Volcán Lascar

Total Page:16

File Type:pdf, Size:1020Kb

Volcán Lascar Volcán Lascar Región: Antofagasta Provincia: El Loa Comuna: San Pedro de Atacama Coordenadas: 21°22’S – 67°44’O Poblados más cercanos: Talabre – Camar – Socaire Tipo: Estratovolcán Altura: 5.592 m s.n.m. Diámetro basal: 8.9 km Área basal: 62.2 km2 Volumen estimado: 28.5 km3 Última actividad: 2015 Última erupción mayor: 1993 Volcán Lascar. Vista desde el norte Ranking de riesgo (Fotografía: Gabriela Jara, SERNAGEOMIN) 14 específico: Generalidades El volcán Láscar corresponde a un estratovolcán compuesto, elongado en dirección este-oeste, activo desde hace unos 240 ka y emplazado en el margen oeste de la planicie altiplánica. Está conformado por lavas andesíticas, que alcanzan más de 10 km de longitud, y por potentes lavas dacíticas que se extienden hasta 5 km, las que fueron emitidas desde los flancos NO a SO. La lava más reciente se estima en 7 mil años de antigüedad. En los alrededores del volcán se reconocen depósitos de flujo y caída piroclástica, además de numerosos cráteres de impacto asociados a la eyección de bombas durante erupciones plinianas y subplinianas. El principal evento eruptivo durante su evolución se denomina Ignimbrita Soncor, generado hace unos 27 ka al oeste del volcán y con un volumen estimado cercano a los 10 km3. En la cima de este volcán se observan seis cráteres, algunos anidados, y el central de estos se encuentra activo. Registro eruptivo Este volcán ha presentado alrededor de 30 erupciones explosivas desde el siglo XIX, lo que lo convierte en el volcán más activo del norte de Chile. Estos eventos han consistido típicamente en erupciones vulcanianas de corta duración, con emisión de ceniza fina y proyecciones balísticas en un radio de 5 km, donde el último evento de este tipo ocurrió el 30 de octubre del 2015. Dentro de este registro destaca la erupción subpliniana del 19-20 de abril de 1993, correspondiente al mayor evento ocurrido en el norte de Chile en tiempos históricos. Asociado a este, se generó un depósito de caída piroclástica que se extendió hacia el NO argentino donde alcanzó espesores inferiores a 1 cm. Asimismo, múltiples flujos piroclásticos pumíceos, relacionados con colapsos parciales de la columna eruptiva, alcanzaron hasta 10 km hacia el norte, noroeste y suroeste del volcán. La actividad actual se caracteriza por la persistente emisión de gases desde el cráter central, con un preponderante componente magmático, y ocasionales explosiones menores de ceniza fina. Peligros y riesgos asociados Son esperables eventos eruptivos de diversa magnitud en el corto y mediano plazo. Las zonas más expuestas corresponden a los flancos norte, oeste y sur del volcán, susceptibles de ser impacatadas por corrientes piroclásticas y proyecciones balísticas. La dispersión atmosférica de material piroclástico pumíceo estaría mayoritariamente dirigida hacia el este y sureste del volcán, con acumulación variable hacia el Paso Huaytuquina y a lo largo de las rutas internacionales CH-27 y CH-23, en las cercanías de los Pasos de Jama y Sico, respectivamente. No obstante, columnas eruptivas altas durante los meses de verano podrían dispersar piroclastos hacia centros poblados ubicados al oeste del volcán, como Toconao, Talabre, Camar, Peine y Socaire. Mapa de ubicación de Volcán Lascar Déruelle, B. 1985. Le Volcan Láscar: Géologie et petrologie. In Congreso Geológico de Chile, No. 4, Actas 3: 120-137. Sparks, R.S.J.; Stasiuk, M.V.; Gardeweg, M.C.; Swanson, D.A. 1993. Welded Breccias in Andesite Lavas. Journal of the Geological Society of London 150: 897-902. Gardeweg, M.C.; Medina, E. 1994. La erupción subpliniana del 19-20 Abril de 1993 del Volcán Láscar, Norte de Chile. In Congreso Geológico Chileno, No. 7, Actas 1: 