Final Copy 2021 03 23 Ituarte

Total Page:16

File Type:pdf, Size:1020Kb

Final Copy 2021 03 23 Ituarte This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring differential erosion patterns using volcanic edifices as a proxy in South America Lia S. Ituarte A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master by Research in the Faculty of Science, School of Earth Sciences, October 2020. 61425 words Abstract Porphyry Copper Deposit (PCD) exploration faces a challenging future, since promising areas for exploration are buried. PCDs form at kilometres depth, while volcanoes are the surface expression of extensive magmatic systems. Although not all volcanoes generate PCDs, it may be that all PCDs formed under a volcanic centre. As there are no complete magmatic-volcanic profiles available, I study the distribution of the exposed magmatic-volcanic portions. In this study, I compile eruption, volcano and PCD data for the Andes and then develop a tool to identify favourable areas for finding porphyries close to the surface. This methodology, however, does not distinguish enriched from barren porphyries, nor detect the intensity of the mineralization. My results show when exploring for PCDs, high prospectivity areas are the eroded and remaining edifices of inactive stratovolcanoes. They also show that volcano erosion and PCD exposure in the Andes depend strongly on climate. There is a negative correlation between height and more humid climate for Pre- Quaternary edifices and, as the number of volcanoes drops with wetter conditions, the numbers of mineralised deposits rise. This trend of reduced number and height of edifices continues towards extreme latitudes, as well as close to the current Chilean coastline, the Intermediate depression and Precordillera. This suggests a strong erosion gradient increasing towards the south and west of the Andes. The Arica Bend region and the Precordillera are areas of great importance, since they reflect the greatest exhumation in the Andes by exposing mineralised intrusions, therefore it becomes enormously relevant distinguishing these regions of high-erosion (South Peruvian Cordillera) from low-erosion (Altiplano plateau). Geomorphology is a promising tool for finding PCDs, since paleosurfaces could protect and preserve mineralised intrusions, while coupled mechanisms (tectonic uplift and climate) may facilitate the exposure of PCDs by river incision or rotational landslides. 2 Dedication To my family, without whom none of my achievements would have been possible. 3 Acknowledgements I want to thank BHP for the financial support and the information provided during the database creation stage, also to Thiago Oliveira (BHP) and Cam McCuaig (BHP) for their collaboration, constant feedback and enthusiasm on my results. I would also like to thank Laura Evenstar and Anne Mather for plenty of discussions and for showing me how to fall in love of Geomorphology. Especial thanks to Laura, who reviewed some chapters of my thesis. Finally, I am profoundly grateful to my supervisor, Alison Rust, who went far and beyond her responsibilities, motivated me with her extensive knowledge in volcanology during these years and encouraged me to finish this work. 4 Author’s declaration I declare that the work in this dissertation was carried out in accordance with the requirements of the University's Regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate's own work. Work done in collaboration with, or with the assistance of, others, is indicated as such. Any views expressed in the dissertation are those of the author. SIGNED: ..................................................... DATE: .......................... 5 Table of Contents Exploring differential erosion patterns using volcanic edifices as a proxy in South America .... 1 Abstract ...................................................................................................................................... 2 Dedication .................................................................................................................................. 3 Acknowledgements .................................................................................................................... 4 Author’s declaration .................................................................................................................. 5 1 Chapter 1: Introduction .................................................................................................... 13 1.1 Comparing PCDs against modern volcanoes ....................................................................... 14 1.1.1 Eruptive and fertile periods versus dormancy and barren epochs ............................................... 22 1.1.2 Timing: PCD development and volcanic activity ........................................................................... 24 1.1.3 Distribution of volcanoes and PCDs .............................................................................................. 26 1.2 The Andes ............................................................................................................................ 26 1.2.1 Evolution of the Andes: tectonics, climate, erosion and magmatism .......................................... 26 1.2.2 Magmatism ................................................................................................................................... 28 1.2.3 Tectonics ....................................................................................................................................... 30 1.2.3.1 Uplift during Eocene to Oligocene ............................................................................................ 31 1.2.3.2 Uplift during Oligocene to present day .................................................................................... 32 1.2.3.3 The Bolivian Orocline................................................................................................................ 33 1.2.3.4 Precordillera region .................................................................................................................. 34 1.2.3.5 Tectonic Segments ................................................................................................................... 35 1.2.3.6 Sediment control on subduction plate speeds .......................................................................... 35 1.2.3.7 Crust Destruction and Mass Wasting ....................................................................................... 39 1.2.4 Climate .......................................................................................................................................... 39 1.2.4.1 Summary of the climate control in the Andes .......................................................................... 39 1.2.4.2 Summary of the climate in the western Andes ........................................................................ 40 1.2.4.3 Summary of the climate in the eastern Andes ......................................................................... 41 1.2.5 Erosion .......................................................................................................................................... 42 1.2.6 Surface evolution of volcano edifices ........................................................................................... 49 1.2.6.1 Stratovolcanoes morphometric model ..................................................................................... 49 1.2.6.2 Evolution model for the degradation for Central Andean volcanoes ....................................... 50 1.2.7 Porphyry deposits in the Andes .................................................................................................... 52 1.2.7.1 PCDs exhumation ..................................................................................................................... 52 1.2.7.2 PCDs types and relation to depth of formation ........................................................................ 53 1.3 Summary .............................................................................................................................
