 58 5.935 Total ALTO HOSPICIO T 423 1.128 1.315 1.204 1.242 1.368 1.636 1.799 1.406 1.103 755 424 225 134 14.162 CAMIÑA M 34 86 88 63 77 89 96 87 76 63 55 24 33 19 890 CAMIÑA V 22 62 69 65 65 75 66 75 80 66 37 32 22 36 772 Total CAMIÑA T 56 148 157 128 142 164 162 162 156 129 92 56 55 55 1.662 COLCHANE M 54 149 156 128 153 106 88 72 41 47 38 31 16 19 1.098 COLCHANE V 49 120 128 132 130 108 86 60 45 48 50 33 32 21 1.042 Total COLCHANE T 103 269 284 260 283 214 174 132 86 95 88 64 48 40 2.140 HUARA M 26 84 103 116 112 129 128 142 117 108 78 46 33 47 1.269 HUARA V 20 82 77 102 111 93 110 108 127 99 86 63 35 50 1.163 Total HUARA T 46 166 180 218 223 222 238 250 244 207 164 109 68 97 2.432 IQUIQUE M 535 1.262 1.649 2.022 2.174 2.245 2.295 2.621 2.669 2.470 1.814 1.295 778 704 24.533 IQUIQUE V 418 1.000 1.378 1.826 1.939 2.226 2.116 2.307 2.501 2.411 1.742 1.215 655 548 22.282 Total IQUIQUE T 953 2.262 3.027 3.848 4.113 4.471 4.411 4.928 5.170 4.881 3.556 2.510 1.433 1.252 46.815 PICA M 32 113 144 140 121 149 169 145 160 134 136 81 77 68 1.669 PICA V 48 93 116 128 118 108
    [Show full text]
  • Field Excursion Report 2010
    Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010).
    [Show full text]
  • Chilean Notes, 1962-1963
    CHILEAN NOTES ' CHILEAN NOTES, 1962-1963 BY EVELIO ECHEVARRfA C. (Three illustrations: nos. 2I-23) HE mountaineering seasons of I 962 and I 963 have seen an increase in expeditionary activity beyond the well-trodden Central Andes of Chile. This activity is expected to increase in the next years, particularly in Bolivia and Patagonia. In the Central Andes, \vhere most of the mountaineering is concen­ trated, the following first ascents were reported for the summer months of I962: San Augusto, I2,o6o ft., by M. Acufia, R. Biehl; Champafiat, I3,I90 ft., by A. Diaz, A. Figueroa, G. and P. de Pablo; Camanchaca (no height given), by G. Fuchloger, R. Lamilla, C. Sepulveda; Los Equivo­ cados, I3,616 ft., by A. Ducci, E. Eglington; Puente Alto, I4,764 ft., by F. Roulies, H. Vasquez; unnamed, I4,935 ft., by R. Biehl, E. Hill, IVI. V ergara; and another unnamed peak, I 5,402 ft., by M. Acufia, R. Biehl. Besides the first ascent of the unofficially named peak U niversidad de Humboldt by the East German Expedition, previously reported by Mr. T. Crombie, there should be added to the credit of the same party the second ascent of Cerro Bello, I7,o6o ft. (K. Nickel, F. Rudolph, M. Zielinsky, and the Chilean J. Arevalo ), and also an attempt on the un­ climbed North-west face of Marmolejo, 20,0I3 ft., frustrated by adverse weather and technical conditions of the ice. In the same area two new routes were opened: Yeguas Heladas, I5,7I5 ft., direct by the southern glacier, by G.
