Consequences of Volcano Sector Collapse on Magmatic Storage Zones: Insights from Numerical Modeling Virginie Pinel, Fabien Albino
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hospitales a Nivel Nacional
HOSPITALES A NIVEL NACIONAL PROVINCIA: AZUAY ZONA 6 ( 072-822-201) ITEM HOSPITAL TELEFONO 1 HOSPITAL VICENTE CORRAL MOSCOZO 074-096-606/074-096-598 2 HOSPITAL DE SIGSIG 072-266-115/ 072-267-629 3 HOSPITAL EL GIRON 072-276-136/074-275-115 4 HOSPITAL PAUTE 072-250-107/074-250-027 5 HOSPITAL GUALACEO 072-255-064/074-256-537 6 HOSPITAL SANTA ISABEL 072-270-147/072-270-437/074-270-295 7 HOSPITAL MARIANO ESTRELLA 072-847-427 8 CENTRO DE SALUD 1 PUMAPUNGO 072-867-071/072-869-642 9 AREA DE SALUD 2 MIRAFLORES 072-837-665/072-838-155/072-845-015 10 CENTRO DE SALUD 3 TOMEBAMBA 072-822-202/072-836-352 11 CENTRO DE SALUD 4 YANUNCAY 072-893-150/072-892-444/074-2892-390 PROVINCIA: BOLIVAR ZONA 5 ITEM HOSPITAL TELEFONO 1 HOSPITAL ALFREDO NOBOA MONTENEGRO 032-980-230 2 HOSPITAL SAN MIGUEL 032-989-112/032-989-416 3 HOSPITAL CHILLANES 032-978-522/032-978-522 4 CENTRO DE SALUD 1 CORDERO CRESPO 032-985-904/032-980-290 5 CENTRO DE SALUD CALUMA 032-974-394/032-974-709 6 CENTRO DE SALUD EHCEANDIA 032-970-376/032-970-545/032-971-221 HOSPITALES A NIVEL NACIONAL PROVINCIA: CARCHI/TULCÁN ZONA 1 ITEM HOSPITAL TELEFONO 1 HOSPITAL LUIS G. DAVILA 062-980-316/062-980-315 2 HOSPITAL EL ANGEL 062-977-166 3 HOSPITAL SAN GABRIEL 062-290-153/062-290-161 4 CENTRO DE SALUD 1 062-980-396 5 CENTRO DE SALUD SAN JUAN DEL ACHAS 062-648-672 PROVINCIA: CAÑAR ZONA 6 ITEM HOSPITAL TELEFONO 1 HOSPITAL HOMERO C. -
Tesis Mildred Ollague
UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS ADMINISTRATIVAS TRABAJO DE TITULACIÓN PRESENTADO COMO REQUISITO PARA OPTAR POR EL TÍTULO DE INGENIERÍA EN SISTEMAS ADMINISTRATIVOS COMPUTACIONALES TEMA: “PROTOTIPO DE APLICACIÒN WEB PARA EL CONTROL DE NUTRICIÓN Y CRECIMIENTO PARA NIÑOS DE 1 A 10 AÑOS” AUTORA: OLLAGUE MOSQUERA MILDRED LISSETTE TUTOR: ING. ROMAN BARREZUETA LUGIO DAVID GUAYAQUIL, SEPTIEMBRE 2017 REPOSITORIO NACIONAL EN CIENCIAS Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÍTULO: PROTOTIPO DE APLICACIÓN WEB PARA EL CONTROL DE NUTRICIÓN Y CRECIMIENTO PARA NIÑOS DE 1 A 10 AÑOS AUTOR/ES: REVISORES: Mildred Lissette Ollague Mosquera Ing.Cecibel Alexandra León Arriaga INSTITUCIÓN: Universidad de FACULTAD: Facultad de Ciencias Guayaquil Administrativas CARRERA: Ingeniería en Sistemas Administrativos Computarizados FECHA DE PUBLICACIÓN: NO. DE PÁGS: ÁREA TEMÁTICA: Tecnología PALABRAS CLAVES: Prototipo Aplicación Web Nutrición Crecimiento RESUMEN El presente trabajo investigativo se centra en la creación de un aplicativo web para el control de nutrición y crecimiento de niños de 1 a 10 años, en la que se registra peso y talla de niños para despues evaluar su IMC, Perímetro Cefálico y Perímetro medio del brazo para lo cual se utiliza las tablas percentiles de la OMS con esto se emite un diagnóstico básico y se puede observar gráficamente como va el desarrollo del niño, también se puede enviar un correo con el historial del paciente al médico de su preferencia. N° DE REGISTRO (en base de N° DE CLASIFICACIÓN: datos): DIRECCIÓN URL (propuesta tecnológica en la web) ADJUNTO URL (propuesta tecnológica en la web): ADJUNTO PDF: SI NO CONTACTO CON AUTOR/ES: Teléfono: E-mail: Mildred Lissette Ollague Mosquera 0989194863 [email protected] CONTACTO EN LA Nombre: Ing. -
Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes
