Article Is Part of the Special Issue Bris Avalanche Emplacement and Formation of Hummocks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes
UC Santa Barbara UC Santa Barbara Previously Published Works Title Seismic and acoustic signatures of surficial mass movements at volcanoes Permalink https://escholarship.org/uc/item/2gd0d3wk Journal J. Volcanol. Geotherm. Res., 364 Authors Allstadt, K. E. Matoza, Robin Samuel Lockhart, A. B. et al. Publication Date 2018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ACCEPTED MANUSCRIPT Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes Kate E. Allstadt1, Robin S. Matoza2, Andrew Lockhart3, Seth C. Moran3, Jacqueline Caplan- Auerbach4, Matthew Haney5, Weston A. Thelen3, Stephen D. Malone6 1) U.S. Geological Survey Geologic Hazards Science Center, Golden, CO 2) Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA 3) U.S. Geological Survey Cascades Volcano Observatory, Vancouver, WA 4) Western Washington University, Bellingham, WA 5) U.S. Geological Survey Alaska Volcano Observatory, Anchorage, AK 6) University of Washington, Seattle, WA Abstract Surficial mass movements, such as debris avalanches, rock falls, lahars, pyroclastic flows, and outburst floods, are a dominant hazard at many volcanoes worldwide. Understanding these processes, cataloging their spatio-temporal occurrence, and detecting, tracking, and characterizing these events would advance the science of volcano monitoring and help mitigate hazards. Seismic and acoustic methods show promise for achieving these objectives: many surficial mass movements generate observable seismic and acoustic signals, and many volcanoes are already monitored. Significant progress has been made toward understanding, modeling, and extracting quantitative information from seismic and infrasonic signals generated by surficial mass movements. However, much work remains. In this paper, we review the state of the art of the topic, covering a range of scales and event types from individual rock falls to sector collapses. -
MOUNTAINEERING in TURKEY DAGCILIK Turkey's Mountaineering Map
Mountaineering, Turkey-Adiyamanli.org wysiwyg://38/http://www.adiyamanli.org/mountaineering_turkey.h MOUNTAINEERING IN TURKEY DAGCILIK Turkey's Mountaineering Map A glance at a topographical map of Turkey immediately reveals that this is a country of mountains. Rising in all four directions, mountains encircle the peninsula of Anatolia. A part of the Alpine-Himalayan mountain range, Turkey has mountainous regions of different geological formations. The North Anatolian range skirts the Mediterranean shore. Turkey's magnificent mountains and forests are mostly undeveloped, existing as wonderful natural preserves for an extraordinary variety of wildlife, flora and fauna. Two of Turkey's most famous peaks are volcanoes, both inactive, Mt. Erciyes in Kayseri in Central Anatolia (3917 m) and Mt. Agri (Mt. Ararat 5137 m) in the East. Other well-known mountain ranges are the Rize-Ka‡kar (3932 m) in the Eastern Black Sea region, Nigde-Aladag (3756 m) in the Central Taurus range, and the Cilo and Sat Mountains (4136 m) near Hakkari in the Eastern Taurus. The mountainous nature of the country has influenced its cultural evolution. For centuries, nomads and semi-nomadic peoples have migrated annually to the fresh pastures of the higher elevations in the summer. These alpine meadows, called yayla, still represent a firm tie to traditional culture. For climbers and those interested in mountain geography, Turkey offers a wealth of exploration. Glaciers, volcanoes, and peculiar geological formations such as kars prove irresistible to researchers and students of geology. The challenging terrain offers great opportunities for aficionados of outdoor sports who find interesting experiences on the mountains of Eastern, Central and Southern Turkey. -
Consequences of Volcano Sector Collapse on Magmatic Storage Zones: Insights from Numerical Modeling Virginie Pinel, Fabien Albino
Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling Virginie Pinel, Fabien Albino To cite this version: Virginie Pinel, Fabien Albino. Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling. Journal of Volcanology and Geothermal Research, Elsevier, 2013, 252, pp.29-37. 10.1016/j.jvolgeores.2012.11.009. ird-00782222 HAL Id: ird-00782222 https://hal.ird.fr/ird-00782222 Submitted on 29 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Manuscript Click here to view linked References Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling V. Pinela, F. Albinob aISTerre, Universit´ede Savoie, IRD, CNRS, F73376 Le Bourget du Lac, France bNordic Volcanological Center, Institute of Earth Sciences, University of Iceland, 101 Reykjavik, Iceland Abstract Major volcano flank collapses strongly affect the underlying magmatic plumb- ing system. Here, we consider the magma storage zone as a liquid pocket embedded in an elastic medium, and we perform numerical simulations in two-dimensional axisymmetric geometry as well as in three dimensions in order to evaluate the consequences of a major collapse event. -
The Effect of Giant Lateral Collapses on Magma Pathways and the Location of Volcanism
Originally published as: Maccaferri, F., Richter, N., Walter, T. R. (2017): The effect of giant lateral collapses on magma pathways and the location of volcanism. ‐ Nature Communications, 8. DOI: http://doi.org/10.1038/s41467‐017‐01256‐2 ARTICLE DOI: 10.1038/s41467-017-01256-2 OPEN The effect of giant lateral collapses on magma pathways and the location of volcanism Francesco Maccaferri1, Nicole Richter1 & Thomas R. Walter1 Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo vol- cano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands. 1 German Research Centre for Geosciences (GFZ), Potsdam, 14473, Germany. Correspondence and requests for materials should be addressed to F.M. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1097 | DOI: 10.1038/s41467-017-01256-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01256-2 specially tall and active volcanoes are prone to flank observed at numerous volcanic ocean islands15,29,34,35, including – Einstability which may lead to failure and sector collapse1 3. -
Triggering of Major Eruptions Recorded by Actively Forming Cumulates SUBJECT AREAS: Michael J
Triggering of major eruptions recorded by actively forming cumulates SUBJECT AREAS: Michael J. Stock*, Rex N. Taylor & Thomas M. Gernon GEOCHEMISTRY PETROLOGY National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, U.K. SOLID EARTH SCIENCES VOLCANOLOGY Major overturn within a magma chamber can bring together felsic and mafic magmas, prompting de-volatilisation and acting as the driver for Plinian eruptions. Until now identification of mixing has been Received limited to analysis of lavas or individual crystals ejected during eruptions. We have recovered partially 15 August 2012 developed cumulate material (‘live’ cumulate mush) from pyroclastic deposits of major eruptions on Tenerife. These samples represent ‘‘frozen’’ clumps of diverse crystalline deposits from all levels in the Accepted developing reservoir, which are permeated with the final magma immediately before eruptions. Such events 17 September 2012 therefore record the complete disintegration of the magma chamber, leading to caldera collapse. Chemical variation across developing cumulus crystals records changes in melt composition. Apart from fluctuations Published reflecting periodic influxes of mafic melt, crystal edges consistently record the presence of more felsic 12 October 2012 magmas. The prevalence of this felsic liquid implies it was able to infiltrate the entire cumulate pile immediately before each eruption. Correspondence and he Las Can˜adas volcano on Tenerife, Canary Islands, generated at least seven major explosive eruptions requests for materials during the Quaternary1–3. These events resulted in widespread deposition of pyroclastic material, with an should be addressed to estimated volume of .130 km3 (ref. 1,4). Despite considerable scientific interest in the volcano and assoc- T 5 6 R.N.T. -
323455 1 En Bookfrontmatter 1..31
World Geomorphological Landscapes Series editor Piotr Migoń, Wroclaw, Poland More information about this series at http://www.springer.com/series/10852 Catherine Kuzucuoğlu Attila Çiner • Nizamettin Kazancı Editors Landscapes and Landforms of Turkey 123 Editors Catherine Kuzucuoğlu Nizamettin Kazancı Laboratory of Physical Geography (LGP, Ankara University UMR 8591) Ankara, Turkey CNRS, Universities of Paris 1 Panthéon-Sorbonne and Paris 12 U-Pec Meudon, France Attila Çiner Istanbul Technical University Istanbul, Turkey ISSN 2213-2090 ISSN 2213-2104 (electronic) World Geomorphological Landscapes ISBN 978-3-030-03513-6 ISBN 978-3-030-03515-0 (eBook) https://doi.org/10.1007/978-3-030-03515-0 Library of Congress Control Number: 2018960303 © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Dome Growth, Collapse, and Valley Fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from Satellite Radar
