Descriptive Stats Craterdiam 1162Records

Total Page:16

File Type:pdf, Size:1020Kb

Descriptive Stats Craterdiam 1162Records This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 130 -99 NP Volcano and eruption 355818 355818 Cerro Cariquima 164 -99 NP Volcano 355832 355832 Cerro del Leon 238 -99 NP Volcano 352021 352021 Atacazo 240 -99 NP Volcano 351090 351090 Azufral 247 -99 NP Volcano 358070 358070 Monte Burney 249 -99 NP Volcano 357042 357042 Calabozos 260 -99 NP Volcano 352022 352022 Chacana 263 -99 NP Volcano 354007 354007 Nevado Chachani 264 -99 NP Volcano 352002 352002 Chachimbiro 266 -99 NP Volcano 358041 358041 Chaiten 270 -99 NP Volcano 358050 358050 Corcovado 295 -99 NP Volcano 352003 352003 Cuicocha 298 -99 NP Volcano 355112 355112 Cerro Escorial 299 -99 NP Volcano 355868 355868 Cerro Galan 301 -99 NP Volcano 351080 351080 Galeras 306 -99 NP Volcano 352020 352020 Guagua Pichincha 307 -99 NP Volcano 354030 354030 Huaynaputina 310 -99 NP Volcano 358057 358057 Cerro Hudson 312 -99 NP Volcano 355870 355870 Incapillo complex 315 -99 NP Volcano 355832 355832 Cerro del Leon 316 -99 NP Volcano 357110 357110 Llaima 323 -99 NP Volcano 357061 357061 Laguna del Maule 328 -99 NP Volcano 358040 358040 Michinmahuida 343 -99 NP Volcano 357130 357130 Mocho-Choshuenco 345 -99 NP Volcano 352005 352005 Mojanda 348 -99 NP Volcano 357066 357066 Payun Matru 349 -99 NP Volcano 352011 352011 Pululagua 351 -99 NP Volcano 351060 351060 Purace 357 -99 NP Volcano 357150 357150 Puyehue-Cordon Caulle 359 -99 NP Volcano 352060 352060 Quilotoa 361 -99 NP Volcano 358063 358063 Reclus ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 362 -99 NP Volcano 352010 352010 El Reventador 363 -99 NP Volcano 355210 355210 Cerro Blanco 373 -99 NP Volcano 357111 357111 Sollipulli 375 -99 NP Volcano 354031 354031 Ticsani 381 -99 NP Volcano 351030 351030 Nevado del Tolima 386 -99 NP Volcano 355150 355150 Cerro Tuzgle 390 -99 NP Volcano 354020 354020 Ubinas 394 -99 NP Volcano 357120 357120 Villarrica 405 -99 NP Volcano 352826 352826 Chalupas 410 -99 NP Volcano 355100 355100 Lascar 416 -99 NP Volcano 357153 357153 Antillanca Group 476 -99 NP Volcano and eruption -99 -99 Colluma, Cerro 493 -99 NP Volcano and eruption -99 -99 Sajama, Nevado del 910 -99 NP Volcano 358057 358057 Cerro Hudson 1090 -99 NP Volcano 357061 357061 Laguna del Maule 1159 -99 NP Volcano 357066 357066 Payun Matru 1283 -99 NP Volcano 351020 351020 Nevado del Ruiz 1532 -99 NP Volcano 357120 357120 Villarrica 1705 -99 NP Volcano -99 -99 Aracar Volcano 1713 -99 NP Volcano -99 -99 Cerro Sierra Nevada 1717 -99 NP Volcano -99 -99 Cerrito Blanco 1718 -99 NP Volcano -99 -99 Cerro De Incahuasi 1720 -99 NP Volcano 355130 355130 Nevado Ojos del Salado 1723 -99 NP Volcano -99 -99 Cerro Tupungatito 1725 -99 NP Volcano -99 -99 Volcano San Jose 1727 -99 NP Volcano -99 -99 Cerro Risco Plateado 1734 -99 NP Volcano -99 -99 Volcano Domuyo 1735 -99 NP Volcano -99 -99 Cochiquito Volcanic Group 1736 -99 NP Volcano -99 -99 Volcano Tromen 1743 -99 NP Volcano -99 -99 Cerro Huanquihue 1746 -99 NP Volcano -99 -99 Nunatak Viedma ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1748 1 NP