UC Santa Barbara UC Santa Barbara Previously Published Works Title Seismic and acoustic signatures of surficial mass movements at volcanoes Permalink https://escholarship.org/uc/item/2gd0d3wk Journal J. Volcanol. Geotherm. Res., 364 Authors Allstadt, K. E. Matoza, Robin Samuel Lockhart, A. B. et al. Publication Date 2018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ACCEPTED MANUSCRIPT Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes Kate E. Allstadt1, Robin S. Matoza2, Andrew Lockhart3, Seth C. Moran3, Jacqueline Caplan- Auerbach4, Matthew Haney5, Weston A. Thelen3, Stephen D. Malone6 1) U.S. Geological Survey Geologic Hazards Science Center, Golden, CO 2) Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA 3) U.S. Geological Survey Cascades Volcano Observatory, Vancouver, WA 4) Western Washington University, Bellingham, WA 5) U.S. Geological Survey Alaska Volcano Observatory, Anchorage, AK 6) University of Washington, Seattle, WA Abstract Surficial mass movements, such as debris avalanches, rock falls, lahars, pyroclastic flows, and outburst floods, are a dominant hazard at many volcanoes worldwide. Understanding these processes, cataloging their spatio-temporal occurrence, and detecting, tracking, and characterizing these events would advance the science of volcano monitoring and help mitigate hazards. Seismic and acoustic methods show promise for achieving these objectives: many surficial mass movements generate observable seismic and acoustic signals, and many volcanoes are already monitored. Significant progress has been made toward understanding, modeling, and extracting quantitative information from seismic and infrasonic signals generated by surficial mass movements. However, much work remains. In this paper, we review the state of the art of the topic, covering a range of scales and event types from individual rock falls to sector collapses. -
The Effect of Giant Lateral Collapses on Magma Pathways and the Location of Volcanism
Originally published as: Maccaferri, F., Richter, N., Walter, T. R. (2017): The effect of giant lateral collapses on magma pathways and the location of volcanism. ‐ Nature Communications, 8. DOI: http://doi.org/10.1038/s41467‐017‐01256‐2 ARTICLE DOI: 10.1038/s41467-017-01256-2 OPEN The effect of giant lateral collapses on magma pathways and the location of volcanism Francesco Maccaferri1, Nicole Richter1 & Thomas R. Walter1 Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo vol- cano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands. 1 German Research Centre for Geosciences (GFZ), Potsdam, 14473, Germany. Correspondence and requests for materials should be addressed to F.M. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1097 | DOI: 10.1038/s41467-017-01256-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01256-2 specially tall and active volcanoes are prone to flank observed at numerous volcanic ocean islands15,29,34,35, including – Einstability which may lead to failure and sector collapse1 3. -
Emergency Plan of Action (Epoa) Ecuador: Volcano Preparedness
Emergency Plan of Action (EPoA) Ecuador: Volcano Preparedness Emergency DREF Tungurahua Volcano 2015 MDREC010 Date issued: 9 December 2015 Date of disaster: 19 November 2015 Operation manager (responsible for this EPoA): Pabel Angeles, Regional Disaster Management Coordinator – South America – Point of Contact: Paola López - National International Federation of Red Cross and Red Crescent Societies Technical Response, Ecuadorian Red Cross (IFRC) Operation start date: 19 November 2015 Expected timeframe: 3 months Overall operation budget: 124,895 Swiss francs (CHF) Number of people to be assisted: 5,000 Number of people affected: 130,042 people. people (1,000 families). Host National Society presence (number of volunteers, staff, and branches): National Ecuadorian Red Cross (ERC) Headquarters; 24 Province boards; 110 branches; 8,000 volunteers; 200 staff members. Red Cross Red Crescent Movement partners actively involved in the operation (if available and relevant): IFRC Other partner organisations actively involved in the operation: Government Ministries, Risk Management Secretariat, local governments, the United Nations Children's Fund (UNICEF), World Food Programme (WFP), Plan International <Click here for the contact information. Click here for the DREF budget> A. Situation Analysis Description of the Disaster There are 30 active volcanoes on mainland Ecuador. On 17 November, the Tungurahua Volcano (5,023 m), located in the Cordillera Oriental of the Andes of central Ecuador, 140 kilometres (87 mi) south of the capital Quito increased in activity and was evident from the continuous emissions of water vapour columns with moderate to high ash content that have reached 3,500 metres above the crater level and are moving in a north- westerly direction. -
