University of Birmingham the Evolution of Volcanic Systems Following Sector Collapse

Total Page:16

File Type:pdf, Size:1020Kb

University of Birmingham the Evolution of Volcanic Systems Following Sector Collapse University of Birmingham The evolution of volcanic systems following sector collapse Watt, Sebastian DOI: 10.1016/j.jvolgeores.2019.05.012 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): Watt, S 2019, 'The evolution of volcanic systems following sector collapse', Journal of Volcanology and Geothermal Research, vol. 384, pp. 280-303. https://doi.org/10.1016/j.jvolgeores.2019.05.012 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 25/06/2019 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive. If you believe that this is the case for this document, please contact [email protected] providing details and we will remove access to the work immediately and investigate. Download date: 06. Oct. 2021 1 2 3 4 1 The evolution of volcanic systems following sector collapse 5 2 6 7 3 Sebastian F.L. Watt 8 4 School of Geography, Earth and Environmental Sciences, University of Birmingham, 9 10 5 Edgbaston, Birmingham B15 2TT, U.K. 11 12 6 e-mail: [email protected] 13 7 tel: 0121 414 6131 14 15 8 16 9 Abstract 17 18 10 Sector collapses affect volcanic edifices across all tectonic settings and involve a rapid 19 20 11 redistribution of mass, comparable in scale to the largest magmatic eruptions. The eruptive 21 12 behaviour of a volcano following sector collapse provides a test of theoretical relationships 22 23 13 between surface loading and magma storage, which imply that collapse-driven unloading 24 14 may lead to changes in eruption rate and erupted magma compositions. Large sector collapses 25 26 15 are infrequent events globally, with all historical examples being relatively small in 27 28 16 comparison to many of the events documented in the geological record. As a result, 29 17 exploration of the impacts of sector collapse on eruptive behaviour requires detailed 30 31 18 investigation of prehistoric collapses, but this is often hindered by poorly-resolved 32 19 stratigraphic relationships and dating uncertainties. Nevertheless, observations from a number 33 34 20 of volcanoes indicate sharp changes in activity following sector collapse. Here, a global 35 21 synthesis of studies from individual volcanoes, in both arc and intraplate settings, is used to 36 37 22 demonstrate a number of common processes in post-collapse volcanism. Multiple examples 38 3 39 23 from large (>5 km ) sector collapses in arc settings show that collapse may be followed by 40 24 compositionally anomalous, large-volume and often effusive eruptions, interpreted to 41 42 25 originate via disruption of a previously stable, upper-crustal reservoir. These anomalous 43 26 eruptions highlight that magma compositions erupted during periods of typical (i.e. 44 45 27 unperturbed by sector collapse) volcanism may not be representative of the range of 46 47 28 compositions stored within a vertically extensive crustal reservoir. If eruptible magma is not 48 29 present, upper-crustal reservoirs may rapidly solidify following collapse, without further 49 50 30 eruption, allowing more mafic compositions to ascend to the surface with only limited upper- 51 31 crustal modification, resulting in edifice regrowth at temporarily elevated eruption rates. 52 53 32 Subsequent re-establishment of an upper-crustal reservoir further supports a relationship 54 55 33 between surface loading and crustal storage, but long-term chemical and mineralogical 56 34 differences between pre- and post-collapse evolved magmas imply that a newly-developed 57 58 1 59 60 61 62 63 35 reservoir can overprint the influence of a preceding reservoir, forming a spatially and 64 36 compositionally distinct plumbing system. These broad patterns are replicated in intraplate 65 66 37 settings, despite differences in scale and melting processes; current evidence suggests that 67 38 post-collapse evolution of intraplate volcanoes can be explained by unloading-induced 68 69 39 destabilisation of the magma plumbing system, rather than increased melt production. What 70 71 40 emerges from an apparently diverse set of observations is a systematic behaviour that 72 41 strongly supports a coupling between edifice growth and magma ascent, storage and 73 74 42 pressurisation. Eruption rates, erupted compositions, and the style of volcanism at any 75 43 particular system may thus be modulated from the surface, and long-term shifts in surface 76 77 44 behaviour may thus occur without any changes in the deep parts of magmatic systems. 