Volcans Monde SI Dec2010

Total Page:16

File Type:pdf, Size:1020Kb

Volcans Monde SI Dec2010 GEOLOGICAL MAP OF THE WORLD AT 1: 25,000,000 SCALE, THIRD EDITION - Compilator: Philippe Bouysse, 2006 ACTIVE AND RECENT VOLCANOES This list of 1508 volcanoes is taken from data of the Global Volcanism Program run by the Smithsonian Institution (Washington, D.C., USA) and downloaded in April 2006 from the site www.volcano.si.edu/world/summary.cfm?sumpage=num. From the Smithsonian's list, 41 locations have been discarded due to a great deal of uncertainties, particularly as concerns doubtful submarine occurrences (mainly ship reports of the 19th and early 20th centuries). Also have been omitted submarine occurrences from the axes of "normal" oceanic accretionary ridges, i.e. not affected by hotspot activity. NOTES Volcano number: the numbering system was developped by the Catalog of Active Volcanoes of the World in the 1930s and followed on by the Smithsonian Institution, namely in the publication of T. Simkin & L.Siebert: Volcanoes of the World (1994). Name and Geographic situation: some complementary information has been provided concerning a more accurate geographic location of the volcano, e.g. in the case of smaller islands or due to political changes (as for Eritrea). Geographic coordinates: are listed in decimal parts of a degree. The position of volcano no. 104-10 (Tskhouk-Karckar, Armenia) was corrected (Lat. 39°.73 N instead of 35°.73 N). An asterisk (*) in column V.F. indicates the position of the center point of a broad volcanic field. Elevation: in meters, positive or negative for submarine volcanoes. Time frame (column T-FR): this is a Smithsonian' classification for the time of the volcano last known eruption: D1= 1964 or later D2= 1900 – 1963 D3= 1800 – 1899 D4= 1700 – 1799 D5= 1500 – 1699 D6= A.D.1 – 1499 D7= B.C. (Holocene) U= Undated (probable Holocene eruption) ?= Uncertain Holocene eruption Page 1, Volcans monde SI dec2010 CARTE GÉOLOGIQUE DU MONDE A L'ÉCHELLE DE 1/25 000 000, TROISIEME ÉDITION - Compilateur : Philippe Bouysse, 2006 VOLCANS ACTIFS ET RÉCENTS Les 1508 volcans dans cette liste proviennent des données du Global Volcanism Program mis en oeuvre par la Smithsonian Institution (Washington, D.C., USA). Ils correspondent à la liste téléchargée en avril 2006 du site web www.volcano.si.edu/world/summary.cfm?sumpage=num. De cette liste, ont été retirés 41 occurrences en raison de la trop grande incertitude quant à la réalité d'une activité volcanique, en particulier en ce qui concerne le volcanisme sous-marin, la plupart provenant de rapports de navigation du XIXe siècle et du début du XXe. On a également écarté les occurrences sous-marines situées à l'axe des rides d'accrétion océanique "normales", i.e. non-perturbées par une activité de point chaud. NOTES Numéro du volcan: le système de numérotation a été introduit par le Catalogue des volcans actifs du Monde dans les années 1930, et repris par la Smithsonian Institution, notamment dans la publication de T. Simkin & L.Siebert: Volcanoes of the World (1994). Nom et situation géographique : nous avons parfois introduit une indication complémentaire précisant où se trouve le volcan quand cela n'est pas indiqué par la Smithsonian, i.e. dans le cas d'îles relativement petites incluses dans un archipel (comme dans les îles de la Petite Sonde) ou à cause des changements politiques comme dans le cas de l'Erythrée. Coordonées géographiques : elles sont données en dixièmes ou centièmes de degré. La position du volcan n° 104-10 (Tskhouk-Karckar, Arménie) a été corrigée (Lat. 39°.73 N au lieu de 35°.73 