Volcano -99 -99 Cerro Santo Tomas 1749 2 NP Volcano -99 -99 NP 1750 3 NP Volcano -99 -99 Cerro Llehuecclla 1751 4 NP Volcano -99 -99 NP 1752 5 NP Volcano -99 -99 NP 1753 6 NP Volcano -99 -99 Cerro Ajochupa 1754 7 NP Volcano -99 -99 Cerro Cristalniyocc 1755 8 NP Volcano -99 -99 NP 1756 9 NP Volcano -99 -99 NP 1757 10 NP Volcano -99 -99 Cerro Huarajuyo 1758 11 NP Volcano -99 -99 NP 1759 12 NP Volcano -99 -99 Cerro Huaracco 1760 13 NP Volcano -99 -99 Cerro Antapuccro 1761 14 NP Volcano -99 -99 Cerro Quichcasora 1762 15 NP Volcano -99 -99 Nevado Carahuaraso 1763 16 NP Volcano -99 -99 Nevado Unknown 1764 17 NP Volcano -99 -99 Nevado Unknown 1765 18 NP Volcano -99 -99 Nevado P. de Pesjapuquio 1766 19 NP Volcano -99 -99 Nevado Unknown 1767 20 NP Volcano -99 -99 Nevado Unknown 1768 21 NP Volcano -99 -99 Nevado Unknown 1769 22 NP Volcano -99 -99 Cerro Balcon 1770 23 NP Volcano -99 -99 NP 1771 24 NP Volcano -99 -99 Cerro Alco Loma 1772 25 NP Volcano -99 -99 NP 1773 26 NP Volcano -99 -99 NP 1774 27 NP Volcano -99 -99 Pampa Galeras Caldera 1775 28 NP Volcano -99 -99 Pampa Parccalsuyog 1776 29 NP Volcano -99 -99 Pampa Guiapampa 1777 30 NP Volcano -99 -99 Pampa 1778 31 NP Volcano -99 -99 Pampa ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1779 32 NP Volcano -99 -99 Cerro Pumahuiri 1780 33 NP Volcano -99 -99 NP 1781 34 NP Volcano -99 -99 NP 1782 35 NP Volcano -99 -99 NP 1783 36 NP Volcano -99 -99 NP 1784 37 NP Volcano -99 -99 NP 1785 38 NP Volcano -99 -99 NP 1786 39 NP Volcano -99 -99 Cerro Condor Sayana 1787 40 NP Volcano -99 -99 Cerro Huallaja 1788 41 NP Volcano -99 -99 Cerro Ticllaccahua 1789 42 NP Volcano -99 -99 Cerro Huagra 1790 43 NP Volcano -99 -99 Cerro Antapuna 1791 44 NP Volcano -99 -99 NP 1792 45 NP Volcano -99 -99 NP 1793 46 NP Volcano -99 -99 Nevado Firura 1794 47 NP Volcano -99 -99 Cerro Soncco Orcco 1795 48 NP Volcano -99 -99 Cerro Cosana 1796 49 NP Volcano -99 -99 Cerro Jahsaya 1797 50 NP Volcano -99 -99 Cerro Huaychahuaque 1798 51 NP Volcano -99 -99 NP 1799 52 NP Volcano -99 -99 Cerro Chuquihua 1800 53 NP Volcano -99 -99 NP 1801 54 NP Volcano -99 -99 Cerro Lomas Jochane 1802 55 NP Volcano -99 -99 Nevado Sara Sara 1803 56 NP Volcano -99 -99 Cerro Tirane 1804 57 NP Volcano -99 -99 Cerro Antapuna 1805 58 NP Volcano -99 -99 Cerro Sani 1806 59 NP Volcano -99 -99 NP 1807 60 NP Volcano -99 -99 Nevado Solimana 1808 61 NP Volcano -99 -99 Nevado Unknown 1809 62 NP Volcano -99 -99 Cerro Puca Majuras ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1810 63 NP Volcano -99 -99 Cerro Quello Apacheta 1811 64 NP Volcano -99 -99 NP 1812 65 NP Volcano -99 -99 NP 1813 66 NP Volcano -99 -99 NP 1814 67 NP Volcano -99 -99 NP 1815 68 NP Volcano -99 -99 Cerro Pumaranra 1816 69 NP Volcano -99 -99 NP 1817 70 NP Volcano -99 -99 Nevado Coropuna (1) 1818 71 NP Volcano -99 -99 Nevado Unknown 1819 72 NP Volcano -99 -99 Nevado Unknown 1820 73 NP Volcano -99 -99 Nevado Hualca Hualca 1821 74 NP Volcano -99 -99 Nevado Unknown 1822 75 NP Volcano -99 -99 Volcano Sabancaya (2) 1823 76 NP Volcano -99 -99 Nevado Ananita 1824 77 NP Volcano -99 -99 Nevado Unknown 1825 78 NP Volcano -99 -99 Nevado Ampato 1826 79 NP Volcano -99 -99 Nevado