    [Show full text]
  • Remobilization of Crustal Carbon May Dominate Volcanic Arc Emissions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESC Publications - Cambridge Univesity Submitted Manuscript: Confidential Title: Remobilization of crustal carbon may dominate volcanic arc emissions Authors: Emily Mason1, Marie Edmonds1,*, Alexandra V Turchyn1 Affiliations: 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ *Correspondence to: [email protected]. Abstract: The flux of carbon into and out of Earth’s surface environment has implications for Earth’s climate and habitability. We compiled a global dataset for carbon and helium isotopes from volcanic arcs and demonstrated that the carbon isotope composition of mean global volcanic gas is considerably heavier, at -3.8 to -4.6 ‰, than the canonical Mid-Ocean-Ridge Basalt value of -6.0 ‰. The largest volcanic emitters outgas carbon with higher δ13C and are located in mature continental arcs that have accreted carbonate platforms, indicating that reworking of crustal limestone is an important source of volcanic carbon. The fractional burial of organic carbon is lower than traditionally determined from a global carbon isotope mass balance and may have varied over geological time, modulated by supercontinent formation and breakup. One Sentence Summary: Reworking of crustal carbon dominates volcanic arc outgassing, decreasing the estimate of fractional organic carbon burial. Main Text: The core, mantle and crust contain 90% of the carbon on Earth (1), with the remaining 10% partitioned between the ocean, atmosphere and biosphere. Due to the relatively short residence time of carbon in Earth’s surface reservoirs (~200,000 years), the ocean, atmosphere and biosphere may be considered a single carbon reservoir on million-year timescales.
    [Show full text]
  • [email protected].: Tacora/Rev
    [email protected].: Tacora/rev: 18 de noviembre, 2009/24 de abril, 2011/19 de mayo, 2011/05 de mayo, 2013/10 de marzo, 2014/07 de mayo, 014/l28 de diciembre, 2015/26 de junio, 2016 [email protected].: Tacora/rev: 18 de noviembre, 2009/24 de abril, 2011/19 de mayo, 2011/05 de mayo, 2013/10 de marzo, 2014/07 de mayo, 014/l28 de diciembre, 2015/26 de junio, 2016 LA INDUSTRIA AZUFRERA, EL ANDARIVEL Y EL FERROCARRIL DE TACORA por: Ian Thomson N. ÍNDICE 1. Introducción y conclusiones. 2. Los inicios de la explotación del azufre en Chile. 3. La importancia crítica de los costos de transporte. 4. La explotación del azufre del Tacora y los orígenes del Ferrocarril. 5. El tráfico del Ferrocarril, el personal y la rentabilidad. 6. El trazado y la infraestructura del Ferrocarril. 7. El Ferrocarril de Tacora después de su cierre. 8. La red de andariveles. 9. El material rodante ferroviario. Recuadro 1: El de Aucanquilcha: otro ferrocarril azufrero en altura Recuadro 2: La Asociación para la Conservación de las ex-azufreras y del Ferrocarril de Tacora Referencias seleccionadas El autor es, por profesión, un economista dedicado a temas de transporte. Además, durante largos años, ha sido activo en las áreas de la conservación y del estudio de la historia de sistemas de transporte, especialmente los ferroviarios. Promovió, a principios de la década de 1980, la formación de la Asociación Chilena de Conservación del Patrimonio Ferroviario, sirviendo como su presidente durante unos diez años, con breves intervalos.