Research Paper GEOSPHERE Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar GEOSPHERE; v. 12, no. 4 measurements of topographic change doi:10.1130/GES01291.1 D.W.D. Arnold1, J. Biggs1, G. Wadge2, S.K. Ebmeier1, H.M. Odbert3,*, and M.P. Poland4 1COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4 figures; 5 tables; 1 supplemental file 2COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, UK 3School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4U.S. Geological Survey, Cascade Volcano Observatory, 1300 S.E. Cardinal Court, Building 10, Suite 100, Vancouver, Washington 98683-9589, USA CORRESPONDENCE: david .arnold@ bristol .ac.uk CITATION: Arnold, D.W.D., Biggs, J., Wadge, G., ABSTRACT Fink, 1996; Fink and Griffiths, 1998; Watts et al., 2002; Hutchison et al., 2013). In Ebmeier, S.K., Odbert, H.M., and Poland, M.P., 2016, Dome growth, collapse, and valley fill at Soufrière steady state, lava effusion rate can constrain the volume and pressure change Hills Volcano, Montserrat, from 1995 to 2013: Contri- Frequent high-resolution measurements of topography at active vol- of shallow magma reservoirs (e.g., Dvorak and Dzurisin, 1993; Harris et al., butions from satellite radar measurements of topo- canoes can provide important information for assessing the distribution and 2003, 2007; Anderson and Segall, 2011), while long-lived volcanic eruptions graphic change: Geosphere, v. -
The Cryptotephta Record of the Marine Isotope
POST-PRINT The cryptotephra record of the Marine Isotope Stage 12 to 10 interval (460–335 ka) at Tenaghi Philippon, Greece: Exploring chronological markers for the Middle Pleistocene of the Mediterranean region Polina Vakhrameeva1, Andreas Koutsodendris1, Sabine Wulf1,2, William J. Fletcher3, Oona Appelt4, Maria Knipping5, Ralf Gertisser6, Mario Trieloff1, Jörg Pross1 1 Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234-236, D- 69120 Heidelberg, Germany 2 Department of Geography, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, United Kingdom 3 Department of Geography, School of Environment, Education and Development, University of Manchester, Manchester, M13 9PL, United Kingdom 4 Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.3 Chemistry and Physics of Earth Materials, Telegrafenberg, D-14773 Potsdam, Germany 5 Institute of Botany, University of Hohenheim, Garbenstraße 30, D-70593 Stuttgart, Germany 6 School of Geography, Geology and the Environment, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom Keywords: Tephrostratigraphy; Italian and Aegean Arc volcanism; Marine Isotope Stages 10, 11 and 12; Eastern Mediterranean; land-sea correlation; Tenaghi Philippon Highlights: • 18 cryptotephra layers identified for the 460–335 ka interval at Tenaghi Philippon. • Major- and trace-element compositions reveal Italian and Aegean Arc sources. • One cryptotephra can be traced to the Santorini Cape Therma 1 eruption. • Nine cryptotephras originate from a yet unknown Eastern Mediterranean source. • Cryptotephra ages derived from orbitally tuned high-resolution pollen data. 1 POST-PRINT Abstract Precise chronologies that allow direct correlation of paleoclimate archives are a prerequisite for deciphering the spatiotemporal characteristics of short-term climate variability. Such chronologies can be established through the analysis of tephra layers that are preserved in the respective sedimentary archives. -
2. Debris Avalanches
lltt.:' : l. Introduction than severalhundred metersacross as a maximum and ll. GeomorphicCharacteristics lessthan a meter acrossas a minimum. lll. InternalFramework debris-avalanchematrix A debris-avalanchematrix is a mix- lV. Frequencyand Magnitude ture of small volcanicclasts derived from variousparts V. Eruption Processes of the source volcano. This faciesis massive,poorly Vl. Flow and EmplacementProcesses sorted,and made of fragmentsof volcaniclasticforma- Vll. Examples tions and occasionallyof fragments of paleosolsand Vlll. Conclusions plants. hummocksCharacteristic topographic fearures for debris avalanchedeposits. The shapeof hummocksis variable and irregular. No overall trend in the alignment of hum- mocksis found. GLoSSARY jigsawcracks Jigsaw cracks are characteristicjoint patterns within a debris-avalancheblock. Jigsaw cracksare typi- cally more