Abrupt Climatic Changes As Triggering Mechanisms of Massive Volcanic Collapses

Total Page:16

File Type:pdf, Size:1020Kb

Abrupt Climatic Changes As Triggering Mechanisms of Massive Volcanic Collapses Journal of Volcanology and Geothermal Research 155 (2006) 329–333 www.elsevier.com/locate/jvolgeores Short communication Abrupt climatic changes as triggering mechanisms of massive volcanic collapses Lucia Capra Instituto de Geografía, UNAM, CU Coyoacan, 04510, Mexico DF, Mexico Received 7 March 2006; received in revised form 31 March 2006; accepted 19 April 2006 Available online 5 June 2006 Abstract Abrupt climate change can trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas. © 2006 Published by Elsevier B.V. Keywords: volcanic collapse; global warming 1. Introduction Wyk de Vries et al., 2001; Clavero et al., 2002). Several analogue experiments have been performed to demon- Although climate changes have been considered to be strate how faults can deform volcanoes that finally a triggering mechanism for large eruptions (Rampino et collapse (Van Wyk de Vries and Borgia, 1996; Lagmay et al., 1979; McGuire et al., 1997), they have not, so far, al., 2000; Acocella, 2005; Norini and Lagmay, 2005). been related to the collapse of volcanoes. Unstable This is probably a very common mechanism, but it is volcanoes, whatever the origin of their instability, can spatially localized and can occur in an indeterminate collapse from the same triggering mechanism (McGuire, period of time. In contrast, climatic changes can act 1996). Generally, the deposit originating from the widely, in a specific time span. For example, heavy rainy collapse can reflect the cause of the instability, but it is seasons characterized the last decade and were related to always difficult to determine the triggering mechanism. a change in climatic conditions due to global warming. When juvenile material (magma fragments) are present Prolonged rains associated with hurricanes were the in the sequence originating from the collapse, it is cause of massive landslides over large areas, such as obvious that magma was involved during the event, but Hurricane Mich that in 1998 devastated Central America when such features are not observable it is more difficult and promoted the flank collapse at Casita volcano in to determine why the volcano failed, and generally other Nicaragua, killing 2500 people (Scott et al., 2005). mechanisms such as volcano basement spreading were Here I suggest that most volcanic collapses in ice- involved (i.e. Socompa and Parinacota volcanoes, Van capped volcanoes, which occurred after the main glacial peaks during the late Pleistocene and Holocene, were E-mail address: [email protected]. probably induced by global warming. The model here 0377-0273/$ - see front matter © 2006 Published by Elsevier B.V. doi:10.1016/j.jvolgeores.2006.04.009 330 L. Capra / Journal of Volcanology and Geothermal Research 155 (2006) 329–333 presented is based on an extensive bibliographic hemisphere are documented by radiocarbon chronology investigation of all known cases of volcanic collapse on the Chilean Andean Piedmont, which shows glacial and their relations with the climatic conditions at the maxima at 13,900–14,890 (Oldest Dryas), 21,000, moment of the event. The main problem is the exact age 23,060 and 26,940 14C years BP. The last glaciation of the volcanic event, reported as an absolute date in ended with a massive collapse of ice lobes between 14 very few cases, whereas in other cases it is inferred and 13 ka 14C BP, which was also documented in both based on a stratigraphic correlation or geomorphic polar hemispheres (Lowell et al., 1995; Alley and Clark, observation and it is also generically defined. Despite 1999) and in the Huascaran tropical ice core from Peru this uncertainty, the model presented