    [Show full text]
  • Preliminary Ranking of Geothermal Potential in the Cascade and Aleutian Volcanic Arcs, Part I: Data Collection
    GRC Transactions, Vol. 39, 2015 Preliminary Ranking of Geothermal Potential in the Cascade and Aleutian Volcanic Arcs, Part I: Data Collection Lisa Shevenell1, Mark Coolbaugh1,2, Nicholas H. Hinz2, Pete Stelling3, Glenn Melosh4, William Cumming5, and Corné Kreemer2 1ATLAS Geoscience, Inc., Reno NV, USA 2Nevada Bureau of Mines and Geology, UNR, Reno NV, USA 3Western Washington University, Bellingham WA, USA 4GEODE, Santa Rosa CA, USA • 5Cumming Geoscience, Santa Rosa CA, USA [email protected][email protected][email protected][email protected] [email protected][email protected][email protected] Keywords Cascade, Aleutian, volcanic, geothermal, potential, structure, database ABSTRACT As part of a DOE funded project on Geothermal Play Fairway Analysis, a geothermal assessment of volcanic centers in the Cascade and Aleutian volcanic arcs is being conducted that includes a large data gathering effort dis- cussed in this paper, and a statistical modeling effort to qualitatively rank the geothermal potential of individual VCs in these two US arcs, discussed in a second companion paper. The data compiled from the Cascades and Aleutians are compared to geologic, geochemical and geophysical information from productive volcanic arc centers in the other parts of the world. Seven other volcanic arc segments from around the globe are used in this comparative study. Preliminary findings from data evaluation indicate that there are systematic changes in structural setting, from an extensional influ- ence south of Mt. Hood (in part due to encroachment of the back arc in the southern half) to more compressional north of Mt. Hood. Comparison with productive geothermal fields around the world shows that large fumarolic areas are associated with most >240°C power-producing geothermal systems outside the US arcs (e.g., Kamojang, Indonesia, among others), whereas there is a general absence of large fumarolic areas in the Cascades and Aleutian arcs, aside from of the Lassen volcano area.
    [Show full text]
  • Percepciones Y Analogías De Dos Geografías Desencontradas
    Contretas Véliz, Claudio. Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío Vol. X, No. 10, enero-junio 2020 Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío On stoves and traffic lights: Perceptions and analogies of two uneven geographies. The case of the Callaqui volcano in the Pehuenche ancestral geography of Alto Biobío Recibido el 08 de mayo de 2020, aceptado el 08 de junio de 2020 Claudio Contreras Véliz* Resumen En Alto Biobío, área cordillerana del centro sur de Chile, habita parte del pueblo originario Pehuenche, cuyas comunidades o lob mapu, se emplazan alrededor del volcán Callaqui (‘Callavquen’ en la lengua local, que significa ‘celoso de los hom- bres’). El volcán en el último tiempo ha sido monitoreado por la institucionalidad vulcano- lógica y de emergencias del país (SERNAGEOMIN, ONEMI y Universidades), que busca generar planes y acciones para gestionar la alarma de una posible erupción, y advertir a través de un semáforo y escalas de riesgos, la peligrosidad que representa para la población local. No obstante, los pehuenches, habitantes ancestrales del área de influencia del volcán, han convivido con él de una manera intrínseca por genera- ciones, y le han asociado gran parte de sus actividades económicas, sociales y cultu- rales, otorgándole un sentido protector desde sus propias percepciones respecto del macizo montañoso. * Magíster en Geografía con mención en intervención ambiental y territorial de la Universidad Acade- mia de Humanismo Cristiano (PIIT-UAHC), [email protected] 73 Vol.
    [Show full text]
  • The South American Indian As a Pioneer Alpinist
    TI-lE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST 81 THE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST BY EVELIO ECHEVARRfA C. ECENTL Y it has become kno\vn that a number of very high Andean mountain tops had not only been ascended but also permanently occupied by the Indians, possibly as much as three centuries before de Saussure's ascent of Mont Blanc. They climbed peaks of up to 22,ooo ft., they constructed shelters on or near their tops, and they used the high places as watch-towers or as sacrificial shrines. Some authorities believe that this activity took place as early as the late four­ teenth century, though we cannot prove that some of it did not take place long after, possibly as late as the nineteenth century. These Indian accomplishments have been left unmentioned in practi­ cally all mountaineering history books. In this article, which may be the first to attempt a comprehensive survey,1 my purpose is to review briefly the location and the nature of each discovery. The area in which these Indian mountain ascents took place is what in physical geography is known as the Atacama desert (although this name is nowadays used in political and cultural geography for a much more restricted area). It is a treeless, sandy and volcanic waste-land seldom visited by mountaineers. It stretches from the neighbourhood of Arequipa, in Peru, as far south as Elqui in Chile; to the east it reaches the Andean slopes that face the jungles of Argentina and Bolivia, and to the west, the Pacific Ocean.
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]