irregular than the cooling joints of massive amphitheaterAn arm-chair-shapedlandscape formed at igneousrocks. The joint planesusually remain closed, the sourceof a sectorcollapse. The depth, width, and but many of them open wide due to deformation during height of an amphithearer are variable. Amphitheaters the transport of the debrisavalanche. associatedwith a major debris avalancheat composite sector collapseA destructivevolcanic process volcanoesmay enclosethe summit vent. during the growth history of a volcano.Debris avalanchedeposits debrisavalanche The product of a large-scalecollapse of are the productsof sectorcollapses. a sectorof a volcanicedifice under water-undersaturated conditions.The depositis characterizedby two deposi- tional facies,"block" and "matrix." An amphitheaterat the sourceand hummoclg, topography on the surfaceof the deposit are characteristicropographic features of a SECTOR COLLAPSEof a volcanicedifice pro- debris avalanche. ducesa debrisavalanche. A debrisavalanche is debris-avalancheblock A fracturedand deformedpiece of triggered typically by intrusion of new magma, a phre- the source volcano included within a debris avalanche atic explosion, or an earthquake. -
Abrupt Climatic Changes As Triggering Mechanisms of Massive Volcanic Collapses
Journal of Volcanology and Geothermal Research 155 (2006) 329–333 www.elsevier.com/locate/jvolgeores Short communication Abrupt climatic changes as triggering mechanisms of massive volcanic collapses Lucia Capra Instituto de Geografía, UNAM, CU Coyoacan, 04510, Mexico DF, Mexico Received 7 March 2006; received in revised form 31 March 2006; accepted 19 April 2006 Available online 5 June 2006 Abstract Abrupt climate change can trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas. © 2006 Published by Elsevier B.V. Keywords: volcanic collapse; global warming 1. Introduction Wyk de Vries et al., 2001; Clavero et al., 2002). Several analogue experiments have been performed to demon- Although climate changes have been considered to be strate how faults can deform volcanoes that finally a triggering mechanism for large eruptions (Rampino et collapse (Van Wyk de Vries and Borgia, 1996; Lagmay et al., 1979; McGuire et al., 1997), they have not, so far, al., 2000; Acocella, 2005; Norini and Lagmay, 2005). been related to the collapse of volcanoes. Unstable This is probably a very common mechanism, but it is volcanoes, whatever the origin of their instability, can spatially localized and can occur in an indeterminate collapse from the same triggering mechanism (McGuire, period of time. -
University of Birmingham the Evolution of Volcanic Systems Following Sector Collapse
University of Birmingham The evolution of volcanic systems following sector collapse Watt, Sebastian DOI: 10.1016/j.jvolgeores.2019.05.012 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): Watt, S 2019, 'The evolution of volcanic systems following sector collapse', Journal of Volcanology and Geothermal Research, vol. 384, pp. 280-303. https://doi.org/10.1016/j.jvolgeores.2019.05.012 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 25/06/2019 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive. -
Science for a Changing World
science for a changing world Cover photograph Mount Rainier, Washington, with the flood plain of the Puyallup River in the foreground, 50 kilometers downstream from the volcano. The flood plain is a pathway for debris flows (lahars) from the volcano, most recently by the Electron Mudflow about 500 to 600 years ago. (Photograph by David Wieprecht, U.S. Geological Survey.) Catastrophic Debris Flows Transformed from Landslides in Volcanic Terrains: Mobility, Hazard Assessment, and Mitigation Strategies By Kevin M. Scott, Jose Luis Macias, Jose Antonio Naranjo, Sergio Rodriguez, and John P. McGeehin U.S. Geological Survey Professional Paper 1630 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Reston, Virginia 2001 For sale by the U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Scott, Kevin M., 1935- Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard assessment and mitigation strategies I by Kevin M. Scott ... [et al.]. p. em.- (U.S. Geological Survey professional paper; 1630) Includes bibliographical references and index. 1. Debris avalanches. 2. Lahars. 3. Catastrophes (Geology). I. Scott, Kevin M., 1935- 11. Series QE75.P9 no. 1630 [QE599.A2] 557.3 s-dc21 [551.3'07] 2001058484 ISBN 0-607-98578-X CONTENTS