N). Un astérisque (*) dans la colonne V.F. indique la position du centre d'un champ volcanique d'une certaine étendue. Altitude: en mètres, positive, ou négative, pour les volcans sous-marins. Intervalle temporel (colonne T-FR) : c'est une classification de la Smithsonian indiquant la période de temps au cours de laquelle a eu lieu la dernière éruption connue: D1= 1964 ou plus récent D2= 1900 – 1963 D3= 1800 – 1899 D4= 1700 – 1799 D5= 1500 – 1699 D6= A.D.1 (an 1 de l'ère chrétienne) – 1499 D7= B.C. (avant l'ère chrétienne), Holocène U= Non-daté (éruption holocène probable) ?= Eruption holocène incertaine Q= Éruption(s) quaternaire(s) avec seulement une activité hydrothermale au cours de l'Holocène. NUMBER NAME LOCATION STATUS LATX NS VF LONGX EW ELEV TYPE TIMEFRAME 0100-01- West Eifel Volc Field Germany Radiocarbon 50,1667 N * 6,85 E 600 Maars D7 0100-02- Chaîne des Puys France Radiocarbon 45,775 N * 2,9667 E 1464 Lava domes D7 0100-03- Olot Volc Field Spain Holocene 42,1667 N * 2,5333 E 893 Pyroclastic cones U 0100-04- Calatrava Volc Field Spain Radiocarbon 38,8667 N * -4,017 W 1117 Pyroclastic cones D7 0101-001 Larderello Italy Historical 43,25 N 10,867 E 500 Explosion craters D6 0101-003 Vulsini Italy Historical 42,6 N 11,933 E 800 Caldera D7 0101-004 Alban Hills Italy Holocene? 41,7333 N 12,7 E 949 Caldera ? 0101-01= Campi Flegrei Italy Historical 40,8272 N 14,139 E 458 Caldera D5 0101-02= Vesuvius Italy Historical 40,8214 N 14,426 E 1281 Somma volcano D2 0101-031 Palinuro Italy Radiocarbon 39,4833 N 14,833 E -70 Submarine volcano D7 0101-03= Ischia Italy Historical 40,7333 N 13,898 E 789 Complex volcano D6 0101-041 Panarea Italy Holocene? 38,6333 N 15,067 E 421 Stratovolcano ? 0101-042 Lipari Italy Radiocarbon 38,4833 N 14,95 E 602 Stratovolcanoes D6 0101-04= Stromboli Italy Historical 38,7894 N 15,213 E 924 Stratovolcano D1 0101-05= Vulcano Italy Historical 38,4036 N 14,962 E 500 Stratovolcanoes D3 0101-06= Etna Italy Historical 37,7342 N 15,004 E 3330 Stratovolcanoes D1 Page 2, Volcans monde SI dec2010 NUMBER NAME LOCATION STATUS LATX NS VF LONGX EW ELEV TYPE TIMEFRAME 0101-071 Pantelleria Italy Historical 36,7667 N 12,017 E 836 Shield volcano D3 0101-07= Campi Flegrei Mar Sicilia Italy Historical 37,1 N * 12,7 E -8 Submarine volcanoes D3 0102-02= Methana Greece Historical 37,6153 N 23,336 E 760 Lava domes D7 0102-03= Mílos Greece Radiocarbon 36,6986 N * 24,439 E 751 Stratovolcanoes D6 0102-04= Santorini Greece Historical 36,4036 N 25,396 E 367 Shield volcanoes D2 0102-051 Yali Greece Holocene 36,6706 N 27,14 E 180 Lava domes U 0102-05= Nisyros Greece Historical 36,5856 N 27,16 E 698 Stratovolcano D3 0103-00- Kula Turkey Holocene 38,5833 N * 28,517 E 750 Cinder cones U 0103-001 Karapinar Field Turkey Holocene 37,6667 N * 33,65 E 1302 Cinder cones U 0103-002 Hasan Dagi Turkey Holocene 38,1333 N 34,167 E 3253 Stratovolcano U 0103-003 Göllü Dag Turkey Holocene? 38,25 N 34,567 E 2143 Lava dome ? 0103-004 Acigöl-Nevsehir Turkey Anthropology 38,5667 N 34,517 E 1689 Caldera D7 0103-011 Karaca Dag Turkey Holocene 37,6667 N 39,833 E 1957 Shield volcano U 0103-01= Erciyes Dagi Turkey Radiocarbon 38,5167 N 35,483 E 3916 Stratovolcano D7 0103-021 Süphan Dagi Turkey Holocene 38,9167 N 42,817 E 4158 Stratovolcano D7 0103-022 Girekol Tepe Turkey Holocene 39,1667 N 43,333 E Shield volcano U 0103-02= Nemrut Dagi Turkey Historical 38,65 N 42,233 E 2948 Stratovolcano D5 0103-03= Tendürek Dagi Turkey Historical 39,3667 N 43,867 E 3584 Shield volcano D3 0103-04- Ararat Turkey Historical 39,7 N 44,3 E 5165 Stratovolcano D3 0103-05- Kars Plateau Turkey Holocene? 