Recommended publications
  • Descargar Resumen Ejecutivo
    Presentación Uno de los principales objetivos del Gobierno del Presidente Sebastián Quiero destacar y agradecer la activa participación que tuvieron tanto Piñera es la construcción de una sociedad de oportunidades, seguridades actores públicos como privados en la elaboración del presente plan, todos y valores, donde cada chilena y chileno pueda tener una vida feliz y plena. ellos con el único objetivo de fomentar las potencialidades de la región. El Ministerio de Obras Públicas contribuye a esta misión entregando Quiero especialmente agradecer a los ex ministros Hernán de Solminihac servicios de infraestructura y gestión del recurso hídrico, comprometidos y Laurence Golborne por el gran impulso que dieron a la materialización con la aspiración de ser el primer país de América Latina que logre de estos planes. La etapa siguiente requiere de los mayores esfuerzos de alcanzar el desarrollo antes que termine esta década. trabajo conjunto, coordinado, tras una visión de región y de desarrollo futuro, para materializar durante la próxima década la cartera de estudios, Para eso el Ministerio de Obras Públicas decidió establecer una carta de programas y proyectos que se detallan en este documento. navegación al año 2021, que se materializa en la elaboración de un Plan de Infraestructura y Gestión del Recurso Hídrico para cada una de las En esta oportunidad presento a los actores públicos y privados de la quince regiones de Chile, con la finalidad de orientar nuestras inversiones Región de Antofagasta, en la Macrozona Norte, el Plan de Infraestructura públicas en beneficio directo del desarrollo social, económico y cultural y Gestión del Recurso Hídrico al 2021 de la ciudadanía.
    [Show full text]
  • T R a V E L P R O Je C T S T R a V E L P R O Je
    TRAVEL PROJECTS TRAVEL PROJECTS TRAVEL PROJECTS MUL GUA TI-COUNTR COST ARGENTINA COLOMBIA ECUADOR P TEMALA BOLIVIA MEXICO ANAMA BRAZIL T A CUBA OURS RICA PERU Y TRAVEL PROJECTS REGIONAL MAP Mexico Cuba Los Mochis San Jose Havana del Cabo Puerto MEXICO CITY Merida Cancun Vallarta Playa del Puebla Taxco Carmen Villa Hermosa Acapulco Oaxaca San Cristobal de las Casas COSTA RICA PANAMA Colombia BOGOTA Ecuador Galapagos Island QUITO Guayaquil Belem Leticia Manaus Cuenca Iquitos Tabatinga Fortaleza The team at Travel Projects is very excited with our Chiclayo range of products on this 2008 edition. With the Peru Natal Trujillo experience throughout the years and the feedback Brazil Recife Machu Picchu from our past clients we have compiled the most Sacred Valley interesting programs that combine all the Puerto Maldonado LIMA necessary elements to make your trip to this vast Paracas Cuzco Salvador Rurrenabaque continent an unforgettable one that will treasure Nazca Puno Bolivia Arequipa BRASILIA memories for many years to come. LA PAZ Santa Cruz Our two main multi-country tours are: The South Cuiaba Arica Oruro American Explorer and the Discover South Buzios Uyuni America; The first one will give you a good insight Calama Campo Rio de Janeiro Grande Parati San Pedro de Atacama Sao Pablo Easter Island Salta Iguazu Falls Chile Argentina Mendoza Valparaiso Colonia Punta del #D/#N Tour Heading SANTIAGO Este Montevideo Santa Cruz BUENOS AIRES Fact Finder Puella Bariocho Puerto Includes Montt Valdes Peninsula Balmaceda Not Included Chalten El Cafalete
    [Show full text]
  • Ôø Å Òù× Ö Ôø
    ÔØ ÅÒÙ×Ö ÔØ Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene M.M. Soler, P.J Caffe, B.L. Coira, A.T. Onoe, S. Mahlburg Kay PII: S0377-0273(07)00084-4 DOI: doi: 10.1016/j.jvolgeores.2007.04.002 Reference: VOLGEO 3668 To appear in: Journal of Volcanology and Geothermal Research Received date: 27 April 2006 Revised date: 14 November 2006 Accepted date: 11 April 2007 Please cite this article as: Soler, M.M., Caffe, P.J., Coira, B.L., Onoe, A.T., Kay, S. Mahlburg, Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene, Journal of Volcanology and Geothermal Research (2007), doi: 10.1016/j.jvolgeores.2007.04.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in 2 the Central Andean plateau during the Upper Miocene. 3 4 M.M. Solera, P.J Caffea,* , B.L. Coiraa, A.T. Onoeb, S.