Unknown 1827 80 NP Volcano -99 -99 Nevado Unknown 1828 81 NP Volcano -99 -99 Cerro Colquerane 1829 82 NP Volcano -99 -99 Nevado Calcha 1830 83 NP Volcano -99 -99 Nevado Hualcullani 1831 84 NP Volcano -99 -99 Cerro Antasaya 1832 85 NP Volcano -99 -99 Cerro Bangarane 1833 86 NP Volcano -99 -99 NP 1834 87 NP Volcano -99 -99 NP 1835 88 NP Volcano -99 -99 Cerro Nocarane 1836 89 NP Volcano -99 -99 NP 1837 91 NP Volcano -99 -99 Cerro la Horqueta 1838 92 NP Volcano -99 -99 Cerro Condori 1839 93 NP Volcano -99 -99 Cerro Choquepata 1840 94 NP Volcano -99 -99 Cerro Pucara ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1841 95 NP Volcano -99 -99 Cerro Pampa de Palacio 1842 96 NP Volcano -99 -99 NP 1843 97 NP Volcano -99 -99 NP 1844 98 NP Volcano -99 -99 Cerro Cana Canari 1845 99 NP Volcano -99 -99 Cerro Tacune 1846 101 NP Volcano -99 -99 Cerro Ccapia 1847 102 NP Volcano -99 -99 Cerro Camata 1848 104 NP Volcano -99 -99 Volcano 1849 105 NP Volcano -99 -99 Volcano 1850 106 NP Volcano -99 -99 Cerro Horquetilla 1851 107 NP Volcano -99 -99 Cerro Bencasa 1852 108 NP Volcano -99 -99 Cerro Huertasora 1853 109 NP Volcano -99 -99 NP 1854 110 NP Volcano -99 -99 NP 1855 111 NP Volcano -99 -99 Cerro Larelare 1856 112 NP Volcano -99 -99 Cerro Creston Gr.
Recommended publications
  • Atmospheric Conditions at a Site for Submillimeter Wavelength Astronomy
    Atmospheric conditions at a site for submillimeter wavelength astronomy Simon J. E. Radford and M. A. Holdaway National Radio Astronomy Observatory, 949 North Cherry Avenue, Tucson, Arizona 85721, USA ABSTRACT At millimeter and submillimeter wavelengths, pressure broadened molecular sp ectral lines make the atmosphere a natural limitation to the sensitivity and resolution of astronomical observations. Trop ospheric water vap or is the principal culprit. The translucent atmosphere b oth decreases the signal, by attenuating incoming radiation, and increases the noise, by radiating thermally.Furthermore, inhomogeneities in the water vap or distribution cause variations in the electrical path length through the atmosphere. These variations result in phase errors that degrade the sensitivity and resolution of images made with b oth interferometers and lled ap erture telescop es. Toevaluate p ossible sites for the Millimeter Array, NRAO has carried out an extensive testing campaign. At a candidate site at 5000 m altitude near Cerro Cha jnantor in northern Chile, we deployed an autonomous suite of instruments in 1995 April. These include a 225 GHz tipping radiometer that measures atmospheric transparency and temp oral emission uctuations and a 12 GHz interferometer that measures atmospheric phase uctuations. A sub- millimeter tipping photometer to measure the atmospheric transparency at 350 mwavelength and a submillimeter Fourier transform sp ectrometer have recently b een added. Similar instruments have b een deployed at other sites, notably Mauna Kea, Hawaii, and the South Pole, by NRAO and other groups. These measurements indicate Cha jnantor is an excellent site for millimeter and submillimeter wavelength astron- omy. The 225 GHz transparency is b etter than on Mauna Kea.