40,75 N * 42,9 E 3000 Volcanic field ? 0104-01- Elbrus Russia-SW Tephrochronology 43,3333 N 42,45 E 5633 Stratovolcano D6 0104-02- Kasbek Georgia Tephrochronology 42,7 N 44,5 E 5050 Stratovolcano D7 0104-03- Kabargin Oth Group Georgia Holocene 42,55 N * 44 E 3650 Cinder cones U 0104-04- Unnamed Georgia Holocene 42,45 N * 44,25 E 3750 Cinder cones U 0104-05- Unnamed Georgia Holocene 41,55 N * 43,6 E 3400 Lava cones U 0104-06- Aragats Armenia Holocene 40,5333 N 44,2 E 4095 Stratovolcano U 0104-07- Ghegam Ridge Armenia Anthropology 40,275 N * 44,75 E 3597 Volcanic field D7 0104-08- Dar-Alages Armenia Anthropology 39,7 N * 45,542 E 3329 Pyroclastic cones D7 0104-09- Porak Armenia Anthropology 40,0167 N 45,783 E 2800 Stratovolcano D7 0104-10- Tskhouk-Karckar Armenia Tephrochronology 39,7333 N 46,017 E 3000 Pyroclastic cones D7 0201-01= Tair, Jebel at Red Sea Historical 15,55 N 41,833 E 244 Stratovolcano D1 0201-021 Zukur Red Sea Holocene 14,0167 N 42,75 E 624 Shield volcano U 0201-022 Hanish Red Sea Holocene 13,7167 N 42,733 E 422 Shield volcano U 0201-02= Zubair, Jebel Red Sea Historical 15,05 N 42,183 E 191 Shield volcano D3 0201-03= Jalua Ethiopia Holocene 15,0417 N 39,817 E 713 Stratovolcano U 0201-041 Dallol Ethiopia Historical 14,2417 N 40,3 E -48 Explosion craters D2 0201-04= Alid Ethiopia Holocene 14,8833 N 39,917 E 904 Stratovolcano U 0201-05= Gada Ale Ethiopia Holocene 13,975 N 40,408 E 287 Stratovolcano U 0201-06= Alu Ethiopia Holocene 13,825 N 40,508 E 429 Fissure vents U 0201-071 Borale Ale Ethiopia Holocene 13,725 N 40,6 E 668 Stratovolcano U Page 3, Volcans monde SI dec2010 NUMBER NAME LOCATION STATUS LATX NS VF LONGX EW ELEV TYPE TIMEFRAME 0201-07= Dalaffilla Ethiopia Historical 13,7917 N 40,55 E 613 Stratovolcano D1 0201-08= Erta Ale Ethiopia Historical 13,6 N 40,667 E 613 Shield volcano D1 0201-091 Hayli Gubbi Ethiopia Holocene 13,5 N 40,717 E 521 Shield volcano U 0201-09= Ale Bagu Ethiopia Holocene 13,5167 N 40,633 E 1031 Stratovolcano U 0201-101 Nabro Ethiopia Holocene? 13,3667 N 41,7 E 2218 Stratovolcano ? 0201-102 Mallahle Ethiopia Holocene? 13,2667 N 41,65 E 1875 Stratovolcano ? 0201-103 Sork Ale Ethiopia Holocene? 13,1833 N 41,725 E 1611 Stratovolcano ? 0201-104 Asavyo Ethiopia Holocene 13,0667 N 41,6 E 1200 Shield volcano U 0201-105 Mat Ala Ethiopia Holocene 13,1 N 41,15 E 523 Shield volcano U 0201-106 Tat Ali Ethiopia Holocene 13,2833 N 41,067 E 700 Shield volcano U 0201-107 Borawli Ethiopia
Recommended publications
  • Elaboración De Cartografía Geológica Y Geomorfológica De Cinco Subcuencas De La Parte Alta De La Cuenca Alta Del Río Nahualate
    ELABORACIÓN DE CARTOGRAFÍA GEOLÓGICA Y GEOMORFOLÓGICA DE CINCO SUBCUENCAS DE LA PARTE ALTA DE LA CUENCA ALTA DEL RÍO NAHUALATE María Mildred Moncada Vásquez Marzo 16, 2017 ÍNDICE 1. INTRODUCCIÓN ...................................................................................................................................... 6 2. OBJETIVOS .............................................................................................................................................. 7 3. ANTECEDENTES ...................................................................................................................................... 7 4. ENCUADRE TECTÓNICO REGIONAL ........................................................................................................ 