299-304. Concepción. Gardeweg, M.C.; Fuentealba, G.; Murillo, M.; Petit-Breuilh, M.E.; Espinoza, A.; Moreno, M.; Sparks, R.S.J.; Matthews, S.J. 1994. Volcán Láscar: Geología y Evaluación del Riesgo Volcánico-Altiplano II Región. Informe Registrado IR-1994-3, Servicio Nacional de Geología y Minería: 169 p. Matthews, S.; Jones, A.P.; Gardeweg, M.C. 1994. Lascar volcano, Northern Chile; evidence for steady-state disequilibrium. Journal of Petrology 35: 401-432. Déruelle, B.; Figueroa, O.; Medina, E.; Viramonte, J.; Maragno, M. 1996. Petrology of pumice of April 1993 eruption of Láscar (Atacama, Chile). Terra Nova 8: 191-199. Matthews, S.J.; Marquillas, R.A.; Kemp, A.J.; Grange, F.K.; Gardeweg, M.C. 1996. Active skarn formation beneath Láscar Volcano, Northern Chile: a petrographic and geochemical study of xenoliths in eruptions products. Journal of Metamorphic Geology 14: 509-530. Sparks, R.S.J.; Gardeweg, M.C.; Calder, E.S.; Matthews, S.J. 1997. Erosion by pyroclastic flows on Láscar Volcano, Northern Chile. Bulletin of Volcanology 58: 557-565. Matthews, S.; Gardeweg, M.; Sparks, R. 1997. The 1984 to 1996 cycling activity of Láscar Volcano, northern Chile: cycles of dome growth, dome subsidence, degassing and explosive eruptions. Bulletin of Volcanology 59: 72-82. Gardeweg, M.C.; Sparks, R.S.J.; Matthews, S.J. 1998. Evolution of Láscar Volcano, Northern Chile. Journal of the Geological Society of London 155: 89-104. Hellweg, M. 1999. Seismic signals from Láscar volcano. Journal of South American Earth Sciences 12: 123-133. Matthews, S.J.; Sparks, R.S.J.; Gardeweg, M.C. 1999. The Piedras Grandes-Sóncor event, Láscar Volcano, Chile; evolution of a zoned magma chamber in the Central Andean upper crust. Journal of Petrology 40: 1891-1919. Calder, E.S.; Sparks, R.S.J.; Gardeweg, M. 2000. Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrites at Láscar Volcano, Chile. Journal of Volcanology and Geothermal Research 104: 201-235. Wörner, G.; Hammerschmidt, K.; Henjes-Kunst, F.; Lezaum, J.; Wilke, H. 2000. Geochronology (Ar-Ar, K-Ar, and He-exposure ages) of Cenozoic magmatic rocks from northern Chile (18-22°S): implications for magmatism and tectonic evolution of the central Andes. Risacher, F.; Alonso, H. 2001. Geochemistry of ash leachates from the 1993 Lascar eruption, northern Chile. Implication for recycling of ancient evaporites. Journal of Volcanology and Geothermal Research 109(4): 319-337. Aguilera, F.; Martínez, C.; Tassi, F.; Viramonte, J.; Medina, E.; Vargas, H. 2003. Actividad del volcán Láscar en el período 2000-2002. In Congreso Geológico Chileno, No. 10, Actas (CD-ROM). Concepción. Aguilera, F. 2004. Monitoreo volcánico a través de sensores reomotos: aplicaciones al volcán Láscar, Segunda Región de Antofagasta, Chile. Memoria para optar al Título de Geólogo. Departamento de Geología, Universidad Católica del Norte: 159 p. Antofagasta. Mather, T.; Tsanev, V.; Pyle, D.; McGonnicle, A.J.S.; Oppenheimer, C.; Allen, A.G. 2004. Characterizatation and evolution of tropospheric plumes from Lascar and Villarrica volcanoes, Chile. Journal of Geophysical Research 109, D21303. Pavez, A.; Legrand, D.; Remy, D.; Diament, M.; Froger, J-L.; Bonvalot, S.; Julien, P.; Moisset, D.; Gabalda, G. 2006. Insight into ground deformations at Láscar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring. Remote Sensing and Environment 100: 307-320. 