    [Show full text]
  • Field Excursion Report 2010
    Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010).
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Remobilization of Crustal Carbon May Dominate Volcanic Arc Emissions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESC Publications - Cambridge Univesity Submitted Manuscript: Confidential Title: Remobilization of crustal carbon may dominate volcanic arc emissions Authors: Emily Mason1, Marie Edmonds1,*, Alexandra V Turchyn1 Affiliations: 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ *Correspondence to: [email protected]. Abstract: The flux of carbon into and out of Earth’s surface environment has implications for Earth’s climate and habitability. We compiled a global dataset for carbon and helium isotopes from volcanic arcs and demonstrated that the carbon isotope composition of mean global volcanic gas is considerably heavier, at -3.8 to -4.6 ‰, than the canonical Mid-Ocean-Ridge Basalt value of -6.0 ‰. The largest volcanic emitters outgas carbon with higher δ13C and are located in mature continental arcs that have accreted carbonate platforms, indicating that reworking of crustal limestone is an important source of volcanic carbon. The fractional burial of organic carbon is lower than traditionally determined from a global carbon isotope mass balance and may have varied over geological time, modulated by supercontinent formation and breakup. One Sentence Summary: Reworking of crustal carbon dominates volcanic arc outgassing, decreasing the estimate of fractional organic carbon burial. Main Text: The core, mantle and crust contain 90% of the carbon on Earth (1), with the remaining 10% partitioned between the ocean, atmosphere and biosphere. Due to the relatively short residence time of carbon in Earth’s surface reservoirs (~200,000 years), the ocean, atmosphere and biosphere may be considered a single carbon reservoir on million-year timescales.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Redalyc.Geochemistry, U-Pb SHRIMP Zircon Dating and Hf Isotopes of The
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Poma, Stella; Zappettini, Eduardo O.; Quenardelle, Sonia; Santos, João O.; Koukharsky, Magdalena; Belousova, Elena; McNaughton, Neil Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications Andean Geology, vol. 41, núm. 2, mayo, 2014, pp. 267-292 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173931252001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (2): 267-292. May, 2014 Andean Geology doi: 10.5027/andgeoV41n2-a01 formerly Revista Geológica de Chile www.andeangeology.cl Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications Stella Poma1, Eduardo O. Zappettini 2, Sonia Quenardelle 1, João O. Santos 3, † Magdalena Koukharsky 1, Elena Belousova 4, Neil McNaughton 3 1 Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Pabellón II-Ciudad Universitaria, Intendente Güiraldes 2160, C1428 EGA, Argentina. [email protected]; [email protected] 2 Servicio Geológico Minero Argentino (SEGEMAR), Avda. General Paz 5445, edificio 25, San Martín B1650WAB, Argentina. [email protected] 3 University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.
