Remobilization of Crustal Carbon May Dominate Volcanic Arc Emissions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Excursion Report 2010
Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010). -
Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the He Isotope Signatures of Geothermal Systems in Chile
PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 EFFECTS OF VOLCANISM, CRUSTAL THICKNESS, AND LARGE SCALE FAULTING ON THE HE ISOTOPE SIGNATURES OF GEOTHERMAL SYSTEMS IN CHILE Patrick F. DOBSON1, B. Mack KENNEDY1, Martin REICH2, Pablo SANCHEZ2, and Diego MORATA2 1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA 2Departamento de Geología y Centro de Excelencia en Geotermia de los Andes, Universidad de Chile, Santiago, CHILE [email protected] agree with previously published results for the ABSTRACT Chilean Andes. The Chilean cordillera provides a unique geologic INTRODUCTION setting to evaluate the influence of volcanism, crustal thickness, and large scale faulting on fluid Measurement of 3He/4He in geothermal water and gas geochemistry in geothermal systems. In the Central samples has been used to guide geothermal Volcanic Zone (CVZ) of the Andes in the northern exploration efforts (e.g., Torgersen and Jenkins, part of Chile, the continental crust is quite thick (50- 1982; Welhan et al., 1988) Elevated 3He/4He ratios 70 km) and old (Mesozoic to Paleozoic), whereas the (R/Ra values greater than ~0.1) have been interpreted Southern Volcanic Zone (SVZ) in central Chile has to indicate a mantle influence on the He isotopic thinner (60-40 km) and younger (Cenozoic to composition, and may indicate that igneous intrusions Mesozoic) crust. In the SVZ, the Liquiñe-Ofqui Fault provide the primary heat source for the associated System, a major intra-arc transpressional dextral geothermal fluids. Studies of helium isotope strike-slip fault system which controls the magmatic compositions of geothermal fluids collected from activity from 38°S to 47°S, provides the opportunity wells, hot springs and fumaroles within the Basin and to evaluate the effects of regional faulting on Range province of the western US (Kennedy and van geothermal fluid chemistry. -
Lawrence Berkeley National Laboratory Recent Work
Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions. -
Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC. -
Volcanic Arc of Kamchatka: a Province with High-␦18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust
Geochimica et Cosmochimica Acta, Vol. 68, No. 4, pp. 841–865, 2004 Copyright © 2004 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/04 $30.00 ϩ .00 doi:10.1016/j.gca.2003.07.009 Volcanic arc of Kamchatka: a province with high-␦18O magma sources and large-scale 18O/16O depletion of the upper crust 1, 2 3 1 ILYA N. BINDEMAN, *VERA V. PONOMAREVA, JOHN C. BAILEY, and JOHN W. VALLEY 1Department of Geology and Geophysics, University of Wisconsin, Madison, WI, USA 2Institute of Volcanic Geology and Geochemistry, Petropavlovsk-Kamchatsky, Russia 3Geologisk Institut, University of Copenhagen, Copenhagen, Denmark (Received March 20, 2003; accepted in revised form July 16, 2003) Abstract—We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera- forming centers. The ␦18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for ␦18O(magma). Magmatic ␦18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-␦18O basaltic magmas (sampling mantle to lower crustal high-␦18O sources), and low-␦18O silicic volcanism (sampling low-␦18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-␦18O magmas (ϩ4 to 5‰). Most low-␦ 18O magmas are voluminous silicic ignimbrites related to large Ͼ10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas. -
Hoyas Hidrográficas De Chile: Segunda Región