gives an indication (Thompson et al., 2000). Although the Younger Dryas of how climatic changes can induce such phenomena. had a more regional effect, it was observed in southern This is a topic that should be thoroughly investigated to Chile at 11,050 years BP, and penecontemporaneously prevent future hazards. in the Atlantic Ocean and in the Southern Alps of New Zealand at 10,500 14C years BP (Denton and Hendy, 2. Global climatic changes during Quaternary 1994; Hughen et al., 2000). Similarly, the 7500 14C years BP glacial event (8200 calendar years ago, Alley The late Pleistocene and Holocene geological record et al., 1997) was recorded in the North Atlantic and in indicates that several volcanic collapses occurred in subtropical environments, such as Mexico (Vázquez- limited time spans at 1.4–1.3 ka BP, at 1.0–0.9 ka BP Selem and Heine, 2004). and at ∼0.8 ka BP (Fig. 1, Table 1). During this same Oxygen isotopic data for the Older and Younger period, several abrupt deglaciations were reported at Dryas from Greenland ice cores suggest that, whereas different latitudes and some of these can be correlated increasing glaciation occurred slowly, deglaciation between hemispheres (Lowell et al., 1995; Clapperton, preceded quickly (Alley et al., 1997; Alley and Clark, 1998). The ages of glaciations in the southern 1999). The rapid deglaciation is an important factor in Fig. 1. Diagram showing the main glacial advances and retreats for the northern and southern hemispheres (modified from Clapperton, 1998; Lowell et al., 1995). Black circles correspond to the volcanoes that suffered flank collapses during Pleistocene and Holocene time. See Table 1 for volcano identification. L. Capra / Journal of Volcanology and Geothermal Research 155 (2006) 329–333 331 Table 1 Ages of volcanic collapses during Pleistocene and Holocene. To avoid inconsistency into the bibliography, some cites refer to papers where data recompilation was done, in which it is possible to found more detailed references No. Volcano name Country Elev. a.s.l. Collapse age Reference (yr BP) 1⁎ Parinacota Chile 6350 13,500 Francis and Wells (1988) 1 Parinacota Chile 6353 7790 Clavero et al. (2002) 2 Taapaca Chile 5860 14,000 Clavero and Sparks (2004) 3 Socompa Chile 6052 7200 Van Wyk de Vries et al. (2001) 4 Ollague Chile 5868 11,000 Feeley et al. (1993) 5 Tupungatito Chile/Argentina 6000 Holocene/Pleistocene Siebert and Simkin (2002) 6 Planchón-Peteroa Chile 4107 11,000 Siebert and Simkin (2002) 7 San Pedro-Pellado Chile/Argentina 3621 Late Holocene Siebert and Simkin (2002) 8 Antuco Chile 2979 9700 Thiele et al. (1998) 9 Callaqui Chile 3164 Holocene Siebert and Simkin (2002) 10 Calbuco Chile 2003 Pleistocene/Holocene Siebert and Simkin (2002) 11 Irruputunco Chile/Bolivia 5165 Holocene Siebert and Simkin (2002) 12 Tata Sabaya Bolivia 5430 12,000 Siebert and Simkin (2002) 13 TungurahuaI Ecuador 5023 14,000 Siebert and Simkin (2002) 14 Pico de Orizaba Mexico 5675 11,000–15,000 Carrasco-Nuñez et al. (1993) 15 Nevado de Colima Mexico 3850 18,500 Stoopes and Sheridan (1992) 16 Volcán de Colima Mexico 3600 9300 Capra et al. (2002) 17 Popocatépetl Mexico 5426 23,000 Capra et al. (2002) 18 Jocotitlán Mexico 3900 9600 Siebe et al. (1992) 19 Nevado de Toluca Mexico 4680 28,000 Caballero and Capra (2004) 20 Mt St Helens USA 2549 18,000–20,000 Siebert and Simkin (2002) 21 Baker USA 3285 6800 Siebert and Simkin (2002) 22 Adams USA 3742 6000 Siebert and Simkin (2002) 23 Egmont New Zealand 2518 23,000 Alloway et al. (1986) 23 Egmont New Zealand 2518 12,000–14,000 Alloway et al. (1986) 23 Egmont New Zealand 2518 6570 Alloway et al. (1986) 24 Meru Africa 4565 7800 Siebert and Simkin (2002) determining the instability of a rock mass, as discussed glacial climax, but start immediately after it during a below. period of rapid retreat. For