New Insights Into the Magmatic-Hydrothermal System and Volatile Budget of Lastarria Volcano, Chile: Integrated Results from the 2014 GEOSPHERE; V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VOCALS Site Survey Report
VOCALS Site Survey 30 September – 12 October 2007 Arica, Iquique, Santiago, Chile Brigitte Baeuerle, Henry Boynton, Bob Hannigan, José Meitín, Vidal Salazar, Rob Wood, Pete Daum, Juan Aravena GENERAL INFORMATION: Area 756,950 sq. km Population: 16,284,741 (2007 estimate) Government Type Republic President Michelle Bachelet Jeria Capital City Santiago GDP per capita $12,600 Unemployment Rate 7.8% Life expectancy 77 years Infant Mortality Rate 8.36 death / 1000 life births Currency unit Peso Highest point 22,572 ft (Nevado Ojos del Salado) Main cities Concepción, Viña del Mar, Valparaiso National Holiday Independence Day, 18 September OVERVIEW Chile is unique for its very long (2,650 miles) and comparatively narrow (maximum 250 miles) shape and for its great variety of natural features. It extends from latitudes 18 to 56 degrees south and contains one of the driest regions in the world and one of the wettest areas in South America. It is bound on the north by Peru, on the northeast by Bolivia, on its long eastern border (3,200 miles) by Argentina and on the west by the Pacific Ocean. In its economy and public services, Chile is one of the most developed countries in the Andean region. Climate: Extending over 38 degrees of latitude, from the tropics to the vicinity of Antarctica, and from sea level to altitudes of over 20,000 feet, Chile has a wide variety of climatic conditions. Extreme aridity prevails over the northern part of the country; the average annual rainfall in this region is 0.04 inches. Temperatures are moderate along the coast throughout the year and more extreme inland, especially in the central basin. -
Hydrothermal Alteration, Fumarolic Deposits and Fluids from Lastarria Volcanic Complex: a Multidisciplinary Study
Andean Geology 42 (3): 166-196. May, 2016 Andean Geology doi: 10.5027/andgeoV43n2-a02 www.andeangeology.cl Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study *Felipe Aguilera1, Susana Layana2, Augusto Rodríguez-Díaz3, Cristóbal González2, Julio Cortés4, Manuel Inostroza2 1 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 2 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected]; [email protected]; [email protected] 3 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04150 México D.F., México. [email protected] 4 Consultor Independiente, Las Docas 4420, La Serena, Chile. [email protected] * Corresponding Author: [email protected] ABSTRACT. A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and charac- teristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the presence of four hydrothermal alteration zones, characterized by a mineral -
Geothermal Exploration at Irruputuncu and Olca Volcanoes: Pursuing a Sustainable Mining Development in Chile
GRC Transactions, Vol. 35, 2011 Geothermal Exploration at Irruputuncu and Olca Volcanoes: Pursuing a Sustainable Mining Development in Chile Nicolás Reyes1, Ariel Vidal2, Ernesto Ramirez2, Knutur Arnason3, Bjarni Richter3, Benedikt Steingrimsson3, Orlando Acosta1, Jorge Camacho1 1Compañía Minera Doña Inés de Collahuasi 2Geohidrología Consultores Ltda. 3ISOR Iceland GeoSurvey Keyword Introduction Chile, Olca & Irruputuncu volcanoes, geothermal exploration, CMDIC (Compañía Minera Doña Inés de Collahuasi) Doña Inés de Collahuasi Mining Company (CMDIC) is the third largest copper producer in Chile. In its commitment to sus- tainable development, and its need for safe and clean energy as part Abstract of its energy matrix, CMDIC has chosen to explore and evaluate geothermal resources in the proximity of its copper mining in the Doña Inés de Collahuasi Mining Company which is the north of Chile (Figure 1). Currently the mining operation requires third major copper producer in Chile is pursuing a sustainable 180MW of electric power, which is mainly derived from fossil development by exploring geothermal resources. Currently the fuels. The company objective is to obtain at least 35MW from mining operation requires 180MW of electric power, which is renewable energy sources by 2015. derived from fossil fuels. However, the company´s objective is CMDIC has a set of geothermal exploration permits in the to obtain at least 35MW from renewable energy sources by 2015. proximity of the mine around the Irruputuncu and Olca volcanoes. The geothermal exploration is focused around the Olca and Irruputuncu volcanoes in the Chilean Altiplano at 4000-5000 m a.s.l. in the vicinity of the copper mine. Irruputuncu is an active dacitic stratovolcano, with fumaroles at the top crater and one acid-sulphate hot spring at the base of the volcano. -
