Science for a Changing World

Total Page:16

File Type:pdf, Size:1020Kb

Science for a Changing World science for a changing world Cover photograph Mount Rainier, Washington, with the flood plain of the Puyallup River in the foreground, 50 kilometers downstream from the volcano. The flood plain is a pathway for debris flows (lahars) from the volcano, most recently by the Electron Mudflow about 500 to 600 years ago. (Photograph by David Wieprecht, U.S. Geological Survey.) Catastrophic Debris Flows Transformed from Landslides in Volcanic Terrains: Mobility, Hazard Assessment, and Mitigation Strategies By Kevin M. Scott, Jose Luis Macias, Jose Antonio Naranjo, Sergio Rodriguez, and John P. McGeehin U.S. Geological Survey Professional Paper 1630 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Reston, Virginia 2001 For sale by the U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Scott, Kevin M., 1935- Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard assessment and mitigation strategies I by Kevin M. Scott ... [et al.]. p. em.- (U.S. Geological Survey professional paper; 1630) Includes bibliographical references and index. 1. Debris avalanches. 2. Lahars. 3. Catastrophes (Geology). I. Scott, Kevin M., 1935- 11. Series QE75.P9 no. 1630 [QE599.A2] 557.3 s-dc21 [551.3'07] 2001058484 ISBN 0-607-98578-X CONTENTS Abstract. ..................................................................................................................................................... 1 Introduction............................................................................................................................................... 2 Sediment terminology-size and texture . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4 Landslides and volcano collapses . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 6 Debris avalanches. ... .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..................... .. .. .. .. .. .. .. .. .. 6 Debris flows . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7 Acknowledgments.................................................................................................................................... 8 "La avalancha" in the Rio Paez, Colombia-an archetypal seismogenic debris flow in volcanic terrain......................................................................................................................................... 9 Formation of "la avalancha" .. .. .. ... .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. ... .. .. .. .. ... .. .. .. .. .. .. 10 Dynamics of "la avalancha" .. .. .. ... .. .. .. .. .. .. .. .. .. .. ... .. .. .. ... .. .. .. .. ... .. .. .. .. .. .. 13 Velocity of the wave front ............................................................................................................ 13 Cross-sectional area and discharge. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 14 Flow hydrograph-the rise............................................................................................................. 15 Flow hydro graph-the recession .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 16 Formation of the single wave .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 16 Flow mobility . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 16 Other debris flows transformed from landslides in volcanic terrains . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 16 Rainfall-triggered debris flows ........................................................................................................... 17 Earthquake-triggered debris flows ...................................................................................................... 18 Mexico, 1920 .. ... .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. ... .. .. ... .. .. .. .. 18 Chile, 1960 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 21 Ecuador, 1987 . ... .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. ... .. .. .. .. .. .. .. 22 Debris flows from landslides and volcano collapses-triggering mechanisms . .. .. .. .. .. 23 Magmatic destabilization .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 23 Rainfall . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 25 Earthquakes .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 26 Gravity ................................................................................................................................................ 26 Hydrovolcanic activity (phreatic and phreatomagmatic)........... .. .. .. .. .. .. .... .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 27 Triggering mechanisms related to possibility of pre-event warning. .. .. ................. .. .. ... .. 27 Recognition of volcanic debris avalanches and cohesive debris flows (lahars) from deposits ... .. .. 28 Longitudinal transformations and textural changes .. .. .. .. .. .. .. .. .. .. .. .. .. 28 Interpreting flows and their behavior from their deposits .. .. .. .. ... .. ... .. .. .. .. .. ... .. .. .. .. 30 Examples from Mount Rainier .................................................................................................. 3 3 Examples from New Zealand .................................................................................................... 34 Debris flows from landslides and volcano collapses-flow mobility ................................................. 3 4 Debris flows from landslides and volcano collapses-extrapolating case histories . .. .. .. .. .. .. .. .. 