9 5. CONTEXTO VOLCÁNICO REGIONAL ......................................................................................................10 6. METODOLOGÍA .....................................................................................................................................12 7. CARTOGRAFÍA GEOLÓGICA ..................................................................................................................16 7.1 Procesos y unidades litológicas asociadas a Calderas Atitlán ......................................................16 7.1.1 Rocas graníticas (Tb - Tbg) ..........................................................................................................16 7.1.2 Toba María Tecún (Tmt) .....................................................................................................20
    [Show full text]
  • Una Teorãła Sobre El Origen De Los Peces De Xiloã€
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Investigations of the Ichthyofauna of Nicaraguan Lakes Papers in the Biological Sciences 1976 Una teoría sobre el origen de los peces de Xiloà Jaime Villa Cornell University Follow this and additional works at: https://digitalcommons.unl.edu/ichthynicar Part of the Aquaculture and Fisheries Commons Villa, Jaime, "Una teoría sobre el origen de los peces de Xiloà" (1976). Investigations of the Ichthyofauna of Nicaraguan Lakes. 12. https://digitalcommons.unl.edu/ichthynicar/12 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Investigations of the Ichthyofauna of Nicaraguan Lakes by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in INVESTIGATIONS OF THE ICHTHYOFAUNA OF NICARAGUAN LAKES, ed. Thomas B. Thorson (University of Nebraska-Lincoln, 1976). Copyright © 1976 School of Life Sciences, University of Nebraska-Lincoln. Reprinted from ENCUENTRO: REv. UNIV. CENTROAMERICANA 1(4):202-214, July-Aug., 1968. J.lme VIII. Una leoria sobre el orlgen• de los peces de Xiloa 1.- INTRODUCCION A finales de 1965 v en conexion con estudios en curso sobre la herpetolo­ g(a nicaragiiense colec te una pequena serie de peces de la Laguna de Xiloa que revela- ron aspectos interesantes y me indujeron a realizar colecciones extensivas en toda la laguna; estas colecciones se realizaron durante 1966-68 y cons tan de varios cien­ tos de ejemplares, depositados en la Universidad de Costa Rica y en mi coleccion particular. El material acumulado durante estos anos y las notas tomadas durante todo el tiempo en que se realizaron han sido suficientes para permitir una serie de conclusiones en diversos aspectos, algunas de las cuales han sido ya publicadas 0 se encuentran en preparacion.
    [Show full text]
  • Redalyc.Geochemistry, U-Pb SHRIMP Zircon Dating and Hf Isotopes of The
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Poma, Stella; Zappettini, Eduardo O.; Quenardelle, Sonia; Santos, João O.; Koukharsky, Magdalena; Belousova, Elena; McNaughton, Neil Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications Andean Geology, vol. 41, núm. 2, mayo, 2014, pp. 267-292 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173931252001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (2): 267-292. May, 2014 Andean Geology doi: 10.5027/andgeoV41n2-a01 formerly Revista Geológica de Chile www.andeangeology.cl Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications Stella Poma1, Eduardo O. Zappettini 2, Sonia Quenardelle 1, João O. Santos 3, † Magdalena Koukharsky 1, Elena Belousova 4, Neil McNaughton 3 1 Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Pabellón II-Ciudad Universitaria, Intendente Güiraldes 2160, C1428 EGA, Argentina. [email protected]; [email protected] 2 Servicio Geológico Minero Argentino (SEGEMAR), Avda. General Paz 5445, edificio 25, San Martín B1650WAB, Argentina. [email protected] 3 University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.