And Gas-Based Geochemical Prospecting Of
Water- and gas-based geochemical prospecting of geothermal reservoirs in the Tarapacà and Antofagasta regions of northern Chile Tassi, F.1, Aguilera, F.2, Vaselli, O.1,3, Medina, E.2, Tedesco, D.4,5, Delgado Huertas, A.6, Poreda, R.7 1) Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121, Florence, Italy 2) Departamento de Ciencias Geológicas, Universidad Católica del Norte, Av. Angamos 0610, 1280, Antofagasta, Chile 3) CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121, Florence, Italy 4)Department of Environmental Sciences, 2nd University of Naples, Via Vivaldi 43, 81100 Caserta, Italy 5) CNR-IGAG National Research Council, Institute of Environmental Geology and Geo-Engineering, Pzz.e A. Moro, 00100 Roma, Italy. 6) CSIS Estacion Experimental de Zaidin, Prof. Albareda 1, 18008, Granada, Spain. 7) Department of Earth and Environmental Sciences, 227 Hutchinson Hall, Rochester, NY 14627, U.S.A.. Studied area The Andean Central Volcanic Zone, which runs parallel the Central Andean Cordillera crossing from North to This study is mainly focused on the geochemical characteristics of water and gas South the Tarapacà and Antofagasta regions of northern Chile, consists of several volcanoes that have shown phases of thermal fluids discharging in several geothermal areas of northern Chile historical and present activity (e.g. Tacora, Guallatiri, Isluga, Ollague, Putana, Lascar, Lastarria). Such an intense (Fig. 1); volcanism is produced by the subduction process thrusting the oceanic Nazca Plate beneath the South America Plate. The anomalous geothermal gradient related to the geodynamic assessment of this extended area gives El Tatio, Apacheta, Surire, Puchuldiza-Tuya also rise to intense geothermal activity not necessarily associated with the volcanic structures. -
Field Excursion Report 2010
Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010). -
Chilean Notes, 1962-1963
CHILEAN NOTES ' CHILEAN NOTES, 1962-1963 BY EVELIO ECHEVARRfA C. (Three illustrations: nos. 2I-23) HE mountaineering seasons of I 962 and I 963 have seen an increase in expeditionary activity beyond the well-trodden Central Andes of Chile. This activity is expected to increase in the next years, particularly in Bolivia and Patagonia. In the Central Andes, \vhere most of the mountaineering is concen trated, the following first ascents were reported for the summer months of I962: San Augusto, I2,o6o ft., by M. Acufia, R. Biehl; Champafiat, I3,I90 ft., by A. Diaz, A. Figueroa, G. and P. de Pablo; Camanchaca (no height given), by G. Fuchloger, R. Lamilla, C. Sepulveda; Los Equivo cados, I3,616 ft., by A. Ducci, E. Eglington; Puente Alto, I4,764 ft., by F. Roulies, H. Vasquez; unnamed, I4,935 ft., by R. Biehl, E. Hill, IVI. V ergara; and another unnamed peak, I 5,402 ft., by M. Acufia, R. Biehl. Besides the first ascent of the unofficially named peak U niversidad de Humboldt by the East German Expedition, previously reported by Mr. T. Crombie, there should be added to the credit of the same party the second ascent of Cerro Bello, I7,o6o ft. (K. Nickel, F. Rudolph, M. Zielinsky, and the Chilean J. Arevalo ), and also an attempt on the un climbed North-west face of Marmolejo, 20,0I3 ft., frustrated by adverse weather and technical conditions of the ice. In the same area two new routes were opened: Yeguas Heladas, I5,7I5 ft., direct by the southern glacier, by G. -
Appendix A. Supplementary Material to the Manuscript
Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study. -
Remobilization of Crustal Carbon May Dominate Volcanic Arc Emissions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESC Publications - Cambridge Univesity Submitted Manuscript: Confidential Title: Remobilization of crustal carbon may dominate volcanic arc emissions Authors: Emily Mason1, Marie Edmonds1,*, Alexandra V Turchyn1 Affiliations: 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ *Correspondence to: [email protected]. Abstract: The flux of carbon into and out of Earth’s surface environment has implications for Earth’s climate and habitability. We compiled a global dataset for carbon and helium isotopes from volcanic arcs and demonstrated that the carbon isotope composition of mean global volcanic gas is considerably heavier, at -3.8 to -4.6 ‰, than the canonical Mid-Ocean-Ridge Basalt value of -6.0 ‰. The largest volcanic emitters outgas carbon with higher δ13C and are located in