Triggering of Major Eruptions Recorded by Actively Forming Cumulates SUBJECT AREAS: Michael J
Triggering of major eruptions recorded by actively forming cumulates SUBJECT AREAS: Michael J. Stock*, Rex N. Taylor & Thomas M. Gernon GEOCHEMISTRY PETROLOGY National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, U.K. SOLID EARTH SCIENCES VOLCANOLOGY Major overturn within a magma chamber can bring together felsic and mafic magmas, prompting de-volatilisation and acting as the driver for Plinian eruptions. Until now identification of mixing has been Received limited to analysis of lavas or individual crystals ejected during eruptions. We have recovered partially 15 August 2012 developed cumulate material (‘live’ cumulate mush) from pyroclastic deposits of major eruptions on Tenerife. These samples represent ‘‘frozen’’ clumps of diverse crystalline deposits from all levels in the Accepted developing reservoir, which are permeated with the final magma immediately before eruptions. Such events 17 September 2012 therefore record the complete disintegration of the magma chamber, leading to caldera collapse. Chemical variation across developing cumulus crystals records changes in melt composition. Apart from fluctuations Published reflecting periodic influxes of mafic melt, crystal edges consistently record the presence of more felsic 12 October 2012 magmas. The prevalence of this felsic liquid implies it was able to infiltrate the entire cumulate pile immediately before each eruption. Correspondence and he Las Can˜adas volcano on Tenerife, Canary Islands, generated at least seven major explosive eruptions requests for materials during the Quaternary1–3. These events resulted in widespread deposition of pyroclastic material, with an should be addressed to estimated volume of .130 km3 (ref. 1,4). Despite considerable scientific interest in the volcano and assoc- T 5 6 R.N.T. -
Outlook on Climate Change Adaptation in the Tropical Andes Mountains
MOUNTAIN ADAPTATION OUTLOOK SERIES Outlook on climate change adaptation in the Tropical Andes mountains 1 Southern Bogota, Colombia photo: cover Front DISCLAIMER The development of this publication has been supported by the United Nations Environment Programme (UNEP) in the context of its inter-regional project “Climate change action in developing countries with fragile mountainous ecosystems from a sub-regional perspective”, which is financially co-supported by the Government Production Team of Austria (Austrian Federal Ministry of Agriculture, Forestry, Tina Schoolmeester, GRID-Arendal Environment and Water Management). Miguel Saravia, CONDESAN Magnus Andresen, GRID-Arendal Julio Postigo, CONDESAN, Universidad del Pacífico Alejandra Valverde, CONDESAN, Pontificia Universidad Católica del Perú Matthias Jurek, GRID-Arendal Björn Alfthan, GRID-Arendal Silvia Giada, UNEP This synthesis publication builds on the main findings and results available on projects and activities that have been conducted. Contributors It is based on available information, such as respective national Angela Soriano, CONDESAN communications by countries to the United Nations Framework Bert de Bievre, CONDESAN Convention on Climate Change (UNFCCC) and peer-reviewed Boris Orlowsky, University of Zurich, Switzerland literature. It is based on review of existing literature and not on new Clever Mafuta, GRID-Arendal scientific results generated through the project. Dirk Hoffmann, Instituto Boliviano de la Montana - BMI Edith Fernandez-Baca, UNDP The contents of this publication do not necessarily reflect the Eva Costas, Ministry of Environment, Ecuador views or policies of UNEP, contributory organizations or any Gabriela Maldonado, CONDESAN governmental authority or institution with which its authors or Harald Egerer, UNEP contributors are affiliated, nor do they imply any endorsement. -