307-320.Tassi, F.; Aguilera, F.; Vaselli, O.; Medina, E.; Tedesco, D.; Delgado-Huertas, A.; Poreda, R.; Kojima, S. 2009. The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Láscar volcano, northern Chile. Bulletin of Volcanology 71: 171-183. Aguilera, F. 2010. Sobre el origen, naturaleza y evolución de los fluidos en volcanes, campos geotérmicos y fuentes termales de la Zona Volcánica Central (ZVC) en el norte de Chile (17°43’S – 25°10’S). Concurso Bicentenario, Tesis Doctorales 2008, Vol. I: 161-468, Andros Impresores S.A., Santiago. ISBN: 978-956-7892-31-0. Díaz, D.; Brasse, H.; Ticona, F. 2012. Conductivity distribution beneath Lascar volcano (Northern Chile) and the Puna, inferred from magnetotelluric data. Journal of Volcanology and Geothermal Research 217-218: 21-29. Whelley, P.L.; Jay, J.; Calder, E.S.; Pritchard, M.E.; Cassidy, N.J.; Alcaraz, S.; Pavez, A. 2012. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile. Bulletin of Volcanology 74(2): 511-531. Jay, J.A.; Welch, M.; Pritchard, M.E.; Mares, P.J.; Mnich, M.E.; Melkonian, A.K.; Aguilera, F.; Naranjo, J.A.; Sunagua, M.; Clavero, J.E. 2013. Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000 and 2010. Geological Society of London Special Publications 380(1): 161-185. Pritchard, M.E.; Henderson, S.T.; Jay, J.A.; Soler, V.; Krzesni, D.A.; Button, N.E.; Welch, M.D.; Semple, A.G.; Glass, B.; Sunagua, M.; Minaya, E.; Amigo, A.; Clavero, J.E. 2014. Reconnaissance earthquake studies at nine volcanic areas of the central Andes with coincident satellite thermal and InSAR observations. Journal of Volcanology and Geothermal Research 280: 90-103. Información Cartográfica: Ramírez, C.F.; Gardeweg, M. 1982. Geología de la Hoja Toconao, Región de Antofagasta, escala 1:250.000. Instituto de Investigaciones Geológicas, Carta Geológica de Chile 54: 122, 1 mapa. Santiago. Gardeweg, M.C.; Amigo, A.; Matthews, S..J.; Sparks, R.S.J.; Clavero, J.E. 2011. Geología del volcán Láscar, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 131: 40 p., 1 mapa escala 1:50.000. Santiago. Amigo, A., Bertin, D., Orozco, G. 2012. Peligros volcánicos de la zona norte de Chile, Regiones de Arica y Parinacota, Tarapacá, Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 17: 45 p., 1 mapa en 5 hojas escala 1:250.000, 1 mapa escala 1:3.000.000. Santiago. Gardeweg, M.C.; Amigo, A. 2015. Peligros del volcán Láscar, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 22, 1 mapa escala 1:50.000.
Recommended publications
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • Actualización Plan Director De Infraestructura Mop
    REPÚBLICA DE CHILE MINISTERIO DE OBRAS PÚBLICAS DIRECCIÓN DE PLANEAMIENTO ACTUALIZACIÓN PLAN DIRECTOR DE INFRAESTRUCTURA MOP Informe Final Región de Antofagasta Chile, Noviembre de 2009 INECON, Ingenieros y Economistas Consultores S.A. ÍNDICE 1. CARACTERÍSTICAS DE LA REGIÓN DE ANTOFAGASTA ............................ 1 1.1. Características generales. ............................................................................. 1 1.2. Características económicas. .......................................................................... 1 1.3. Características de la población. ..................................................................... 2 1.4. Gasto histórico en infraestructura por parte del MOP. ...................................... 2 2. IMAGEN OBJETIVO DE LA REGIÓN DE ANTOFAGASTA ............................ 3 2.1. Diagnósticos, objetivos estratégicos y visiones pertinentes. .............................. 3 2.1.1. Estrategia de Desarrollo Regional (EDR) ................................................... 3 2.1.2. Visión 2020- Talleres MOP ..................................................................... 4 2.1.3. Reconocimiento Territorial ...................................................................... 4 2.2. Oportunidades y restricciones de la región. ..................................................... 5 2.2.1. Oportunidades ...................................................................................... 5 2.2.2. Restricciones .......................................................................................