    [Show full text]
  • Preliminary Ranking of Geothermal Potential in the Cascade and Aleutian Volcanic Arcs, Part I: Data Collection
    GRC Transactions, Vol. 39, 2015 Preliminary Ranking of Geothermal Potential in the Cascade and Aleutian Volcanic Arcs, Part I: Data Collection Lisa Shevenell1, Mark Coolbaugh1,2, Nicholas H. Hinz2, Pete Stelling3, Glenn Melosh4, William Cumming5, and Corné Kreemer2 1ATLAS Geoscience, Inc., Reno NV, USA 2Nevada Bureau of Mines and Geology, UNR, Reno NV, USA 3Western Washington University, Bellingham WA, USA 4GEODE, Santa Rosa CA, USA • 5Cumming Geoscience, Santa Rosa CA, USA [email protected][email protected][email protected][email protected] [email protected][email protected][email protected] Keywords Cascade, Aleutian, volcanic, geothermal, potential, structure, database ABSTRACT As part of a DOE funded project on Geothermal Play Fairway Analysis, a geothermal assessment of volcanic centers in the Cascade and Aleutian volcanic arcs is being conducted that includes a large data gathering effort dis- cussed in this paper, and a statistical modeling effort to qualitatively rank the geothermal potential of individual VCs in these two US arcs, discussed in a second companion paper. The data compiled from the Cascades and Aleutians are compared to geologic, geochemical and geophysical information from productive volcanic arc centers in the other parts of the world. Seven other volcanic arc segments from around the globe are used in this comparative study. Preliminary findings from data evaluation indicate that there are systematic changes in structural setting, from an extensional influ- ence south of Mt. Hood (in part due to encroachment of the back arc in the southern half) to more compressional north of Mt. Hood. Comparison with productive geothermal fields around the world shows that large fumarolic areas are associated with most >240°C power-producing geothermal systems outside the US arcs (e.g., Kamojang, Indonesia, among others), whereas there is a general absence of large fumarolic areas in the Cascades and Aleutian arcs, aside from of the Lassen volcano area.
    [Show full text]
  • Amenaza Volcánica Del Área De Managua Y Sus Alrededores (Nicaragua)”
    Parte II.3: Amenaza volcánica 127 Parte II.3 Guía técnica de la elaboración del mapa de “Amenaza volcánica del área de Managua y sus alrededores (Nicaragua)” 128 Parte II.3: Amenaza volcánica Índice 1 Resumen.......................................................................................................................130 2 Lista de figuras y tablas...............................................................................................131 3 Introducción.................................................................................................................132 4 Objetivos.......................................................................................................................132 5 Metodología.................................................................................................................133 5.1 Recopilación de los datos y análisis de los peligros volcánicos existentes............133 5.1.1 Complejo Masaya.............................................................................................133 5.1.1.1 Flujos de lava..............................................................................................134 5.1.1.2 Caída de tefra..............................................................................................134 5.1.1.3 Flujos piroclásticos y Oleadas piroclásticas...............................................135 5.1.1.4 Flujos de lodo y detritos (lahares)..............................................................135 5.1.1.5 Emanaciones de gas....................................................................................136
    [Show full text]
  • Calidad De Las Aguas Superficiales En