3 7 Forensic documentation of flow pathways-Past events and future predictions ............................. 40 Hazard assessments . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4 0 Risk analysis-Example of Mount Rainier .................................................................................... 41 Contents iii Mitigation strategies .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. ... .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. 4 2 Land-use planning . .. ... ... .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4 2 Instrumental event warnings to lowland residents in volcanic terrains.................................... 44 Educating residents of flow hazard zones to recognize the possible initiation or the actual approach of a debris flow . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 45 Recognition of seismic shock as a possible flow trigger......................................................... 45 Recognition of the acoustic signal of an approaching flow . .. .. .. ... ... .. .. .. .. .. ... .. .. .. .. .. .. .. .. ... 45 Education for Self Warning and Evacuation (ESWEV)... .. .. .. .. .. .. .. ... .. .. .. ... .. .. .. .. .. .. .. .. .. ... 4 7 Engineering measures integrating response to volcanic and hydrologic hazards ... .. .. ... .. .. 49 Conclusions . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 50 References cited .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 51 FIGURES 1. Diagram illustrating origin of textural subpopulations of debris flow deposits . .. .. 3 2. Photograph of debris avalanche in the Rio Teno, Chile, showing clast of incoherent, lighter- colored material deforming and mixing with matrix. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 5 3. Index map showing route of debris flow triggered by the Paez earthquake of June 6, 1994 and flow cross sections illustrating growth and decay of peak discharge . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 9 4-10. Photographs showing: 4. Site of Irlanda looking northwest, showing near-synchroneity and coalescence of flows................................................................................................................................... 10 5. Site of T6ez looking southeast................................................................................................ 11 6. Impact forces of debris flows illustrated by margin of "la avalancha" where 1-2 m of flow inundated animal bam of stone masonry................................................................... 12 7. Margin of "la avalancha" looking downstream where it inundated the only remaining street . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 12 8. Head scarp of individual failure. ·······························································l···························· 13 9. Hillside of Rfo Paez valley upstream of Irlanda showing coalescence of·approxi-I mately synchronous small debris flows and debris avalanches into a larger single flow .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 14 10. Downslope deposits of flow in figure 9 showing intact masses (outlined) of soil and rock 0.7-1.0 min diameter ................................................................................... 14 11. Diagram showing schematic hydrographs of evolving flow wave beginning from upstream of the epicenter near Dublfn through downstream communities of Irlanda, T6ez, and Belalcazar ..............................................................................................................
Recommended publications
  • Chronology and Impact of the 2011 Cordón Caulle Eruption, Chile
    Nat. Hazards Earth Syst. Sci., 16, 675–704, 2016 www.nat-hazards-earth-syst-sci.net/16/675/2016/ doi:10.5194/nhess-16-675-2016 © Author(s) 2016. CC Attribution 3.0 License. Chronology and impact of the 2011 Cordón Caulle eruption, Chile Manuela Elissondo1, Valérie Baumann1, Costanza Bonadonna2, Marco Pistolesi3, Raffaello Cioni3, Antonella Bertagnini4, Sébastien Biass2, Juan-Carlos Herrero1, and Rafael Gonzalez1 1Servicio Geológico Minero Argentino (SEGEMAR), Buenos Aires, Argentina 2Department of Earth Sciences, University of Geneva, Geneva, Switzerland 3Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italia 4Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italia Correspondence to: Costanza Bonadonna ([email protected]) Received: 7 July 2015 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 8 September 2015 Accepted: 29 January 2016 – Published: 10 March 2016 Abstract. We present a detailed chronological reconstruction 1 Introduction of the 2011 eruption of the Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific re- Recent volcanic crises (e.g. Chaitén 2008, Cordón Caulle ports and satellite images. Chronology of associated volcanic 2011 and Calbuco 2015, Chile; Eyjafjallajökull 2010, Ice- processes and their local and regional effects (i.e. precursory land) clearly demonstrated that even small–moderate to sub- activity, tephra fallout, lahars, pyroclastic density currents, plinian eruptions, particularly if long-lasting, can paralyze lava flows) are also presented. The eruption had a severe entire sectors of societies with a significant economic im- impact on the ecosystem and on various economic sectors, pact. The increasing complexity of the impact of eruptions on including aviation, tourism, agriculture and fishing industry.