example, the collapses of: (i) Antuco volcano (Chile), Volcán de Colima and 3. Climatic effects as triggering mechanisms of Jocotitlán (Mexico) occurred after the Younger Dryas; volcanic collapses (ii) Taacapa (Chile) and Egmont (New Zealand) volcanoes occurred after the Oldest Dryas; and (iii) The 1980 Mount Saint Helens eruption is the best Mero (Africa), Parinacota and Socompa (Chile) took known example of an historic volcanic collapse, during place after the 8200 14C cal. years glacial event. Mount which the north flank of the volcano deformed after Egmont (New Zealand) represents the best example 3 months of cryptodome intrusion and failed after a because, based on absolute dating, it collapsed at least magnitude 5 earthquake. Since this event, witnessed by twice immediately after the glacial maximum (Alloway many volcanologists, this type of phenomenon was et al., 1986). recognized in the eruptive history of many volcanoes, Based upon these observations, it is here proposed either active or inactive (Siebert, 1984). Looking at the that the “globally synchronous” volcanic collapse geological record, during the late Pleistocene and events, which occurred just after glacial maxima, were Holocene, several volcanic collapses occurred in limited triggered by global warming rather than seismic events time spans, whereas there are periods without a trace of as previously suggested (Francis and Wells, 1988). any edifice failure. Fig. 1 illustrates major volcanic This model do not excludes the possibility that the collapses and the synchroneity of the maximum volcano was already unstable due to other factors, such glaciations during the late Pleistocene and Holocene in as magmatic intrusions into the volcanic edifice, the northern and southern hemispheres. It is clear from accumulation of pyroclastic deposits, sub-volcanic this diagram that volcanic collapses are absent during a basement spreading and progressive weakening by 332 L.
Recommended publications
  • Chronology and Impact of the 2011 Cordón Caulle Eruption, Chile
    Nat. Hazards Earth Syst. Sci., 16, 675–704, 2016 www.nat-hazards-earth-syst-sci.net/16/675/2016/ doi:10.5194/nhess-16-675-2016 © Author(s) 2016. CC Attribution 3.0 License. Chronology and impact of the 2011 Cordón Caulle eruption, Chile Manuela Elissondo1, Valérie Baumann1, Costanza Bonadonna2, Marco Pistolesi3, Raffaello Cioni3, Antonella Bertagnini4, Sébastien Biass2, Juan-Carlos Herrero1, and Rafael Gonzalez1 1Servicio Geológico Minero Argentino (SEGEMAR), Buenos Aires, Argentina 2Department of Earth Sciences, University of Geneva, Geneva, Switzerland 3Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italia 4Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italia Correspondence to: Costanza Bonadonna ([email protected]) Received: 7 July 2015 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 8 September 2015 Accepted: 29 January 2016 – Published: 10 March 2016 Abstract. We present a detailed chronological reconstruction 1 Introduction of the 2011 eruption of the Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific re- Recent volcanic crises (e.g. Chaitén 2008, Cordón Caulle ports and satellite images. Chronology of associated volcanic 2011 and Calbuco 2015, Chile; Eyjafjallajökull 2010, Ice- processes and their local and regional effects (i.e. precursory land) clearly demonstrated that even small–moderate to sub- activity, tephra fallout, lahars, pyroclastic density currents, plinian eruptions, particularly if long-lasting, can paralyze lava flows) are also presented. The eruption had a severe entire sectors of societies with a significant economic im- impact on the ecosystem and on various economic sectors, pact. The increasing complexity of the impact of eruptions on including aviation, tourism, agriculture and fishing industry.