    PRESENCIA DE FLÚOR Y ARSÉNICO EN AGUAS SUBTERRÁNEAS CONTENIDO Y DISTRIBUCIÓN DE ARSÉNICO Y OTROS ELEMENTOS TRAZAS EN AGUAS DE ANTOFAGASTA DE LA SIERRA, CATAMARCA, ARGENTINA F. Ruggieri1, J. L. Fernández-Turiel1, D. Gimeno2, M.T. Garcia-Valles2, J. Saavedra3, G. del V. Córdoba4 1Instituto de Ciencias de la Tierra J. Almera, ICTJA - CSIC, Solé i Sabaris s/n, 08028 Barcelona, España. E-mail: [email protected] 2Facultat de Geologia, Universitat de Barcelona, Martí i Franqués s/n, 08038 Barcelona, España, 3IRNASA, CSIC, Cordel de Merinas 40-52, 37008 Salamanca, España 4Facultad de Tecnología y Ciencias Aplicadas, Universidad Nacional de Catamarca, Argentina Resumen Se ha evaluado la distribución de Elementos Trazas Potencialmente Tóxicos (ETPTs) en las aguas de Antofagasta de la Sierra, localizada en la parte sur de la Puna, en la provincia de Catamarca, noroeste de Argentina. Se muestrearon 14 aguas superficiales de rios, un agua de pozo y un agua de suministro a la población. La alta exposición al vulcanismo andino con elevada presencia de rocas volcánicas principalmente de composición andesítica y el clima árido andino puneño son las condiciones geoambientales que determinan la disponibilidad y movilización de ETPTs en solución. La composición de las aguas es muy homogénea, de tipo Na-HCO3, que se asocia con la interacción entre el flujo de agua, la litología local y la posterior evaporación. La meteorización de las rocas volcánicas causa la alta concentración de B, Li, Cs, Rb, U, As y V mientras que la posterior evaporación determina los altos - 2- contenidos de Cl , Br, Na, Mg, SO4 , Li, Sr y Ba.
    [Show full text]
  • The South American Indian As a Pioneer Alpinist
    TI-lE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST 81 THE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST BY EVELIO ECHEVARRfA C. ECENTL Y it has become kno\vn that a number of very high Andean mountain tops had not only been ascended but also permanently occupied by the Indians, possibly as much as three centuries before de Saussure's ascent of Mont Blanc. They climbed peaks of up to 22,ooo ft., they constructed shelters on or near their tops, and they used the high places as watch-towers or as sacrificial shrines. Some authorities believe that this activity took place as early as the late four­ teenth century, though we cannot prove that some of it did not take place long after, possibly as late as the nineteenth century. These Indian accomplishments have been left unmentioned in practi­ cally all mountaineering history books. In this article, which may be the first to attempt a comprehensive survey,1 my purpose is to review briefly the location and the nature of each discovery. The area in which these Indian mountain ascents took place is what in physical geography is known as the Atacama desert (although this name is nowadays used in political and cultural geography for a much more restricted area). It is a treeless, sandy and volcanic waste-land seldom visited by mountaineers. It stretches from the neighbourhood of Arequipa, in Peru, as far south as Elqui in Chile; to the east it reaches the Andean slopes that face the jungles of Argentina and Bolivia, and to the west, the Pacific Ocean.
    [Show full text]
  • Report on Cartography in the Republic of Chile 2011 - 2015
    REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 ARMY OF CHILE MILITARY GEOGRAPHIC INSTITUTE OF CHILE REPORT ON CARTOGRAPHY IN THE REPUBLIC OF CHILE 2011 - 2015 PRESENTED BY THE CHILEAN NATIONAL COMMITTEE OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AT THE SIXTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AUGUST 2015 1 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 CONTENTS Page Contents 2 1: CHILEAN NATIONAL COMMITTEE OF THE ICA 3 1.1. Introduction 3 1.2. Chilean ICA National Committee during 2011 - 2015 5 1.3. Chile and the International Cartographic Conferences of the ICA 6 2: MULTI-INSTITUTIONAL ACTIVITIES 6 2.1 National Spatial Data Infrastructure of Chile 6 2.2. Pan-American Institute for Geography and History – PAIGH 8 2.3. SSOT: Chilean Satellite 9 3: STATE AND PUBLIC INSTITUTIONS 10 3.1. Military Geographic Institute - IGM 10 3.2. Hydrographic and Oceanographic Service of the Chilean Navy – SHOA 12 3.3. Aero-Photogrammetric Service of the Air Force – SAF 14 3.4. Agriculture Ministry and Dependent Agencies 15 3.5. National Geological and Mining Service – SERNAGEOMIN 18 3.6. Other Government Ministries and Specialized Agencies 19 3.7. Regional and Local Government Bodies 21 4: ACADEMIC, EDUCATIONAL AND TRAINING SECTOR 21 4.1 Metropolitan Technological University – UTEM 21 4.2 Universities with Geosciences Courses 23 4.3 Military Polytechnic Academy 25 5: THE PRIVATE SECTOR 26 6: ACKNOWLEDGEMENTS AND ACRONYMS 28 ANNEX 1. List of SERNAGEOMIN Maps 29 ANNEX 2. Report from CENGEO (University of Talca) 37 2 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 PART ONE: CHILEAN NATIONAL COMMITTEE OF THE ICA 1.1: Introduction 1.1.1.