    [Show full text]
  • Contratos Sociales
    2350 BOLETIN OFICIAL - Mendoza, jueves 13 de marzo de 2008 SECCION GENERAL Cruz, Mendoza, y el Sr. Pablo ros, en el país o en el exterior las diante la prestación de servicios ____________ Damia Bonoldi, DNI 29.488.671, siguientes actividades: a) Cons- de transporte por cuenta propia o CUIT 20-29488671-1, argentino, trucción: La ejecución de obras de de terceros, en el territorio nacio- Contratos soltero, de 25 años de edad, de ingeniería, arquitectura y edifica- nal o internacional, por vía terres- Sociales profesión Arquitecto, con domici- ción, mediante el ejercicio de to- tre, aérea o marítima, por cualquier lio real en calle Maure 500, Guay- das las actividades técnicas, in- medio de trasporte o locomoción, (*) mallén, Mendoza. 9°) Organo de dustriales y/o comerciales propias propio o arrendado. Su distribu- DAMIA & MÁRQUEZ ARQUI- Fiscalización: En uso de las facul- del ramo de la construcción, por ción y logística, despacho, inter- TECTOS SOCIEDAD ANÓNIMA - tades conferidas por el Artículo cuenta propia o ajena, ya sea efec- mediación y en general todo tipo Comunícase la constitución de 284 última parte de la Ley 19.550, tuando como contratista o de transporte, distribución y des- una sociedad anónima, conforme se prescinde de la sindicatura, te- subcontratista de obras públicas pacho de bienes. e) Industriales: a las siguientes previsiones: 1°) niendo los socios el derecho de nacionales, provinciales y/o muni- la industrialización primaria o no, Socios: Pablo Antonio Márquez, ar- contralor por el Artículo 55 de la cipales, cualesquiera fueran sus de todo tipo de productos, elemen- gentino, LE 08.148.403, CUIT 20- misma.
    [Show full text]
  • Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Seismic and acoustic signatures of surficial mass movements at volcanoes Permalink https://escholarship.org/uc/item/2gd0d3wk Journal J. Volcanol. Geotherm. Res., 364 Authors Allstadt, K. E. Matoza, Robin Samuel Lockhart, A. B. et al. Publication Date 2018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ACCEPTED MANUSCRIPT Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes Kate E. Allstadt1, Robin S. Matoza2, Andrew Lockhart3, Seth C. Moran3, Jacqueline Caplan- Auerbach4, Matthew Haney5, Weston A. Thelen3, Stephen D. Malone6 1) U.S. Geological Survey Geologic Hazards Science Center, Golden, CO 2) Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA 3) U.S. Geological Survey Cascades Volcano Observatory, Vancouver, WA 4) Western Washington University, Bellingham, WA 5) U.S. Geological Survey Alaska Volcano Observatory, Anchorage, AK 6) University of Washington, Seattle, WA Abstract Surficial mass movements, such as debris avalanches, rock falls, lahars, pyroclastic flows, and outburst floods, are a dominant hazard at many volcanoes worldwide. Understanding these processes, cataloging their spatio-temporal occurrence, and detecting, tracking, and characterizing these events would advance the science of volcano monitoring and help mitigate hazards. Seismic and acoustic methods show promise for achieving these objectives: many surficial mass movements generate observable seismic and acoustic signals, and many volcanoes are already monitored. Significant progress has been made toward understanding, modeling, and extracting quantitative information from seismic and infrasonic signals generated by surficial mass movements. However, much work remains. In this paper, we review the state of the art of the topic, covering a range of scales and event types from individual rock falls to sector collapses.
    [Show full text]
  • Contratos Sociales
    2444 BOLETIN OFICIAL - Mendoza, lunes 17 de marzo de 2008 SECCION GENERAL mentos del país de origen o de La representación de diarios po- un 25% del capital suscripto. 8- ____________ destino. f) Mandatos y Servicios: drá ser en carácter de correspon- Administración y representación Prestación de toda clase de servi- sal, sucursal o agencia o alguna legal: La administración y repre- Contratos cios, principalmente el relaciona- otra modalidad de las que son de sentación legal será ejercida en Sociales do con la explotación de salas práctica habitual, d) Representa- forma conjunta o indistinta por velatorias y servicios fúnebres en ción comercial de diarios y revis- ambos socios, quienes revisten el (*) general. Cumplimiento y ejecu- tas, e) Representación comercial carácter de socios gerentes de la Expte. N° 49.579 «ARPAGO’S ción de toda clase de mandatos, de agencias de publicidad para firma. 9- Ejercicio: El ejercicio eco- S.R.L. p/Inscripción de sociedad». en forma directa o indirecta a per- medios gráficos y realizar por cuen- nómico cierra el 31 de diciembre Primer Juzgado de Procesos sona pública o privada, de exis- ta propia o de terceros operacio- de cada año. Concursales y Registro de tencia ideal o visible. g) Construc- nes o actos jurídicos que se rela- Bto. 40183 Mendoza. Se hace saber a intere- ción: De edificios de todo tipo, in- cionen directa o indirectamente 17/3/2008 (1 P.) $ 21,25 sados que se ha constituido una dustriales y para vivienda, obras con el objeto social ya sea en el ——————————————— Sociedad de Responsabilidad Li- de ingeniería de todo tipo, públi- país o en el extranjero.