mature continental arcs that have accreted carbonate platforms, indicating that reworking of crustal limestone is an important source of volcanic carbon. The fractional burial of organic carbon is lower than traditionally determined from a global carbon isotope mass balance and may have varied over geological time, modulated by supercontinent formation and breakup. One Sentence Summary: Reworking of crustal carbon dominates volcanic arc outgassing, decreasing the estimate of fractional organic carbon burial. Main Text: The core, mantle and crust contain 90% of the carbon on Earth (1), with the remaining 10% partitioned between the ocean, atmosphere and biosphere. Due to the relatively short residence time of carbon in Earth’s surface reservoirs (~200,000 years), the ocean, atmosphere and biosphere may be considered a single carbon reservoir on million-year timescales. -
Eruptive Activity of Planchón-Peteroa Volcano for Period 2010-2011, Southern Andean Volcanic Zone, Chile
Andean Geology 43 (1): 20-46. January, 2016 Andean Geology doi: 10.5027/andgeoV43n1-a02 www.andeangeology.cl Eruptive activity of Planchón-Peteroa volcano for period 2010-2011, Southern Andean Volcanic Zone, Chile *Felipe Aguilera1, 2, Óscar Benavente3, Francisco Gutiérrez3, Jorge Romero4, Ornella Saltori5, Rodrigo González6, Mariano Agusto7, Alberto Caselli8, Marcela Pizarro5 1 Servicio Nacional de Geología y Minería, Avda. Santa María 0104, Santiago, Chile. 2 Present address: Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 3 Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected] 4 Centro de Investigación y Difusión de Volcanes de Chile, Proyecto Archivo Nacional de Volcanes, Santiago, Chile. [email protected] 5 Programa de Doctorado en Ciencias mención Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected] 6 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 7 Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428EHA, Buenos Aires, Argentina. [email protected] 8 Laboratorio de Estudio y Seguimiento de Volcanes Activos (LESVA), Universidad Nacional de Río Negro, Roca 1242, (8332) Roca, Argentina. [email protected] * Corresponding author: [email protected] ABSTRACT. Planchón-Peteroa volcano started a renewed eruptive period between January 2010 and July 2011. This eruptive period was characterized by the occurrence of 4 explosive eruptive phases, dominated by low-intensity phreatic activity, which produced almost permanent gas/steam columns (200-800 m height over the active crater). -
Full-Text PDF (Final Published Version)
Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H. -
Evaluación Del Riesgo Volcánico En El Sur Del Perú
EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti .................................................................................................................................. -
Volcán Lascar
Volcán Lascar Región: Antofagasta Provincia: El Loa Comuna: San Pedro de Atacama Coordenadas: 21°22’S – 67°44’O Poblados más cercanos: Talabre – Camar – Socaire Tipo: Estratovolcán Altura: 5.592 m s.n.m. Diámetro basal: 8.9 km Área basal: 62.2 km2 Volumen estimado: 28.5 km3 Última actividad: 2015 Última erupción mayor: 1993 Volcán Lascar. Vista desde el norte Ranking de riesgo (Fotografía: Gabriela Jara, SERNAGEOMIN) 14 específico: Generalidades El volcán Láscar corresponde a un estratovolcán compuesto, elongado en dirección este-oeste, activo desde hace unos 240 ka y emplazado en el margen oeste de la planicie altiplánica. Está conformado por lavas andesíticas, que alcanzan más de 10 km de longitud, y por potentes lavas dacíticas que se extienden hasta 5 km, las que fueron emitidas desde los flancos NO a SO. La lava más reciente se estima en 7 mil años de antigüedad. En los alrededores del volcán se reconocen depósitos de flujo y caída piroclástica, además de numerosos cráteres de impacto asociados a la eyección de bombas durante erupciones plinianas y subplinianas. El principal evento eruptivo durante su evolución se denomina Ignimbrita Soncor, generado hace unos 27 ka al oeste del volcán y con un volumen estimado cercano a los 10 km3. En la cima de este volcán se observan seis cráteres, algunos anidados, y el central de estos se encuentra activo. Registro eruptivo Este volcán ha presentado alrededor de 30 erupciones explosivas desde el siglo XIX, lo que lo convierte en el volcán más activo del norte de Chile. Estos eventos han consistido típicamente en erupciones vulcanianas de corta duración, con emisión de ceniza fina y proyecciones balísticas en un radio de 5 km, donde el último evento de este tipo ocurrió el 30 de octubre del 2015.