Ccotopaxi & Chimborazo
Ccotopaxi & chimborazo - the ring of fire trek 13 days of pure adventure which includes reaching the summits of 4 of Ecuador’s highest volcanoes. Your go to high altitude experts from Everest to Kili and all the adventures inbetween What's inside? About the Ring of Fire Expedition 3 Why trek with EverTrek? 4 What’s included? 7 What to expect on the trek 8 Best time to go 9 How fit do I need to be? 10 Your itinerary 11 Equipment list 23 Chat to our Yetis 25 2 about cotopaxi and chimbarazo The Cotopaxi and Chimbarazo - Ring of Fire trek takes you through the ‘Avenue of Volcanoes’ as it’s called locally. It’s 13 days of awesome adventure which includes reaching the summits of 4 of Ecuador’s highest volcanoes, Imbabura (4560m), Cayambe (5790m) Cotopaxi (5897m) and finally the mighty Chimborazo (6268m). This is a true South American adventure offering you full immersion into the sights and sounds of Ecuador as well as experiencing altitude in one of the world’s most beautiful mountain ranges. 3 Why trek with eveRtrek? Are the mountains calling you again? EverTrek are the UK’s leading specialists in hardcore high altitude trekking. Why our customers think we’re awesome? We spend more time on preparing our EverTrekkers and truly believe they are the best prepared trekkers on the mountain with a success rate of over 95% (industry standard 65%). You get a personalised trip planner which will be your trekking bible for both before and during the trek to help prepare you practically, mentally & physically. -
Leseprobe-Bergfuehrer-Anden
Panico Bergführer DIE ANDEN Vom Chimborazo zum Marmolejo - alle 6000er auf einen Blick Hermann Kiendler Panico Alpinverlag Impressum Inhaltsverzeichnis Danke .............................................................S. 10 B21 Huantsán ................................................S. 82 Titelbild Die mächtige Südwand des Aconcagua vom Nationalparkeingang. Allgemeines ...................................................S. 12 Schmutztitel Blick auf den Chachacomani vom großen Gletscherbecken im Süden. Geographie - Sprache - Sicherheit ............S. 13 C Cordillera Huayhuash .........................S. 84 Frontispiz Das riesige Massiv des Coropuna von Nordosten - rechts Nordgipfel, mittig der Ostgipfel. Bergrettung - Höhenanpassung ................S. 14 Detailkarte Cordillera Huayhuash ...S. 86 S.4/5 Aufstieg auf den Pissis. Permits - Gebiete - Gliederung .................S. 15 C1 Jirishanca ...............................................S. 88 Schwierigkeiten - Zeitangaben usw. ......S. 16 C2 Yerupajá .................................................S. 90 Autor Hermann Kiendler Literatur ...........................................................S. 17 C3 Rasac .......................................................S. 92 Fotos sofern nicht anders angegeben von Hermann Kiendler Die Inka .........................................................S. 19 C4 Siula Grande .........................................S. 94 Karten Hermann Kiendler Layout Ronald Nordmann, Anna Rösch A Ecuador ..................................................S. 26 D -
Dome Growth, Collapse, and Valley Fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from Satellite Radar
Research Paper GEOSPHERE Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar GEOSPHERE; v. 12, no. 4 measurements of topographic change doi:10.1130/GES01291.1 D.W.D. Arnold1, J. Biggs1, G. Wadge2, S.K. Ebmeier1, H.M. Odbert3,*, and M.P. Poland4 1COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4 figures; 5 tables; 1 supplemental file 2COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, UK 3School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4U.S. Geological Survey, Cascade Volcano Observatory, 1300 S.E. Cardinal Court, Building 10, Suite 100, Vancouver, Washington 98683-9589, USA CORRESPONDENCE: david .arnold@ bristol .ac.uk CITATION: Arnold, D.W.D., Biggs, J., Wadge, G., ABSTRACT Fink, 1996; Fink and Griffiths, 1998; Watts et al., 2002; Hutchison et al., 2013). In Ebmeier, S.K., Odbert, H.M., and Poland, M.P., 2016, Dome growth, collapse, and valley fill at Soufrière steady state, lava effusion rate can constrain the volume and pressure change Hills Volcano, Montserrat, from 1995 to 2013: Contri- Frequent high-resolution measurements of topography at active vol- of shallow magma reservoirs (e.g., Dvorak and Dzurisin, 1993; Harris et al., butions from satellite radar measurements of topo- canoes can provide important information for assessing the distribution and 2003, 2007; Anderson and Segall, 2011), while long-lived volcanic eruptions graphic change: Geosphere, v. -