    [Show full text]
  • Processes Culminating in the 2015 Phreatic Explosion at Lascar Volcano, Chile, Monitored by Multiparametric Data Ayleen Gaete1, Thomas R
    https://doi.org/10.5194/nhess-2019-189 Preprint. Discussion started: 25 June 2019 c Author(s) 2019. CC BY 4.0 License. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, monitored by multiparametric data Ayleen Gaete1, Thomas R. Walter1, Stefan Bredemeyer1,2, Martin Zimmer1, Christian Kujawa1, Luis Franco3, Juan San Martin4, Claudia Bucarey Parra3 5 1 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2 GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 3 Observatorio Volcanológico de Los Andes del Sur (OVDAS), Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco, Chile. 4 Physics Science Department, Universidad de la Frontera, Casilla 54-D, Temuco, Chile. 10 Correspondence to: Ayleen Gaete ([email protected]) Abstract. Small steam-driven volcanic explosions are common at volcanoes worldwide but are rarely documented or monitored; therefore, these events still put residents and tourists at risk every year. Steam-driven explosions also occur frequently (once every 2-5 years on average) at Lascar volcano, Chile, where they are often spontaneous and lack any identifiable precursor activity. Here, for the first time at Lascar, we describe the processes culminating in such a sudden 15 volcanic explosion that occurred on October 30, 2015, which was thoroughly monitored by cameras, a seismic network, and gas (SO2 and CO2) and temperature sensors. Prior to the eruption, we retrospectively identified unrest manifesting as a gradual increase in the number of long-period (LP) seismic events in 2014, indicating an augmented level of activity at the volcano. Additionally, SO2 flux and thermal anomalies were detected before the eruption.
    [Show full text]
  • Application of INSAR Interferometry and Geodetic Surveys for Monitoring Andean Volcanic Activity : First Results from ASAR-ENVISAT Data
    6th International Symposi um on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts: 115-118 Application of INSAR interferometry and geodetic surveys for monitoring Andean volcanic activity : First results from ASAR-ENVISAT data S. Bonvalot (1,2,4), J.-L. Froger (1,3,4), D. Rémy (1,2,4), K. Bataille (5), V. Cayol (3), J. Clavera (6), D. Comte (4), G. Gabalda (1,2,4), K. Gonzales (7), L. Lara (6), D. Legrand (4), O. Macedo (8), J. Naranjo (6), P. Mothes (9), A. Pavez (1,10), & C. Robin (1,3,4) (1) IRD (Institut de Recherche pour le Développement) - [email protected], [email protected], [email protected] ; (2) UMR5563 Toulouse, France; (3) UMR6524 Clermont-Ferrand, France; (4) Deptos de Geofisica / Geologia, Facultad de Ciensas y Matematicas, Universidad de Chile , Blanco Encalada 2002, Santiago, Chile ; (5) Universidad de Concepcion, Chile; (6) SERNAGEOMIN, Santiago, Chile ; (7) CON IDA, Lima, Perù, (8) Instituto Geofisico dei Perù, Arequipa, Perù ; (9) Instituto Geofisico, Escuela Politecnica Nacional, Quito, Ecuador ; (10) Institut de Physique du Globe de Paris, Lab. de Gravimétrie et Géodynamique KEYWORDS : Radar interferometry, geodetic surveys, ground deformations, Andes, volcanoes INTRODUCTION Within the last few years, several SAR interferometry studies mostly based on ERS-IIERS-2 radar data have been conducted to monitor the volcanic deformations along the South American volcanic arc. They allowed a first evaluation of the potentialities of INSAR imaging in the northern, central and southern volcanic zones (respectively NVZ, CVZ and SVZ) as weil as the first quantitative satellite measurements of volcanic unrest since the initial launch of ERS-l satellite (1992) to nowdays.