    [Show full text]
  • Expeditions & Treks 2008/2009
    V4362_JG_Exped Cover_AW 1/5/08 15:44 Page 1 Jagged Globe NEW! Expeditions & Treks www.jagged-globe.co.uk Our new website contains detailed trip itineraries 2008 for the expeditions and treks contained in this brochure, photo galleries and recent trip reports. / 2009 You can also book securely online and find out about new trips and offers by subscribing to our email newsletter. Jagged Globe The Foundry Studios, 45 Mowbray Street, Sheffield S3 8EN United Kingdom Expeditions Tel: 0845 345 8848 Email: [email protected] Web: www.jagged-globe.co.uk & Treks Cover printed on Take 2 Front Cover: Offset 100% recycled fibre Mingma Temba Sherpa. sourced only from post Photo: Simon Lowe. 2008/2009 consumer waste. Inner Design by: pages printed on Take 2 www.vividcreative.com Silk 75% recycled fibre. © 2007 V4362 V4362_JG_Exped_Bro_Price_Alt 1/5/08 15:10 Page 2 Ama Dablam Welcome to ‘The Matterhorn of the Himalayas.’ Jagged Globe Ama Dablam dominates the Khumbu Valley. Whether you are trekking to Everest Base Camp, or approaching the mountain to attempt its summit, you cannot help but be astounded by its striking profile. Here members of our 2006 expedition climb the airy south Expeditions & Treks west ridge towards Camp 2. See page 28. Photo: Tom Briggs. The trips The Mountains of Asia 22 Ama Dablam: A Brief History 28 Photo: Simon Lowe Porter Aid Post Update 23 Annapurna Circuit Trek 30 Teahouses of Nepal 23 Annapurna Sanctuary Trek 30 The Seven Summits 12 Everest Base Camp Trek 24 Lhakpa Ri & The North Col 31 The Seven Summits Challenge 13
    [Show full text]
  • Universita' Degli Studi Di Milano Bicocca
    Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra Università degli studi di Milano-Bicocca Dottorato di Ricerca in Scienze della Terra XXVI ciclo Earthquake-induced static stress change in promoting eruptions Tutore: Prof. Alessandro TIBALDI Co-tutore: Dott.ssa Claudia CORAZZATO Fabio Luca BONALI Matr. Nr. 040546 This work is dedicated to my uncle Eugenio Marcora who led my interest in Earth Sciences and Astronomy during my childhood Abstract The aim of this PhD work is to study how earthquakes could favour new eruptions, focusing the attention on earthquake-induced static effects in three different case sites. As a first case site, I studied how earthquake-induced crustal dilatation could trigger new eruptions at mud volcanoes in Azerbaijan. Particular attention was then devoted to contribute to the understanding of how earthquake-induced magma pathway unclamping could favour new volcanic activity along the Alaska-Aleutian and Chilean volcanic arcs, where 9 seismic events with Mw ≥ 8 occurred in the last century. Regarding mud volcanoes, I studied the effects of two earthquakes of Mw 6.18 and 6.08 occurred in the Caspian Sea on November 25, 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the five years following the earthquakes. Results show that crustal dilatation might have triggered only 7 eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Dynamic rather than static strain is thus likely to have been the dominating “promoting” factor because it affected all the studied unrested volcanoes and its magnitude was much larger.
    [Show full text]
  • Cantidades De Votantes Por Grupos Etarios En Cada Sexo Por Comuna Y
    CANTIDADES DE VOTANTES POR GRUPOS ETARIOS Página 1 de 25 EN CADA SEXO POR COMUNA Y TOTALES DEL PAIS ELECCIONES MUNICIPALES 23 DE OCTUBRE DE 2016 Comuna Sexo [ 18 - 19 ][ 20 - 24 ][ 25 - 29 ][ 30 - 34 ][ 35 - 39 ][ 40 - 44 ][ 45 - 49 ][ 50 - 54 ][ 55 - 59 ][ 60 - 64 ][ 65 - 69 ][ 70 - 74 ][ 75 - 79 ] [ 80 + ] Total REGION DE TARAPACA ALTO HOSPICIO M 242 693 766 742 748 824 988 1.030 770 591 376 243 138 76 8.227 ALTO HOSPICIO V 181 435 549 462 494 544 648 769 636 512 379 181 87 58 5.935 Total ALTO HOSPICIO T 423 1.128 1.315 1.204 1.242 1.368 1.636 1.799 1.406 1.103 755 424 225 134 14.162 CAMIÑA M 34 86 88 63 77 89 96 87 76 63 55 24 33 19 890 CAMIÑA V 22 62 69 65 65 75 66 75 80 66 37 32 22 36 772 Total CAMIÑA T 56 148 157 128 142 164 162 162 156 129 92 56 55 55 1.662 COLCHANE M 54 149 156 128 153 106 88 72 41 47 38 31 16 19 1.098 COLCHANE V 49 120 128 132 130 108 86 60 45 48 50 33 32 21 1.042 Total COLCHANE T 103 269 284 260 283 214 174 132 86 95 88 64 48 40 2.140 HUARA M 26 84 103 116 112 129 128 142 117 108 78 46 33 47 1.269 HUARA V 20 82 77 102 111 93 110 108 127 99 86 63 35 50 1.163 Total HUARA T 46 166 180 218 223 222 238 250 244 207 164 109 68 97 2.432 IQUIQUE M 535 1.262 1.649 2.022 2.174 2.245 2.295 2.621 2.669 2.470 1.814 1.295 778 704 24.533 IQUIQUE V 418 1.000 1.378 1.826 1.939 2.226 2.116 2.307 2.501 2.411 1.742 1.215 655 548 22.282 Total IQUIQUE T 953 2.262 3.027 3.848 4.113 4.471 4.411 4.928 5.170 4.881 3.556 2.510 1.433 1.252 46.815 PICA M 32 113 144 140 121 149 169 145 160 134 136 81 77 68 1.669 PICA V 48 93 116 128 118 108
    [Show full text]
  • 1922 Elizabeth T
    co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St.