78 79 45 Observations of sharp post-collapse changes in erupted compositions, including the ascent of 80 46 primitive mafic magmas, also require a crystal-dominated mid- to upper-crustal reservoir, 81 82 47 consistent with recent models of crustal magmatic systems. 83 48 84 85 49 Keywords: sector collapse; magma storage; eruptive behaviour; edifice growth and 86 87 50 destruction; debris avalanche 88 51 89 90 52 Highlights 91 53 • Global synthesis of volcano-magmatic evolution following sector collapse 92 93 54 • Decompression-driven reservoir disruption leads to anomalous post-collapse 94 95 55 eruptions 96 56 • Rapid regrowth via mafic volcanism; subsequent re-establishment of shallow storage 97 98 57 • Implies direct modulation of shallow plumbing system development by surface load 99 100 58 • Common patterns in intraplate and arc settings 101 59 102 103 60 1. Introduction 104 61 Volcanic edifices across all tectonic settings are prone to structural instability and the 105 106 62 generation of large landslides (Ui, 1983; Siebert, 1984), resulting in a redistribution of 107 108 63 volcanic rock across the surrounding land surface. Landslides formed by edifice collapse 109 64 span a wide range of dimensions, and their scars have been identified on volcanoes ranging 110 111 65 from submerged seamounts to large ocean islands, and across subaerial composite volcanoes 112 66 in both arc and intraplate settings (Siebert et al., 1987, 2006; Moore et al., 1989; Deplus et al., 113 114 67 2001; Coombs et al., 2007; Staudigel and Clague, 2010). The triggers for such landslides are 115 116 117 2 118 119 120 121 122 68 varied. Although some, such as the sector collapse of Mount St Helen’s in 1980, are directly 123 69 associated with large magmatic eruptions (Glicken, 1996), structural failure is not always 124 125 70 linked with magma ascent (Siebert et al., 1987; McGuire, 1996). 126 71 127 128 72 Historical observations and deposit characteristics suggest that structural failure of volcanic 129 130 73 edifices generally occurs in a sudden, catastrophic event (although this may follow a long 131 74 period of more gradual flank spreading (e.g., Moore et al., 1989; Neri et al., 2004; Wooller et 132 133 75 al., 2004; Karstens et al., 2019); and failure itself may occur over several, shortly-spaced 134 76 stages (Glicken, 1996; Hunt et al., 2013)). The base of the failure plane in large edifice 135 136 77 collapses may lie deep within the volcano structure (Crandell, 1989; Glicken, 1996; Watt et 137 138 78 al., 2014) and even intersect basement rock (e.g., Wadge et al., 1995; Shea et al., 2008), and 139 79 in many cases cuts the central conduit. The mobilised mass may be remarkably large, in some 140 141 80 cases accounting for >10% of the edifice volume. Sector collapses thus profoundly alter both 142 81 the morphology of a volcano and the distribution of mass above an active magma plumbing 143 144 82 system, potentially reducing the thickness of overlying rock by a kilometre or more. 145 146 83 147 84 Theoretical analyses suggest that mass redistribution following edifice collapse can influence 148 149 85 pressurisation and failure conditions in stored magma bodies (Pinel and Jaupart, 2005; Pinel 150 86 and Albino, 2013). It is therefore plausible that major collapses may be followed by changes 151 152 87 in eruption rate or style, or in the composition of erupted magma. Anecdotal evidence from 153 88 several individual volcanoes supports this idea (e.g., Tibaldi, 2004; Hora et al., 2009; 154 155 89 Manconi et al., 2009), but it is not clear that there is a common pattern to post-collapse 156 157 90 activity. In addition, some volcanoes show no apparent change in behaviour following large- 158 91 scale edifice failure (e.g., Ponomareva et al., 2006; Zernack et al., 2012). Given the diversity 159 160 92 of volcanic systems affected by edifice collapse, this is perhaps unsurprising, but the limited 161 93 current understanding of the impacts of sector collapse on volcano-magmatic processes 162 163 94 provides the motivation for this work.