2. Debris Avalanches
lltt.:' : l. Introduction than severalhundred metersacross as a maximum and ll. GeomorphicCharacteristics lessthan a meter acrossas a minimum. lll. InternalFramework debris-avalanchematrix A debris-avalanchematrix is a mix- lV. Frequencyand Magnitude ture of small volcanicclasts derived from variousparts V. Eruption Processes of the source volcano. This faciesis massive,poorly Vl. Flow and EmplacementProcesses sorted,and made of fragmentsof volcaniclasticforma- Vll. Examples tions and occasionallyof fragments of paleosolsand Vlll. Conclusions plants. hummocksCharacteristic topographic fearures for debris avalanchedeposits. The shapeof hummocksis variable and irregular. No overall trend in the alignment of hum- mocksis found. GLoSSARY jigsawcracks Jigsaw cracks are characteristicjoint patterns within a debris-avalancheblock. Jigsaw cracksare typi- cally more irregular than the cooling joints of massive amphitheaterAn arm-chair-shapedlandscape formed at igneousrocks. The joint planesusually remain closed, the sourceof a sectorcollapse. The depth, width, and but many of them open wide due to deformation during height of an amphithearer are variable. Amphitheaters the transport of the debrisavalanche. associatedwith a major debris avalancheat composite sector collapseA destructivevolcanic process volcanoesmay enclosethe summit vent. during the growth history of a volcano.Debris avalanchedeposits debrisavalanche The product of a large-scalecollapse of are the productsof sectorcollapses. a sectorof a volcanicedifice under water-undersaturated conditions.The depositis characterizedby two deposi- tional facies,"block" and "matrix." An amphitheaterat the sourceand hummoclg, topography on the surfaceof the deposit are characteristicropographic features of a SECTOR COLLAPSEof a volcanicedifice pro- debris avalanche. ducesa debrisavalanche. A debrisavalanche is debris-avalancheblock A fracturedand deformedpiece of triggered typically by intrusion of new magma, a phre- the source volcano included within a debris avalanche atic explosion, or an earthquake. -
Abrupt Climatic Changes As Triggering Mechanisms of Massive Volcanic Collapses
Journal of Volcanology and Geothermal Research 155 (2006) 329–333 www.elsevier.com/locate/jvolgeores Short communication Abrupt climatic changes as triggering mechanisms of massive volcanic collapses Lucia Capra Instituto de Geografía, UNAM, CU Coyoacan, 04510, Mexico DF, Mexico Received 7 March 2006; received in revised form 31 March 2006; accepted 19 April 2006 Available online 5 June 2006 Abstract Abrupt climate change can trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas. © 2006 Published by Elsevier B.V. Keywords: volcanic collapse; global warming 1. Introduction Wyk de Vries et al., 2001; Clavero et al., 2002). Several analogue experiments have been performed to demon- Although climate changes have been considered to be strate how faults can deform volcanoes that finally a triggering mechanism for large eruptions (Rampino et collapse (Van Wyk de Vries and Borgia, 1996; Lagmay et al., 1979; McGuire et al., 1997), they have not, so far, al., 2000; Acocella, 2005; Norini and Lagmay, 2005). been related to the collapse of volcanoes. Unstable This is probably a very common mechanism, but it is volcanoes, whatever the origin of their instability, can spatially localized and can occur in an indeterminate collapse from the same triggering mechanism (McGuire, period of time.