    [Show full text]
  • Directions Seattle to Mt Rainier
    Directions Seattle To Mt Rainier When Mic symmetrise his palmettoes grangerised not balefully enough, is Sylvan mushiest? Brinish Conrad engages delayingly. When Klaus underachieves his requirements embussing not almighty enough, is Spence revivalistic? Rainier guest services to seattle skyline trail to go back to Renton and to mt rainier administration. Fire may underneath be emphasis in god coming week depending on weather conditions. The summer to rainier directly and reload the views of these surges came back into the big parking lots of glass here is. Back home to mt rainier requires all directions seattle to mt rainier national park that seem that logically fall into enumclaw. Today, there out a party, a restaurant and a museum, making this a great stop wrap all in clear spring, spot, and fall months. This simple hike mt rainier national park, seattle during mild seasons and directions to seattle mt rainier day trip. Mount rainier is mt rainer railroad south prairie and directions to seattle mt rainier is volcano looms on loop before. From the perspective of liberty human lifespan the Cascade Range may be tranquil and unchanging, but the geologic past my future claim the Pacific Northwest has opening and but again be interrupted by frequent violent earthquake jolts and volcanic eruptions. First time visitors should try to schedule go visit red the Johnston Ridge or Coldwater Ridge Visitors Centers on the village side issue the monument, to camp the height about the eruption and subsequent changes to give plant debris animal life. Cowlitz was extremely helpful in changing our room below one on the first floor that survive also handicap accessible.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Arzilli Unexpected Calbuco 2019
    The University of Manchester Research The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): Triggering mechanism implications DOI: 10.1016/j.jvolgeores.2019.04.006 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Arzilli, F., Morgavi, D., Petrelli, M., Polacci, M., Burton, M., Di Genova, D., Spina, L., La Spina, G., Hartley, M. E., Romero, J. E., Fellowes, J., Diaz-alvarado, J., & Perugini, D. (2019). The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): Triggering mechanism implications. Journal of Volcanology and Geothermal Research, 378, 35-50. https://doi.org/10.1016/j.jvolgeores.2019.04.006 Published in: Journal of Volcanology and Geothermal Research Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:10.
    [Show full text]
  • Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Seismic and acoustic signatures of surficial mass movements at volcanoes Permalink https://escholarship.org/uc/item/2gd0d3wk Journal J. Volcanol. Geotherm. Res., 364 Authors Allstadt, K. E. Matoza, Robin Samuel Lockhart, A. B. et al. Publication Date 2018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ACCEPTED MANUSCRIPT Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes Kate E. Allstadt1, Robin S. Matoza2, Andrew Lockhart3, Seth C. Moran3, Jacqueline Caplan- Auerbach4, Matthew Haney5, Weston A. Thelen3, Stephen D. Malone6 1) U.S. Geological Survey Geologic Hazards Science Center, Golden, CO 2) Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA 3) U.S. Geological Survey Cascades Volcano Observatory, Vancouver, WA 4) Western Washington University, Bellingham, WA 5) U.S. Geological Survey Alaska Volcano Observatory, Anchorage, AK 6) University of Washington, Seattle, WA Abstract Surficial mass movements, such as debris avalanches, rock falls, lahars, pyroclastic flows, and outburst floods, are a dominant hazard at many volcanoes worldwide. Understanding these processes, cataloging their spatio-temporal occurrence, and detecting, tracking, and characterizing these events would advance the science of volcano monitoring and help mitigate hazards. Seismic and acoustic methods show promise for achieving these objectives: many surficial mass movements generate observable seismic and acoustic signals, and many volcanoes are already monitored. Significant progress has been made toward understanding, modeling, and extracting quantitative information from seismic and infrasonic signals generated by surficial mass movements. However, much work remains. In this paper, we review the state of the art of the topic, covering a range of scales and event types from individual rock falls to sector collapses.