Recommended publications
  • Threatened Birds of the Americas
    GOLDEN-PLUMED PARAKEET Leptosittaca branickii V/R10 This poorly known parrot is found very locally in temperate Andean forests in Colombia, Ecuador and Peru, in the first two of which it has suffered from much habitat loss; its nomadism, which may be related to a heavy dependence on Podocarpus cones, renders it highly problematic to conserve. DISTRIBUTION The Golden-plumed Parakeet is known from at least 70 specimens, and has been recorded from at least 30 localities scattered through the Andes in Colombia, Ecuador and Peru. Colombia The species is known from two regions on the west slope of the Central Andes (all coordinates, unless otherwise stated, are from Paynter and Traylor 1981), as follows: the Nevado del Ruiz–Nevado del Tolima region on the borders of Tolima, Risaralda, Quindío and Caldas departments (in and around Los Nevados National Park), localities being Hacienda Jaramillo, over 3,000 m, at 4°47’N 75°26’W, September 1918 (Carriker 1955a; nine specimens in CM, all labelled “Santa Ignacia”); above Santa Rosa de Cabal, recently (Hilty and Brown 1986); Laguneta, 3,050 m, at 4°35’N 75°30’W, April 1942 (specimen in ANSP); Alto Quindío Acaime Natural Reserve, 4°37’N 75°28’W, and the nearby Cañon del Quindío Natural Reserve, on the west slope of the Central Andes in Quindío, ranging into adjacent forest on the east slope in Tolima, and present throughout the year (E. Murgueitio R. in litt. 1987; also Renjifo 1991, L. M. Renjifo in litt. 1992, whence coordinates; see Ecology); Rincón Santo, Salento, 2,800 m, December 1989 (J.
    [Show full text]
  • Hospitales a Nivel Nacional
    HOSPITALES A NIVEL NACIONAL PROVINCIA: AZUAY ZONA 6 ( 072-822-201) ITEM HOSPITAL TELEFONO 1 HOSPITAL VICENTE CORRAL MOSCOZO 074-096-606/074-096-598 2 HOSPITAL DE SIGSIG 072-266-115/ 072-267-629 3 HOSPITAL EL GIRON 072-276-136/074-275-115 4 HOSPITAL PAUTE 072-250-107/074-250-027 5 HOSPITAL GUALACEO 072-255-064/074-256-537 6 HOSPITAL SANTA ISABEL 072-270-147/072-270-437/074-270-295 7 HOSPITAL MARIANO ESTRELLA 072-847-427 8 CENTRO DE SALUD 1 PUMAPUNGO 072-867-071/072-869-642 9 AREA DE SALUD 2 MIRAFLORES 072-837-665/072-838-155/072-845-015 10 CENTRO DE SALUD 3 TOMEBAMBA 072-822-202/072-836-352 11 CENTRO DE SALUD 4 YANUNCAY 072-893-150/072-892-444/074-2892-390 PROVINCIA: BOLIVAR ZONA 5 ITEM HOSPITAL TELEFONO 1 HOSPITAL ALFREDO NOBOA MONTENEGRO 032-980-230 2 HOSPITAL SAN MIGUEL 032-989-112/032-989-416 3 HOSPITAL CHILLANES 032-978-522/032-978-522 4 CENTRO DE SALUD 1 CORDERO CRESPO 032-985-904/032-980-290 5 CENTRO DE SALUD CALUMA 032-974-394/032-974-709 6 CENTRO DE SALUD EHCEANDIA 032-970-376/032-970-545/032-971-221 HOSPITALES A NIVEL NACIONAL PROVINCIA: CARCHI/TULCÁN ZONA 1 ITEM HOSPITAL TELEFONO 1 HOSPITAL LUIS G. DAVILA 062-980-316/062-980-315 2 HOSPITAL EL ANGEL 062-977-166 3 HOSPITAL SAN GABRIEL 062-290-153/062-290-161 4 CENTRO DE SALUD 1 062-980-396 5 CENTRO DE SALUD SAN JUAN DEL ACHAS 062-648-672 PROVINCIA: CAÑAR ZONA 6 ITEM HOSPITAL TELEFONO 1 HOSPITAL HOMERO C.