    [Show full text]
  • Consequences of Volcano Sector Collapse on Magmatic Storage Zones: Insights from Numerical Modeling Virginie Pinel, Fabien Albino
    Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling Virginie Pinel, Fabien Albino To cite this version: Virginie Pinel, Fabien Albino. Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling. Journal of Volcanology and Geothermal Research, Elsevier, 2013, 252, pp.29-37. 10.1016/j.jvolgeores.2012.11.009. ird-00782222 HAL Id: ird-00782222 https://hal.ird.fr/ird-00782222 Submitted on 29 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Manuscript Click here to view linked References Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling V. Pinela, F. Albinob aISTerre, Universit´ede Savoie, IRD, CNRS, F73376 Le Bourget du Lac, France bNordic Volcanological Center, Institute of Earth Sciences, University of Iceland, 101 Reykjavik, Iceland Abstract Major volcano flank collapses strongly affect the underlying magmatic plumb- ing system. Here, we consider the magma storage zone as a liquid pocket embedded in an elastic medium, and we perform numerical simulations in two-dimensional axisymmetric geometry as well as in three dimensions in order to evaluate the consequences of a major collapse event.
    [Show full text]
  • The Effect of Giant Lateral Collapses on Magma Pathways and the Location of Volcanism
    Originally published as: Maccaferri, F., Richter, N., Walter, T. R. (2017): The effect of giant lateral collapses on magma pathways and the location of volcanism. ‐ Nature Communications, 8. DOI: http://doi.org/10.1038/s41467‐017‐01256‐2 ARTICLE DOI: 10.1038/s41467-017-01256-2 OPEN The effect of giant lateral collapses on magma pathways and the location of volcanism Francesco Maccaferri1, Nicole Richter1 & Thomas R. Walter1 Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo vol- cano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands. 1 German Research Centre for Geosciences (GFZ), Potsdam, 14473, Germany. Correspondence and requests for materials should be addressed to F.M. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1097 | DOI: 10.1038/s41467-017-01256-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01256-2 specially tall and active volcanoes are prone to flank observed at numerous volcanic ocean islands15,29,34,35, including – Einstability which may lead to failure and sector collapse1 3.
    [Show full text]
  • Triggering of Major Eruptions Recorded by Actively Forming Cumulates SUBJECT AREAS: Michael J
    Triggering of major eruptions recorded by actively forming cumulates SUBJECT AREAS: Michael J. Stock*, Rex N. Taylor & Thomas M. Gernon GEOCHEMISTRY PETROLOGY National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, U.K. SOLID EARTH SCIENCES VOLCANOLOGY Major overturn within a magma chamber can bring together felsic and mafic magmas, prompting de-volatilisation and acting as the driver for Plinian eruptions. Until now identification of mixing has been Received limited to analysis of lavas or individual crystals ejected during eruptions. We have recovered partially 15 August 2012 developed cumulate material (‘live’ cumulate mush) from pyroclastic deposits of major eruptions on Tenerife. These samples represent ‘‘frozen’’ clumps of diverse crystalline deposits from all levels in the Accepted developing reservoir, which are permeated with the final magma immediately before eruptions. Such events 17 September 2012 therefore record the complete disintegration of the magma chamber, leading to caldera collapse. Chemical variation across developing cumulus crystals records changes in melt composition. Apart from fluctuations Published reflecting periodic influxes of mafic melt, crystal edges consistently record the presence of more felsic 12 October 2012 magmas. The prevalence of this felsic liquid implies it was able to infiltrate the entire cumulate pile immediately before each eruption. Correspondence and he Las Can˜adas volcano on Tenerife, Canary Islands, generated at least seven major explosive eruptions requests for materials during the Quaternary1–3. These events resulted in widespread deposition of pyroclastic material, with an should be addressed to estimated volume of .130 km3 (ref. 1,4). Despite considerable scientific interest in the volcano and assoc- T 5 6 R.N.T.