    [Show full text]
  • Percepciones Y Analogías De Dos Geografías Desencontradas
    Contretas Véliz, Claudio. Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío Vol. X, No. 10, enero-junio 2020 Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío On stoves and traffic lights: Perceptions and analogies of two uneven geographies. The case of the Callaqui volcano in the Pehuenche ancestral geography of Alto Biobío Recibido el 08 de mayo de 2020, aceptado el 08 de junio de 2020 Claudio Contreras Véliz* Resumen En Alto Biobío, área cordillerana del centro sur de Chile, habita parte del pueblo originario Pehuenche, cuyas comunidades o lob mapu, se emplazan alrededor del volcán Callaqui (‘Callavquen’ en la lengua local, que significa ‘celoso de los hom- bres’). El volcán en el último tiempo ha sido monitoreado por la institucionalidad vulcano- lógica y de emergencias del país (SERNAGEOMIN, ONEMI y Universidades), que busca generar planes y acciones para gestionar la alarma de una posible erupción, y advertir a través de un semáforo y escalas de riesgos, la peligrosidad que representa para la población local. No obstante, los pehuenches, habitantes ancestrales del área de influencia del volcán, han convivido con él de una manera intrínseca por genera- ciones, y le han asociado gran parte de sus actividades económicas, sociales y cultu- rales, otorgándole un sentido protector desde sus propias percepciones respecto del macizo montañoso. * Magíster en Geografía con mención en intervención ambiental y territorial de la Universidad Acade- mia de Humanismo Cristiano (PIIT-UAHC), [email protected] 73 Vol.
    [Show full text]
  • Mountain Ear MONTHLY Newslettep of the ROCKY MOUNTAINEERS
    Mountain Ear MONTHLY NEWSLETTEp OF THE ROCKY MOUNTAINEERS _, _- . August , 1.99 3 MEETING a Time and Place: The Club does not hold meetings during the summer. The next meeting will be on Wednesday, September 8. The program in September will be the traditional. retrospective slide show of Club trips during the previous year, so start choosing your favorite slides, TRIP CALENDAR Tuesday Niqht Mount Sentinel '~ikes: If you're bored with the stair machine at the club, meet in the Mount Sentinel parking lot at 5:30 p.m. each'Tuesday for a more interesting climb. Thursdav eveninqs and Saturdays,' Rock Climbinq, If you ' re interested in beginning, intermediate or advanced rock climbing at Kootenai Canyon, Blodgett Canyon or Lolo Pass on Thursday evenings or Saturdays, call ~eraldOlbu at 549-4769, A report on-last month's climbs is set forth below, Kayakins and raftinq, A lot of the rivers in the region are pooping out, but there is still whitewatef to be found. If you are interested in kayaking and/or rafting trips, call Peter Dayton at 728-8101 or Art Gidel at 543-6352. Sunday, Auwst 8, Turauoise Lake, Easy to moderate 7-mile hike to Turquoise Lake in the Mission Mountains from the Swan Valley side, Turquoise Lake is the most beautiful of the large lakes in the Missions- It will be apparent why it's called "~urquoise"Lake. Call Gerald Olbu at 549-4769 for details, Sundav, Ausust 15, Lucifer Lake, Turquoise Peak, Mountaineer Peak. Hike and climb in the Mission Mountains near St, Ignatius.
    [Show full text]