    [Show full text]
  • Tungurahua Volcano, Ecuador: Structure, Eruptive History and Hazards
    Journal of Volcanology and Geothermal Research 91Ž. 1999 1±21 www.elsevier.comrlocaterjvolgeores Tungurahua Volcano, Ecuador: structure, eruptive history and hazards Minard L. Hall a,1, Claude Robin b,), Bernardo Beate c, Patricia Mothes a,1, Michel Monzier a,d,2 a Instituto Geofõsico,ÂÂ Escuela Politecnica Nacional, P.O. Box 1701-2759, Quito, Ecuador b Institut de Recherches Pour le DeÂÕeloppement() IRD, ex-ORSTOM , UR 6, OPGC, 5 Rue Kessler, 63038, Clermont-Ferrand, France c Departamento de Geologõa,ÂÂÂ Facultad de Geologõa, Minas y Petroleos, Escuela Politecnica Nacional, P.O. Box 1701-2759, Quito, Ecuador d Institut de Recherches pour le DeÂÕeloppement() IRD, ex-ORSTOM , UR 6, A.P. 17-11-6596, Quito, Ecuador Accepted 25 March 1999 Abstract Tungurahua, one of Ecuador's most active volcanoes, is made up of three volcanic edifices. Tungurahua I was a 14-km-wide andesitic stratocone which experienced at least one sector collapse followed by the extrusion of a dacite lava series. Tungurahua II, mainly composed of acid andesite lava flows younger than 14,000 years BP, was partly destroyed by the last collapse event, 2955"90 years ago, which left a large amphitheater and produced a ;8-km3 debris deposit. The avalanche collided with the high ridge immediately to the west of the cone and was diverted to the northwest and southwest for ;15 km. A large lahar formed during this event, which was followed in turn by dacite extrusion. Southwestward, the damming of the Chambo valley by the avalanche deposit resulted in a ;10-km-long lake, which was subsequently breached, generating another catastrophic debris flow.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Tesis Mildred Ollague
    UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS ADMINISTRATIVAS TRABAJO DE TITULACIÓN PRESENTADO COMO REQUISITO PARA OPTAR POR EL TÍTULO DE INGENIERÍA EN SISTEMAS ADMINISTRATIVOS COMPUTACIONALES TEMA: “PROTOTIPO DE APLICACIÒN WEB PARA EL CONTROL DE NUTRICIÓN Y CRECIMIENTO PARA NIÑOS DE 1 A 10 AÑOS” AUTORA: OLLAGUE MOSQUERA MILDRED LISSETTE TUTOR: ING. ROMAN BARREZUETA LUGIO DAVID GUAYAQUIL, SEPTIEMBRE 2017 REPOSITORIO NACIONAL EN CIENCIAS Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÍTULO: PROTOTIPO DE APLICACIÓN WEB PARA EL CONTROL DE NUTRICIÓN Y CRECIMIENTO PARA NIÑOS DE 1 A 10 AÑOS AUTOR/ES: REVISORES: Mildred Lissette Ollague Mosquera Ing.Cecibel Alexandra León Arriaga INSTITUCIÓN: Universidad de FACULTAD: Facultad de Ciencias Guayaquil Administrativas CARRERA: Ingeniería en Sistemas Administrativos Computarizados FECHA DE PUBLICACIÓN: NO. DE PÁGS: ÁREA TEMÁTICA: Tecnología PALABRAS CLAVES: Prototipo Aplicación Web Nutrición Crecimiento RESUMEN El presente trabajo investigativo se centra en la creación de un aplicativo web para el control de nutrición y crecimiento de niños de 1 a 10 años, en la que se registra peso y talla de niños para despues evaluar su IMC, Perímetro Cefálico y Perímetro medio del brazo para lo cual se utiliza las tablas percentiles de la OMS con esto se emite un diagnóstico básico y se puede observar gráficamente como va el desarrollo del niño, también se puede enviar un correo con el historial del paciente al médico de su preferencia. N° DE REGISTRO (en base de N° DE CLASIFICACIÓN: datos): DIRECCIÓN URL (propuesta tecnológica en la web) ADJUNTO URL (propuesta tecnológica en la web): ADJUNTO PDF: SI NO CONTACTO CON AUTOR/ES: Teléfono: E-mail: Mildred Lissette Ollague Mosquera 0989194863 [email protected] CONTACTO EN LA Nombre: Ing.
    [Show full text]
  • Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Seismic and acoustic signatures of surficial mass movements at volcanoes Permalink https://escholarship.org/uc/item/2gd0d3wk Journal J. Volcanol. Geotherm. Res., 364 Authors Allstadt, K. E. Matoza, Robin Samuel Lockhart, A. B. et al. Publication Date 2018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ACCEPTED MANUSCRIPT Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes Kate E. Allstadt1, Robin S. Matoza2, Andrew Lockhart3, Seth C. Moran3, Jacqueline Caplan- Auerbach4, Matthew Haney5, Weston A. Thelen3, Stephen D. Malone6 1) U.S. Geological Survey Geologic Hazards Science Center, Golden, CO 2) Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA 3) U.S. Geological Survey Cascades Volcano Observatory, Vancouver, WA 4) Western Washington University, Bellingham, WA 5) U.S. Geological Survey Alaska Volcano Observatory, Anchorage, AK 6) University of Washington, Seattle, WA Abstract Surficial mass movements, such as debris avalanches, rock falls, lahars, pyroclastic flows, and outburst floods, are a dominant hazard at many volcanoes worldwide. Understanding these processes, cataloging their spatio-temporal occurrence, and detecting, tracking, and characterizing these events would advance the science of volcano monitoring and help mitigate hazards. Seismic and acoustic methods show promise for achieving these objectives: many surficial mass movements generate observable seismic and acoustic signals, and many volcanoes are already monitored. Significant progress has been made toward understanding, modeling, and extracting quantitative information from seismic and infrasonic signals generated by surficial mass movements. However, much work remains. In this paper, we review the state of the art of the topic, covering a range of scales and event types from individual rock falls to sector collapses.