    [Show full text]
  • Dome Growth, Collapse, and Valley Fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from Satellite Radar
    Research Paper GEOSPHERE Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar GEOSPHERE; v. 12, no. 4 measurements of topographic change doi:10.1130/GES01291.1 D.W.D. Arnold1, J. Biggs1, G. Wadge2, S.K. Ebmeier1, H.M. Odbert3,*, and M.P. Poland4 1COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4 figures; 5 tables; 1 supplemental file 2COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, UK 3School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4U.S. Geological Survey, Cascade Volcano Observatory, 1300 S.E. Cardinal Court, Building 10, Suite 100, Vancouver, Washington 98683-9589, USA CORRESPONDENCE: david .arnold@ bristol .ac.uk CITATION: Arnold, D.W.D., Biggs, J., Wadge, G., ABSTRACT Fink, 1996; Fink and Griffiths, 1998; Watts et al., 2002; Hutchison et al., 2013). In Ebmeier, S.K., Odbert, H.M., and Poland, M.P., 2016, Dome growth, collapse, and valley fill at Soufrière steady state, lava effusion rate can constrain the volume and pressure change Hills Volcano, Montserrat, from 1995 to 2013: Contri- Frequent high-resolution measurements of topography at active vol- of shallow magma reservoirs (e.g., Dvorak and Dzurisin, 1993; Harris et al., butions from satellite radar measurements of topo- canoes can provide important information for assessing the distribution and 2003, 2007; Anderson and Segall, 2011), while long-lived volcanic eruptions graphic change: Geosphere, v.
    [Show full text]
  • 2. Debris Avalanches
    lltt.:' : l. Introduction than severalhundred metersacross as a maximum and ll. GeomorphicCharacteristics lessthan a meter acrossas a minimum. lll. InternalFramework debris-avalanchematrix A debris-avalanchematrix is a mix- lV. Frequencyand Magnitude ture of small volcanicclasts derived from variousparts V. Eruption Processes of the source volcano. This faciesis massive,poorly Vl. Flow and EmplacementProcesses sorted,and made of fragmentsof volcaniclasticforma- Vll. Examples tions and occasionallyof fragments of paleosolsand Vlll. Conclusions plants. hummocksCharacteristic topographic fearures for debris avalanchedeposits. The shapeof hummocksis variable and irregular. No overall trend in the alignment of hum- mocksis found. GLoSSARY jigsawcracks Jigsaw cracks are characteristicjoint patterns within a debris-avalancheblock. Jigsaw cracksare typi- cally more irregular than the cooling joints of massive amphitheaterAn arm-chair-shapedlandscape formed at igneousrocks. The joint planesusually remain closed, the sourceof a sectorcollapse. The depth, width, and but many of them open wide due to deformation during height of an amphithearer are variable. Amphitheaters the transport of the debrisavalanche. associatedwith a major debris avalancheat composite sector collapseA destructivevolcanic process volcanoesmay enclosethe summit vent. during the growth history of a volcano.Debris avalanchedeposits debrisavalanche The product of a large-scalecollapse of are the productsof sectorcollapses. a sectorof a volcanicedifice under water-undersaturated conditions.The depositis characterizedby two deposi- tional facies,"block" and "matrix." An amphitheaterat the sourceand hummoclg, topography on the surfaceof the deposit are characteristicropographic features of a SECTOR COLLAPSEof a volcanicedifice pro- debris avalanche. ducesa debrisavalanche. A debrisavalanche is debris-avalancheblock A fracturedand deformedpiece of triggered typically by intrusion of new magma, a phre- the source volcano included within a debris avalanche atic explosion, or an earthquake.