HOYAS HIDROGRÁFICAS DE CHILE: SEGUNDA REGIÓN REALIZADO POR: HANS NIEMEYER F. HOVA DEL RlO LOA La hoya hidrográfica del río Loa~ con una superf! cie tota~'de 33 570 km2 , se desarrolla en el tercio norte de la IIa R~ gión de Chile, entre latitudes extremas 20Q52' y 22Q57' L.S. ylongit~ des 68QOO' y 7oQ02' L.o. El río Loa nace en la falda norte del Vn. Mi ño~ en los Ojos del Hiño, casi en los límites entre la la y IIa Regio nes de Chile, en 21Q15' L.S. y 70Q L.O~ Su longitud total se acerca a 440 km. A pesar de su extensa hoya, los recursos h!dricos provienen de la cuenca alta que comprende alrededor del 20% de la su~ perficie total. Con curso aproximadamente norte-sur~ el Loa reco rre casi 150 km en un profundo cañón de altura variable, desde su nací miento hasta el oasis de Chiu ~hiu, pueblo que se levanta en su margen izquierda. En este trayecto recibe sus dos tributarios más importantes que le caen del este: el río San Pedro o Inacaliri y el río Salado. En Chiu Chiu dobla su curso sensiblemente hacia el oeste para alcanzar en un recorrido de 115 km el punto denominado Chacance. En él se le reúne por la derecha el río San Salvador. En Chacance,el Loa toma franca di= recci6n sur-norte hasta fertilizar el oasis de Quillagua, despu~s de una trayectoria de 80 km. A partir de Quillagua el Loa describe un gran arco y luego desemboca en el Pacífico~ en Caleta Huel~n, despu~8 de trasponer el macizo costero en un tajo profundo~ de más de 500 m de al tura. -
2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory
The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys . The Alaska Volcano Observtory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory Scientific Investigations Report 2007–5269 U.S. Department of the Interior U.S. Geological Survey Cover: Southeast flank of Augustine Volcano showing summit steaming, superheated fumarole jet, and ash dusting on snow. View is toward the northwest with Iniskin Bay in the distance. Photograph taken by Chris Waythomas, AVO/USGS, December 20, 2005. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory By R.G. McGimsey, C.A. Neal, J.P. Dixon, U.S. Geological Survey, and Sergey Ushakov, Institute of Volcanology and Seismology The Alaska Volcano Observatory is a cooperative program of the U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophuysical Surveys. The Alaska Volcano Observatory is funded by the U.S. Geological Survey Volcano Hazards Program and the State of Alaska. Scientific Investigations Report 2007–5269 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. -
Reglamento Identifica Fuentes Probables De Energia Geotermica Decreto Nº 142 Ministerio De Mineria
REGLAMENTO IDENTIFICA FUENTES PROBABLES DE ENERGIA GEOTERMICA DECRETO Nº 142 MINISTERIO DE MINERIA Publicado en el Diario Oficial del 28 DE JUNIO DE 2000 Santiago, 28 de abril de 2000.- Hoy se decretó lo que sigue: Núm. 142.- Vistos: El artículo 16º, incisos 4º, 5º y 6º de la Ley Nº 19.657 sobre Concesiones de Energía Geotérmica; El estudio preparado por el Servicio Nacional de Geología y Minería (Sernageomin) sobre identificación de Fuentes Probables de Energía Geotérmica; El mandato contenido en la disposición citada de identificar las referidas fuentes probables de energía geotérmica; Lo dispuesto en el artículo 32 de la Constitución Política de la República. DECRETO: 1.- Identifícanse como fuentes probables de Energía Geotérmica –de acuerdo a lo previsto en los incisos 4, 5 y 6 del artículo 16 de la ley Nº 19.657- las que se señalan en el siguiente listado: FUENTES PROBABLES DE ENERGIA GEOTERMICA Superficie (há) o Area ID REGION PROVINCIA COMUNA DENOMINACION VERTICES UTM (metros) Geográfica que comprende 1 Primera Región Parinacota Putre Untupujo N 7987000 + E 469000 N 7987000 + E 472000 600 N 7985000 + E 469000 N 7985000 + E 472000 2 Primera Región Parinacota Putre Chiriguaya N 7972000 + E 480000 N 7972000 + E 482000 600 N 7969000 + E 480000 N 7969000 + E 482000 3 Primera Región Parinacota Putre Lauca N 7972000 + E 461500 N 7972000 + E 463000 450 N 7969000 + E 461500 N 7969000 + E 463000 4 Primera Región Parinacota Putre Jurasi N 7988000 + E 443000 N 7988000 + E 444000 100 N 7987000 + E 443000 N 7987000 + E 444000 5 Primera Región -
IAVWOPSG/5-WP/16 International Civil Aviation Organization 2/12/09
IAVWOPSG/5-WP/16 International Civil Aviation Organization 2/12/09 WORKING PAPER INTERNATIONAL AIRWAYS VOLCANO WATCH OPERATIONS GROUP (IAVWOPSG) FIFTH MEETING Lima, Peru, 15 to 19 March 2010 Agenda Item 5: Operation of the IAVW 5.1: Implementation of the IAVW, including the IAVW management reports VAAC TOKYO MANAGEMENT REPORT (Presented by Japan) SUMMARY Pursuant to Conclusion 1/2 of the IAVWOPSG/1 Meeting, VAAC Provider States were invited to provide a concise IAVW management report to be presented at every IAVWOPSG meeting covering the period elapsed since the previous meeting and addressing the main features of the IAVW operations, highlighting any recent developments and difficulties and future planned developments. The report prepared by Japan is attached for the group’s review and consideration. 