    [Show full text]
  • Final Copy 2021 03 23 Ituarte
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring differential erosion patterns using volcanic edifices as a proxy in South America Lia S. Ituarte A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master by Research in the Faculty of Science, School of Earth Sciences, October 2020.
    [Show full text]
  • La Catástrofe Del Nevado Del Ruiz, ¿Una Enseñanza Para El Ecuador? El Caso Del Cotopaxi
    La catástrofe del Nevado del Ruiz, ¿Una enseñanza para el Ecuador? El caso del Cotopaxi. Robert d’Ercole To cite this version: Robert d’Ercole. La catástrofe del Nevado del Ruiz, ¿Una enseñanza para el Ecuador? El caso del Cotopaxi.. Estudios de Geograf’ia, Corporación Editora Nacional, 1989, Riesgos Naturales en Quito, 2, pp.5-32. hal-01184809 HAL Id: hal-01184809 https://hal.archives-ouvertes.fr/hal-01184809 Submitted on 25 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LA CATASTROFE DEL NEVADO DEL RUIZ l UNA ENSENANZA- PARA EL ECUADOR ? EL CASO DEL COTOPAXI Robert D'Ercole* El 13 de noviembre de 1985, el volcân colombiano, el Nevado deI Ruiz, erupciono provocando la muerte de unas 25.000 personas. Esta es la mayor catâstrofe causada por un volcan desde la que produjo 29.000 victimas, en 1902 en la isla Martinica, luego de la erupci6n de la Montafla Pelée. La magnitud de las consecuencias y el hecho de que el Ruiz haya dado signos de reactivaci6n mucho tiempo antes, plantean el problema deI fenomeno natural pero también de los factores humanos que originaron la tragedia.
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]
  • Consequences of Volcano Sector Collapse on Magmatic Storage Zones: Insights from Numerical Modeling Virginie Pinel, Fabien Albino
    Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling Virginie Pinel, Fabien Albino To cite this version: Virginie Pinel, Fabien Albino. Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling. Journal of Volcanology and Geothermal Research, Elsevier, 2013, 252, pp.29-37. 10.1016/j.jvolgeores.2012.11.009. ird-00782222 HAL Id: ird-00782222 https://hal.ird.fr/ird-00782222 Submitted on 29 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Manuscript Click here to view linked References Consequences of volcano sector collapse on magmatic storage zones: insights from numerical modeling V. Pinela, F. Albinob aISTerre, Universit´ede Savoie, IRD, CNRS, F73376 Le Bourget du Lac, France bNordic Volcanological Center, Institute of Earth Sciences, University of Iceland, 101 Reykjavik, Iceland Abstract Major volcano flank collapses strongly affect the underlying magmatic plumb- ing system. Here, we consider the magma storage zone as a liquid pocket embedded in an elastic medium, and we perform numerical simulations in two-dimensional axisymmetric geometry as well as in three dimensions in order to evaluate the consequences of a major collapse event.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • The Effect of Giant Lateral Collapses on Magma Pathways and the Location of Volcanism
    Originally published as: Maccaferri, F., Richter, N., Walter, T. R. (2017): The effect of giant lateral collapses on magma pathways and the location of volcanism. ‐ Nature Communications, 8. DOI: http://doi.org/10.1038/s41467‐017‐01256‐2 ARTICLE DOI: 10.1038/s41467-017-01256-2 OPEN The effect of giant lateral collapses on magma pathways and the location of volcanism Francesco Maccaferri1, Nicole Richter1 & Thomas R. Walter1 Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo vol- cano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands. 1 German Research Centre for Geosciences (GFZ), Potsdam, 14473, Germany. Correspondence and requests for materials should be addressed to F.M. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1097 | DOI: 10.1038/s41467-017-01256-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01256-2 specially tall and active volcanoes are prone to flank observed at numerous volcanic ocean islands15,29,34,35, including – Einstability which may lead to failure and sector collapse1 3.
    [Show full text]