    [Show full text]
  • [email protected].: Tacora/Rev
    [email protected].: Tacora/rev: 18 de noviembre, 2009/24 de abril, 2011/19 de mayo, 2011/05 de mayo, 2013/10 de marzo, 2014/07 de mayo, 014/l28 de diciembre, 2015/26 de junio, 2016 [email protected].: Tacora/rev: 18 de noviembre, 2009/24 de abril, 2011/19 de mayo, 2011/05 de mayo, 2013/10 de marzo, 2014/07 de mayo, 014/l28 de diciembre, 2015/26 de junio, 2016 LA INDUSTRIA AZUFRERA, EL ANDARIVEL Y EL FERROCARRIL DE TACORA por: Ian Thomson N. ÍNDICE 1. Introducción y conclusiones. 2. Los inicios de la explotación del azufre en Chile. 3. La importancia crítica de los costos de transporte. 4. La explotación del azufre del Tacora y los orígenes del Ferrocarril. 5. El tráfico del Ferrocarril, el personal y la rentabilidad. 6. El trazado y la infraestructura del Ferrocarril. 7. El Ferrocarril de Tacora después de su cierre. 8. La red de andariveles. 9. El material rodante ferroviario. Recuadro 1: El de Aucanquilcha: otro ferrocarril azufrero en altura Recuadro 2: La Asociación para la Conservación de las ex-azufreras y del Ferrocarril de Tacora Referencias seleccionadas El autor es, por profesión, un economista dedicado a temas de transporte. Además, durante largos años, ha sido activo en las áreas de la conservación y del estudio de la historia de sistemas de transporte, especialmente los ferroviarios. Promovió, a principios de la década de 1980, la formación de la Asociación Chilena de Conservación del Patrimonio Ferroviario, sirviendo como su presidente durante unos diez años, con breves intervalos.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the He Isotope Signatures of Geothermal Systems in Chile
    PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 EFFECTS OF VOLCANISM, CRUSTAL THICKNESS, AND LARGE SCALE FAULTING ON THE HE ISOTOPE SIGNATURES OF GEOTHERMAL SYSTEMS IN CHILE Patrick F. DOBSON1, B. Mack KENNEDY1, Martin REICH2, Pablo SANCHEZ2, and Diego MORATA2 1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA 2Departamento de Geología y Centro de Excelencia en Geotermia de los Andes, Universidad de Chile, Santiago, CHILE [email protected] agree with previously published results for the ABSTRACT Chilean Andes. The Chilean cordillera provides a unique geologic INTRODUCTION setting to evaluate the influence of volcanism, crustal thickness, and large scale faulting on fluid Measurement of 3He/4He in geothermal water and gas geochemistry in geothermal systems. In the Central samples has been used to guide geothermal Volcanic Zone (CVZ) of the Andes in the northern exploration efforts (e.g., Torgersen and Jenkins, part of Chile, the continental crust is quite thick (50- 1982; Welhan et al., 1988) Elevated 3He/4He ratios 70 km) and old (Mesozoic to Paleozoic), whereas the (R/Ra values greater than ~0.1) have been interpreted Southern Volcanic Zone (SVZ) in central Chile has to indicate a mantle influence on the He isotopic thinner (60-40 km) and younger (Cenozoic to composition, and may indicate that igneous intrusions Mesozoic) crust. In the SVZ, the Liquiñe-Ofqui Fault provide the primary heat source for the associated System, a major intra-arc transpressional dextral geothermal fluids. Studies of helium isotope strike-slip fault system which controls the magmatic compositions of geothermal fluids collected from activity from 38°S to 47°S, provides the opportunity wells, hot springs and fumaroles within the Basin and to evaluate the effects of regional faulting on Range province of the western US (Kennedy and van geothermal fluid chemistry.
    [Show full text]
  • The South American Indian As a Pioneer Alpinist
    TI-lE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST 81 THE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST BY EVELIO ECHEVARRfA C. ECENTL Y it has become kno\vn that a number of very high Andean mountain tops had not only been ascended but also permanently occupied by the Indians, possibly as much as three centuries before de Saussure's ascent of Mont Blanc. They climbed peaks of up to 22,ooo ft., they constructed shelters on or near their tops, and they used the high places as watch-towers or as sacrificial shrines. Some authorities believe that this activity took place as early as the late four­ teenth century, though we cannot prove that some of it did not take place long after, possibly as late as the nineteenth century. These Indian accomplishments have been left unmentioned in practi­ cally all mountaineering history books. In this article, which may be the first to attempt a comprehensive survey,1 my purpose is to review briefly the location and the nature of each discovery. The area in which these Indian mountain ascents took place is what in physical geography is known as the Atacama desert (although this name is nowadays used in political and cultural geography for a much more restricted area). It is a treeless, sandy and volcanic waste-land seldom visited by mountaineers. It stretches from the neighbourhood of Arequipa, in Peru, as far south as Elqui in Chile; to the east it reaches the Andean slopes that face the jungles of Argentina and Bolivia, and to the west, the Pacific Ocean.