    [Show full text]
  • P1616 Text-Only PDF File
    A Geologic Guide to Wrangell–Saint Elias National Park and Preserve, Alaska A Tectonic Collage of Northbound Terranes By Gary R. Winkler1 With contributions by Edward M. MacKevett, Jr.,2 George Plafker,3 Donald H. Richter,4 Danny S. Rosenkrans,5 and Henry R. Schmoll1 Introduction region—his explorations of Malaspina Glacier and Mt. St. Elias—characterized the vast mountains and glaciers whose realms he invaded with a sense of astonishment. His descrip­ Wrangell–Saint Elias National Park and Preserve (fig. tions are filled with superlatives. In the ensuing 100+ years, 6), the largest unit in the U.S. National Park System, earth scientists have learned much more about the geologic encompasses nearly 13.2 million acres of geological won­ evolution of the parklands, but the possibility of astonishment derments. Furthermore, its geologic makeup is shared with still is with us as we unravel the results of continuing tectonic contiguous Tetlin National Wildlife Refuge in Alaska, Kluane processes along the south-central Alaska continental margin. National Park and Game Sanctuary in the Yukon Territory, the Russell’s superlatives are justified: Wrangell–Saint Elias Alsek-Tatshenshini Provincial Park in British Columbia, the is, indeed, an awesome collage of geologic terranes. Most Cordova district of Chugach National Forest and the Yakutat wonderful has been the continuing discovery that the disparate district of Tongass National Forest, and Glacier Bay National terranes are, like us, invaders of a sort with unique trajectories Park and Preserve at the north end of Alaska’s panhan­ and timelines marking their northward journeys to arrive in dle—shared landscapes of awesome dimensions and classic today’s parklands.
    [Show full text]
  • Volcanes Cercanos Volcanes Cercanos
    Localidades al interior de un radio de 30 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá Callaqui, Copahue Ralco Santa Bárbara Bio Bio Bio Bio Nevados de Chillán Recinto Los Lleuques Pinto Ñuble Bio Bio Villarrica, Quetrupillán, Lanín, Sollipulli Curarrehue Curarrehue Cautín La Araucanía Llaima, Sollipulli Mellipeuco Melipeuco Cautín La Araucanía Villarrica, Quetrupillán, Lanín Pucón Pucón Cautín La Araucanía Llaima Cherquenco Vilcún Cautín La Araucanía Villarrica Lican Ray Villarrica Cautín La Araucanía Villarrica Villarrica Villarrica Cautín La Araucanía Llaima, Lonquimay Curacautín Curacautín Malleco La Araucanía Llaima, Lonquimay Lonquimay Lonquimay Malleco La Araucanía Villarrica, Quetrupillán, Lanín, Mocho Coñaripe Panguipulli Valdivia Los Rios Calbuco, Osorno Alerce Puerto Montt Llanquihue Los Lagos Calbuco, Osorno Las Cascadas Puerto Octay Osorno Los Lagos Chaitén, Michinmahuida, Corcovado Chaitén Chaitén Palena Los Lagos Hornopirén, Yate, Apagado, Huequi Rio Negro Hualaihue Palena Los Lagos Localidades al interior de un radio de 50 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá San José San Alfonso San José de Maipo Cordillera Metropolitana San José San José de Maipo San José de Maipo Cordillera Metropolitana Tupungatito La Parva Lo Barnechea Santiago
    [Show full text]
  • Hoyas Hidrográficas De Chile: Segunda Región