    [Show full text]
  • English / French
    World Heritage 38 COM WHC-14/38.COM/INF.8B4.Rev Doha, 16 June 2014 Original: English / French UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION CONVENTION CONCERNING THE PROTECTION OF THE WORLD CULTURAL AND NATURAL HERITAGE WORLD HERITAGE COMMITTEE Thirty-eighth session Doha, Qatar 15 – 25 June 2014 Item 8 of the Provisional Agenda: Establishment of the World Heritage List and of the List of World Heritage in Danger INF.8B4: Factual error letters SUMMARY This document contains the factual errors notifications received from States Parties by 2 June 2014 in compliance with paragraph 150 of the Operational Guidelines. This document cancels and replaces the previous one. Alphabetical list by State Party of notifications of factual errors in the evaluation reports of the Advisory Bodies relating to nominations to be examined at the 38th session of the World Heritage Committee (15-25 June 2014) State Party World Heritage nomination ID No. Recommendation Pp Argentina, Bolivia, Qhapaq Ñan, Andean Road System 1459 I 2 Chile, Colombia, Ecuador, Peru Belgium Plantin-Moretus House-Workshops-Museum Complex 1185 Bis N 9 (MBM) Botswana Okavango Delta 1432 I 11 China / Kazakhstan / Silk Roads: Initial Section of the Silk Roads, the Routes 1442 I 14 Kyrgyzstan Network of Tian-shan Corridor China / Kazakhstan / Silk Roads: Initial Section of the Silk Roads, the Routes 1442 I 17 Kyrgyzstan Network of Tian-shan Corridor Denmark Stevns Klint 1416 I 19 France Tectono-volcanic Ensemble of the Chaine des Puys and 1434 N 20 Limagne Fault Germany
    [Show full text]
  • The Origin and Emplacement of Domo Tinto, Guallatiri Volcano, Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watts, Robert B.; Clavero Ribes, Jorge; J. Sparks, R. Stephen The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 558-588 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 558-588. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Robert B. Watts1, Jorge Clavero Ribes2, R. Stephen J. Sparks3 1 Office of Disaster Management, Jimmit, Roseau, Commonwealth of Dominica. [email protected] 2 Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile. [email protected] 3 Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol. BS8 1RJ. United Kingdom. [email protected] ABSTRACT. Guallatiri Volcano (18°25’S, 69°05’W) is a large edifice located on the Chilean Altiplano near the Bo- livia/Chile border. This Pleistocene-Holocene construct, situated at the southern end of the Nevados de Quimsachata chain, is an andesitic/dacitic complex formed of early stage lava flows and later stage coulées and lava domes.
    [Show full text]
  • Indirect Tephra Volume Estimations Using Theorical Models for Some Chilean Historical Volcanic Eruptions with Sustained Columns J.E
    Indirect tephra volume estimations using theorical models for some Chilean historical volcanic eruptions with sustained columns J.E. Romero*1,2 , J.G. Viramonte 3 & R. A. Scasso 4 (1) Universidad de Atacama, Departamento de Geología. Copayapu 485, Copiapó. (2) Proyecto Archivo Nacional de Volcanes, www.archivonacionaldevolcanes.cl (3) INENCO – GEONORTE Universidad Nacional de Salta-CONICET, Av. Bolivia 5150–4400, Salta , Argentina (4)IGeBA-CONICET, Universidad de Buenos Aires, Departamento de Ciencias Geológicas, Int. Guiraldes 2160, C1428EHA, Ciudad Universitaria, Pab. II, Buenos Aires, Argentina. * Presenting Author’s email: [email protected] Introduction During explosive volcanic eruptions, diverse pyroclastic products are discharged from an eruptive column. Those columns are divided into three zones; 1) a basal gas thrust one, 2) medial convective and 3) a top umbrella region (Sparks, 1986) as is indicated in figure 1a. In this last one, where the column is dispersed laterally and radially forming a dispersion cloud or volcanic plume, the column reaches an Ht region due its momentum (Fig.1a). There has been defined two types of eruptive columns in relation with the time between single explosions. If the time between explosions exceeds the time of ascension of a column until its Ht height, the column is thermal, and in the opposite case, if the ascension time is smaller than the separation between explosions, this column is sustained (Sparks, 1986; Carey and Bursik, 2000). A good agreement has been found in the prediction of column heights and field observations for the case of columns which extends higher than the tropopause (Settle, 1978; Wilson et al, 1978; Sparks and Wilson, 1982; Sparks, 1986).
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • Role of Differentiation and Mixing Processes in the Evolution of Central Andean Magma Systems: an Experimental Approach
    Geophysical Research Abstracts, Vol. 11, EGU2009-10444, 2009 EGU General Assembly 2009 © Author(s) 2009 Role of differentiation and mixing processes in the evolution of Central Andean magma systems: An experimental approach R.E. Botcharnikov (1), C. Bonecke (1), F. Holtz (1), G. Torresi (1), M. Banaszak (2), and G. Wörner (2) (1) Institut für Mineralogie Universität Hannover, Callinstr. 3, 30167 Hannover, Germany ([email protected]), (2) Geowissenschaftliches Zentrum Göttingen, Abt. Geochemie, Goldschmidtstr.1, 37077 Göttingen, Germany The compositional evolution of magmatic systems is controlled by many factors, numerous processes and prevail- ing conditions at depths of magma generation, storage and ascent. The most important processes responsible for the chemical variations observed in most erupted magmas are magma differentiation during crystallization and magma mixing/hybridization. We present preliminary results of the crystallization experiments on the two magma compositions representative of the least evolved basaltic andesite magmas from Parinacota volcano and of the dacitic magmas from Taapaca volcano (N.Chile). Although both volcanoes are related to the Central Andean magma systems, the geochemical characteristics of erupted materials from these two volcanoes represent distinct magmatic regimes and processes, occurring at depth of magma generation and storage (for details see Banaszak et al., this session). The lavas of Taapaca have relatively uniform dacitic compositions over a long period of volcanic activity (ca. 1270 ka) and low eruptive rates (0.024 km3/ka). In contrast, the rocks from Parinacota are younger (163 ka), and they have been produced in five stages of volcanic activity with eruptive rates that are at least one order of magnitude faster (0.5-1 km3/ka) than those of Taapaca.