    [Show full text]
  • Explora Atacama І Hikes
    ATACAMA explorations explora Atacama І Hikes T2 Reserva Tatio T4 Cornisas Nights of acclimatization Nights of acclimatization needed: 2 needed: 0 Type: Half day Type: Half day Duration: 1h Duration: 2h 30 min Distance: 2,3 km / 1,4 mi Distance: 6,7 kms / 4,2 mi Max. Altitude: 4.321 m.a.s.l / Max. Altitude: 2.710 m.a.s.l / HIKES 14.176 f.a.s.l 8.891 f.a.s.l Description: This exploration Description: Departing by van, we offers a different way of visiting head toward the Catarpe Valley Our hikes have been designed according the Tatio geysers, a geothermal by an old road. From there, we to different interests and levels of skill. field with over 80 boiling water hike along the ledges of La Sal They vary in length and difficulty so we sources. In this trip there are Mountains, with panoramic views always recommend travelers to talk to their excellent opportunities of studying of the oasis, the Atacama salt flat, guides before choosing an exploration. the highlands fauna, which includes and The, La Sal, and Domeyko Every evening, guides brief travelers vicuñas, flamingos and foxes, Mountains, three mountain ranges on the different explorations, so that among others. We walk through the that shape the region’s geography. they can choose one that best fit their reserve with views of The Mountains By the end of the exploration we interests. Exploration times do not consider and steaming hot water sources. descend through Marte Valley’s sand transportation. Return to the hotel by van.
    [Show full text]
  • Report on Cartography in the Republic of Chile 2011 - 2015
    REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 ARMY OF CHILE MILITARY GEOGRAPHIC INSTITUTE OF CHILE REPORT ON CARTOGRAPHY IN THE REPUBLIC OF CHILE 2011 - 2015 PRESENTED BY THE CHILEAN NATIONAL COMMITTEE OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AT THE SIXTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AUGUST 2015 1 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 CONTENTS Page Contents 2 1: CHILEAN NATIONAL COMMITTEE OF THE ICA 3 1.1. Introduction 3 1.2. Chilean ICA National Committee during 2011 - 2015 5 1.3. Chile and the International Cartographic Conferences of the ICA 6 2: MULTI-INSTITUTIONAL ACTIVITIES 6 2.1 National Spatial Data Infrastructure of Chile 6 2.2. Pan-American Institute for Geography and History – PAIGH 8 2.3. SSOT: Chilean Satellite 9 3: STATE AND PUBLIC INSTITUTIONS 10 3.1. Military Geographic Institute - IGM 10 3.2. Hydrographic and Oceanographic Service of the Chilean Navy – SHOA 12 3.3. Aero-Photogrammetric Service of the Air Force – SAF 14 3.4. Agriculture Ministry and Dependent Agencies 15 3.5. National Geological and Mining Service – SERNAGEOMIN 18 3.6. Other Government Ministries and Specialized Agencies 19 3.7. Regional and Local Government Bodies 21 4: ACADEMIC, EDUCATIONAL AND TRAINING SECTOR 21 4.1 Metropolitan Technological University – UTEM 21 4.2 Universities with Geosciences Courses 23 4.3 Military Polytechnic Academy 25 5: THE PRIVATE SECTOR 26 6: ACKNOWLEDGEMENTS AND ACRONYMS 28 ANNEX 1. List of SERNAGEOMIN Maps 29 ANNEX 2. Report from CENGEO (University of Talca) 37 2 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 PART ONE: CHILEAN NATIONAL COMMITTEE OF THE ICA 1.1: Introduction 1.1.1.
    [Show full text]