    HOYAS HIDROGRÁFICAS DE CHILE: SEGUNDA REGIÓN REALIZADO POR: HANS NIEMEYER F. HOVA DEL RlO LOA La hoya hidrográfica del río Loa~ con una superf! cie tota~'de 33 570 km2 , se desarrolla en el tercio norte de la IIa R~ gión de Chile, entre latitudes extremas 20Q52' y 22Q57' L.S. ylongit~ des 68QOO' y 7oQ02' L.o. El río Loa nace en la falda norte del Vn. Mi­ ño~ en los Ojos del Hiño, casi en los límites entre la la y IIa Regio­ nes de Chile, en 21Q15' L.S. y 70Q L.O~ Su longitud total se acerca a 440 km. A pesar de su extensa hoya, los recursos h!dricos provienen de la cuenca alta que comprende alrededor del 20% de la su~ perficie total. Con curso aproximadamente norte-sur~ el Loa reco­ rre casi 150 km en un profundo cañón de altura variable, desde su nací miento hasta el oasis de Chiu ~hiu, pueblo que se levanta en su margen izquierda. En este trayecto recibe sus dos tributarios más importantes que le caen del este: el río San Pedro o Inacaliri y el río Salado. En Chiu Chiu dobla su curso sensiblemente hacia el oeste para alcanzar en un recorrido de 115 km el punto denominado Chacance. En él se le reúne por la derecha el río San Salvador. En Chacance,el Loa toma franca di= recci6n sur-norte hasta fertilizar el oasis de Quillagua, despu~s de una trayectoria de 80 km. A partir de Quillagua el Loa describe un gran arco y luego desemboca en el Pacífico~ en Caleta Huel~n, despu~8 de trasponer el macizo costero en un tajo profundo~ de más de 500 m de al­ tura.
    [Show full text]
  • Informe De La Subcuenca Antofagasta De La Sierra Cuencas Varias De La
    Informe de la subcuenca Antofagasta de la Sierra Cuencas Varias de la Puna Provincia de Catamarca Foto: Manchones de nieve en el volcán Galán (Foto: L.Zalazar) MINISTERIO DE AMBIENTE Y DESARROLLO SUSTENTABLE PRESIDENCIA DE LA NACIÓN Autoridad Nacional de Aplicación – Ley 26.639 – Régimen de Presupuestos Mínimos para la Preservación de los Glaciares y del Ambiente Periglacial Presidente de la Nación: Ing. Mauricio Macri Ministro de Ambiente y Desarrollo Sustentable: Rabino Sergio Bergman Unidad de Coordinación General: Dra. Patricia Holzman Secretario de Política Ambiental en Recursos Naturales: Lic. Diego Moreno Director Nacional de Gestión Ambiental del Agua y los Ecosistemas Acuáticos: Dr. Javier García Espil Coordinador de Gestión Ambiental del Agua: Dr. Leandro García Silva Responsable Programa Protección de Glaciares y Ambiente Periglacial: M.Sc. María Laila Jover IANIGLA – CONICET Inventario Nacional de Glaciares (ING) Director del IANIGLA: Dr. Fidel Roig Coordinador del ING: Ing. Gustavo Costa Director técnico: Lic. Hernán Gargantini Profesional: Lic. Laura Zalazar Colaboradores: Lic. Lidia Ferri Hidalgo Mayo 2018 La presente publicación se ajusta a la cartografía oficial establecida por el Poder Ejecutivo Nacional a través del Instituto Geográfico Nacional por Ley 22963 y ha sido aprobada por Expte. EX – 2017 – 35435428 – APN – DGA#IGN, de fecha 22 de enero de 2018 Foto de portada: Laguna Diamante y Cerro Galán al fondo (Foto: L.Ferri) ÍNDICE 1. Introducción .............................................................................................................................
    [Show full text]