    [Show full text]
  • Volcanoes: Ice and Fire
    Journeys@Home Volcanoes: Ice and Fire Parinacota Looking Due North across Lago Chungara—5 Days at 15,400’, 2015 Tony Foster went to Chile on the advice of renowned volcanologist, Sir Stephen Sparks, to paint a beautiful volcano for his Exploring Beauty Journey. Tony told Sir Sparks that he had painted this particular volcano before. To that Sir Sparks replied, “not from the Chilean side.” Tony could not argue. He painted Parinacota from its Bolivian side in 1997 for his Ice and Fire Journey. Volcanoes are known to be subjects of destruction and creation. When one thinks of a volcano, one may recall lava, magma, and eruptions. These giants of the earth loom large above their landscapes. Some are so high that they are Cerro Parinacota SW from a Ridge below Cerro Pomerape, 1997 covered with snow all year round! The Foster | 940 Commercial St., Palo Alto, CA 94303 | www.thefoster.org Activity: Citrus Volcanoes Try your very own citrus volcano. We used a lemon, but you can try different citrus fruits to see the reactions they can make. How do you think limes, oranges, grapefruits, or tangerines would react? The Tools You’ll Need: ◆ Citrus Fruit ◆ Dish to Contain the Citrus Volcano ◆ Baking Soda ◆ Food Coloring ◆ Extra Citrus Fruit Juice ◆ Spoon ◆ Small Cup for Baking Soda (We used a recycled apple sauce cup!) STEP 1: Cut off the base STEP 2: Put the fruit in STEP 3: Drop the food STEP 4: Pour a generous of your fruit to make a flat the dish. Use a craft stick coloring onto the citrus amount of baking soda on spot on the bottom.
    [Show full text]
  • Volcano Fact Sheet
    Fire & Rain: An Exploration of Volcanoes and Rainforests in Latin America Selected Volcanoes of Latin America FACT SHEET 1 Ojos del Salado Ojos del Salado is a stratovolcano in the Andes on the Argentina–Chile border and the highest active volcano in the world at 6,893 meters. Elevation: 22,615′ (feet); First ascent: February 26, 1937 Sabancaya Sabancaya is an active 5,976-meter stratovolcano in the Andes of southern Peru, about 100 kilometers northwest of Arequipa. Elevation: 19,606′; Last eruption: 2003 Cotopaxi Cotopaxi is an active stratovolcano in the Andes Mountains, located near the capital of the Cotopaxi Province. Cotopaxi is about 50 kilometers south of Quito, and 33 kilometers northeast of the city of Latacunga, Ecuador. Elevation: 19,347′; Last eruption: August 2015; First ascent: Nov. 28, 1872 Ubinas Ubinas is an active 5,672-metre stratovolcano in the Andes of southern Peru. Until 2006, this stratovolcano had not erupted for about 40 years. Elevation: 18,609′; Last eruption: February 2014 Lascar Lascar, a stratovolcano, is the most active volcano of the northern Chilean Andes. Elevation: 18,346′; Last eruption: 2007; First ascent: October 30, 2015 Popocatépetl Popocatépetl is an active volcano, located in the states of Puebla, Mexico, and Morelos, in Central Mexico, and lies in the eastern half of the Trans-Mexican volcanic belt. Elevation: 17,802’; Last eruption: 2016; First ascent: 1519 Note: “First Ascent” is the first successful, documented attainment of the top of a mountain or volcano. In Latin America, the first ascent is often associated with colonialism, as they may be little or no physical evidence/documentation about the climbing activities of indigenous peoples living nearby.
    [Show full text]