1. EXECUTIVE SUMMARY 1.1 In this period, 17 months from June 2008 to October 2009, Volcanic Ash Advisory Center (VAAC) Tokyo issued 1223 Volcanic Ash Advisories (VAAs) to Meteorological Watch Offices (MWOs) in the VAAC Tokyo area of responsibility (Figure 1). In spite of some significant volcanic activities in volcanoes in the central Kuril Islands, serious aircraft accident due to volcanic ash was not reported in this period. 2. INTRODUCTION 2.1 VAAC Tokyo is operated by the Japan Meteorological Agency (JMA), and locates in the headquarters building of JMA in Tokyo. Staff members of the Seismological and Volcanological Department of JMA are engaged in the operation of VAAC Tokyo. 2.2 VAAC Tokyo is responsible for monitoring volcanoes and issuing VAAs in eastern Asia and northern Pacific area as shown in Figure 1. -
USGS Open-File Report 2009-1133, V. 1.2, Table 3
Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041 -
First Measurements of Gas Flux with a Low-Cost Smartphone Sensor-Based UV Camera on the Volcanoes of Northern Chile
remote sensing Article First Measurements of Gas Flux with a Low-Cost Smartphone Sensor-Based UV Camera on the Volcanoes of Northern Chile Felipe Aguilera 1,2,3,* , Susana Layana 1,3,4 , Felipe Rojas 1 , Pilar Arratia 1, Thomas C. Wilkes 5 , Cristóbal González 1,4 , Manuel Inostroza 1,4 , Andrew J.S. McGonigle 5 , Tom D. Pering 5 and Gabriel Ureta 1,3,4 1 Núcleo de Investigación en Riesgo Volcánico—Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile; [email protected] (S.L.); [email protected] (F.R.); [email protected] (P.A.); [email protected] (C.G.); [email protected] (M.I.); [email protected] (G.U.) 2 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile 3 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av. Vicuña Mackenna 4860, Santiago 7810000, Chile 4 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile 5 Department of Geography, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; tcwilkes1@sheffield.ac.uk (T.C.W.); a.mcgonigle@sheffield.ac.uk (A.J.S.M.); t.pering@sheffield.ac.uk (T.D.P.) * Correspondence: [email protected] Received: 25 April 2020; Accepted: 29 June 2020; Published: 2 July 2020 Abstract: UV cameras have been used for over a decade in order to remotely sense SO2 emission rates from active volcanoes, and to thereby enhance our understanding of processes related to active and passive degassing. -
Origin of Fumarolic Fluids from Tupungatito Volcano (Central Chile): Interplay Between Magmatic, Hydrothermal, and Shallow Meteoric Sources
Bull Volcanol (2013) 75:746 DOI 10.1007/s00445-013-0746-x RESEARCH ARTICLE Origin of fumarolic fluids from Tupungatito Volcano (Central Chile): interplay between magmatic, hydrothermal, and shallow meteoric sources Oscar Benavente & Franco Tassi & Francisco Gutiérrez & Orlando Vaselli & Felipe Aguilera & Martin Reich Received: 7 March 2013 /Accepted: 28 June 2013 /Published online: 25 July 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Tupungatito is a poorly known volcano located crustal sediments. Gas geothermometry based on the kinet- about 100 km eastward of Santiago (Chile) in the northern- ically rapid H2–CO equilibria indicates equilibrium temper- most sector of the South Volcanic Zone. This 5,682 m high atures <200 °C attained in a single vapor phase at redox volcano shows intense fumarolic activity. It hosts three crater conditions slightly more oxidizing than those commonly lakes within the northwestern portion of the summit area. characterizing hydrothermal reservoirs. Reactions in the Chemical compositions of fumarolic gases and isotopic sig- H2O–CO2–H2–CO–CH4 system and C2–C3 alkenes/alkanes natures of noble gases (3He/4He and 40Ar/36Ar are up to 6.09 pairs, which have relatively slow kinetics, seem to equili- Ra and 461, respectively), and steam (δ18O and δD) suggest brate at greater depth, where temperatures are >200 °C and that they are produced by mixing of fluids from a magmatic redox conditions are consistent with those inferred by the source rich in acidic gas compounds (SO2, HCl, and HF), presence of the SO2–H2S redox pair, typical of fluids that and meteoric water. The magmatic–hydrothermal fluids are have attained equilibrium in magmatic environment.