    [Show full text]
  • Abrupt Climatic Changes As Triggering Mechanisms of Massive Volcanic Collapses
    Journal of Volcanology and Geothermal Research 155 (2006) 329–333 www.elsevier.com/locate/jvolgeores Short communication Abrupt climatic changes as triggering mechanisms of massive volcanic collapses Lucia Capra Instituto de Geografía, UNAM, CU Coyoacan, 04510, Mexico DF, Mexico Received 7 March 2006; received in revised form 31 March 2006; accepted 19 April 2006 Available online 5 June 2006 Abstract Abrupt climate change can trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas. © 2006 Published by Elsevier B.V. Keywords: volcanic collapse; global warming 1. Introduction Wyk de Vries et al., 2001; Clavero et al., 2002). Several analogue experiments have been performed to demon- Although climate changes have been considered to be strate how faults can deform volcanoes that finally a triggering mechanism for large eruptions (Rampino et collapse (Van Wyk de Vries and Borgia, 1996; Lagmay et al., 1979; McGuire et al., 1997), they have not, so far, al., 2000; Acocella, 2005; Norini and Lagmay, 2005). been related to the collapse of volcanoes. Unstable This is probably a very common mechanism, but it is volcanoes, whatever the origin of their instability, can spatially localized and can occur in an indeterminate collapse from the same triggering mechanism (McGuire, period of time.
    [Show full text]
  • Numerical Modeling of the Emplacement of Socompa Rock Avalanche, Chile K
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, B12202, doi:10.1029/2005JB003758, 2005 Numerical modeling of the emplacement of Socompa rock avalanche, Chile K. Kelfoun and T. H. Druitt Laboratoire Magmas et Volcans, OPGC, UBP–CNRS–IRD, Clermont-Ferrand, France Received 1 April 2005; revised 27 June 2005; accepted 14 September 2005; published 16 December 2005. 3 [1] The 7.5 ka Socompa sector collapse emplaced 25 km of fragmented rock as a thin, but widespread (500 km2), avalanche deposit, followed by late stage sliding of 11 km3 as Toreva blocks. Most of the avalanche mass was emplaced dry, although saturation of a basal shear layer cannot be excluded. Modeling was carried out using the depth-averaged granular flow equations in order to provide information on the flow behavior of this well-preserved, long run-out avalanche. Results were constrained using structures preserved on the surface of the deposit, as well as by deposit outline and run-up (a proxy for velocity). Models assuming constant dynamic friction fail to produce realistic results because the low basal friction angles (1 to 3.5°) necessary to generate observed run-out permit neither adequate deposition on slopes nor preservation of significant morphology on the deposit surface. A reasonable fit is obtained, however, if the avalanche is assumed simply to experience a constant retarding stress of 50–100 kPa during flow. This permits long run-out as well as deposition on slopes and preservation of realistic depositional morphology. In particular the model explains a prominent topographic escarpment on the deposit surface as the frozen front of a huge wave of debris reflected off surrounding hills.
    [Show full text]
  • Volcanic Hazards
    have killed more than 5,000 people. Two important points are demonstrated by this. The first is that the most deadly eruptions are generally pyroclastic: lava flows are rarely a main cause of death. The second is that it is not always the biggest eruptions that cause the most deaths. Even quite small eruptions can be major killers – for example the 1985 eruption of Ruiz, which resulted in 5 the second largest number of volcanic fatalities of the twentieth century. Sometimes volcanoes kill people even when they are not erupting: Iliwerung 1979 (a landslide, not associated with an Volcanic hazards eruption, that caused a tsunami when it entered the sea) and Lake Nyos 1986 (escaping gas) being examples of death by two different non-eruptive mechanisms. In this chapter you will learn: • about the most devastating volcanic eruptions of historic times Some of the causes of death listed in Table 5.1 may need further • about the wide variety of ways in which eruptions can cause death elaboration. Famine, for example, is a result of crop failure and/ and destruction (including by triggering a tsunami). or the loss of livestock because of fallout, pyroclastic flows or gas poisoning. It is often accompanied by the spread of disease In previous chapters I dealt with the different types of volcano as a result of insanitary conditions brought about by pollution that occur and the ways in which they can erupt. The scene is now of the water supply. In the modern world it is to be hoped that set to examine the hazards posed to human life and well-being international food aid to a stricken area would prevent starvation by volcanic eruptions.
    [Show full text]