    [Show full text]
  • The Origin and Emplacement of Domo Tinto, Guallatiri Volcano, Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watts, Robert B.; Clavero Ribes, Jorge; J. Sparks, R. Stephen The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 558-588 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 558-588. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Robert B. Watts1, Jorge Clavero Ribes2, R. Stephen J. Sparks3 1 Office of Disaster Management, Jimmit, Roseau, Commonwealth of Dominica. [email protected] 2 Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile. [email protected] 3 Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol. BS8 1RJ. United Kingdom. [email protected] ABSTRACT. Guallatiri Volcano (18°25’S, 69°05’W) is a large edifice located on the Chilean Altiplano near the Bo- livia/Chile border. This Pleistocene-Holocene construct, situated at the southern end of the Nevados de Quimsachata chain, is an andesitic/dacitic complex formed of early stage lava flows and later stage coulées and lava domes.
    [Show full text]
  • Southern Andes Supersite Coupled Geohazards at Southern Andes: Copahue-Lanín Arc Volcanoes and Adjacent Crustal Faults
    Version 1.3 15 October 2018 www.geo-gsnl.org Biennial report for Permanent Supersite/Natural Laboratory GeoHazSA: Southern Andes Supersite Coupled geohazards at Southern Andes: Copahue-Lanín arc volcanoes and adjacent crustal faults History https://geo-gsnl.org/supersites/permanent- supersites/southern-andes-supersite/ Supersite Coordinator Luis E. Lara, SERNAGEOMIN, CIGIDEN, Av. Santa María 0104, Santiago, CHILE 1 Version 1.3 15 October 2018 www.geo-gsnl.org 1. Abstract The Southern Andes (33°-46°S) is a young and active mountain belt where volcanism and tectonic processes pose a significant threat to the communities nearby. In fact, only recent eruptions caused evacuations of 250-3500 people and critical infrastructure is present there. The segment here considered corresponds to a low altitude orogen (<2000 masl on average) but characterized by a high uplift rate as a result of competing tectonic and climate forces. This Supersite focuses on a ca. 200 km long segment of the Southern Andes where 9 active stratovolcanoes (Copahue, Callaqui, Tolhuaca, Lonquimay, Llaima, Sollipulli, Villarrica, Quetrupillan and Lanín) and 2 distributed volcanic fields (Caburgua and Huelemolles) are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Fault System (LOFS). Activity of the LOFS has been detected prior to some eruptions and coeval with some others. There are several tectonic and volcanic models to be investigated that derive from a strong two-way coupling between tectonics and volcanism, recently detected by either geophysical techniques or numerical modeling. Hazards in the segment derive mostly from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting but weak current activity (e.g., Copahue) or some volcanoes with low eruptive frequency but high magnitude eruptions in the geological record (e.g., Lonquimay).
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • University of Birmingham the Evolution of Volcanic Systems Following Sector Collapse
    University of Birmingham The evolution of volcanic systems following sector collapse Watt, Sebastian DOI: 10.1016/j.jvolgeores.2019.05.012 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): Watt, S 2019, 'The evolution of volcanic systems following sector collapse', Journal of Volcanology and Geothermal Research, vol. 384, pp. 280-303. https://doi.org/10.1016/j.jvolgeores.2019.05.012 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 25/06/2019 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
    [Show full text]
  • Pyroclastic Eruptions of Llaima and Villarrica Volcanoes (Southern Andes) : a Comparison
    6th International Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts: 442-445 The two major postglacial (13-14,000 BP) pyroclastic eruptions of Llaima and Villarrica volcanoes (Southern Andes) : A comparison S. Lohmar 1, C. Robin 1,2, M. A. Parada '. A. Gourgaud 2, L. Lapez-Escobar 3, H. Moreno 4, & J. Naranjo 5 1. Departamento de Geologia, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile 2. Laboratoire Magmas et Volcans (UniversitéICNRS/IRD), 5 rue Kessler, 63038 Clermont-Ferrand, France 3. Instituto de Geologia Econ6mica Aplicada , Universidad de Concepcién, Casilla160-C, Concepci6n, Chile 4. OVDAS, Servicio Nacional de Geologia y Mineria, Cerro Nielol sIn, Casilla 23 D, Temuco, Chile 5. Servicio Nacional de Geologia y Mineria, Avenida Santa Maria 0104, Providencia, Santiago, Chile 1. Introduction Llaima (38°45'S) and Villarrica (39°25'S) are Upper Pleistocene-Recent composite stratovoJcanoes located in the Central Southern Volcanic Zone of the Andes (Lépez-Escobar et al., 1993). The predominant products of both volcanoes are basalts and basaltic andesites. Presently, they are the most active volcanoes in Chile and have had an important postglacial « 14,000 years) explosive activity, characterised by voluminous deposits of mafic (basaltic to andesitic) ignimbrites (Naranjo & Moreno, 1991; Moreno et al., 1994). In order to investigate the eruptive causes of such uncommon products, a study has been undertaken in an IRD-GEA-SERNAGEüM1N• University of Chile collaborative project (Ecos-Conicyt CO1U03). In this abstract, we present the petrographical, mineraJogical and geochemical characteristics of the two major ignimbritic deposits which are close in age (13,800 and 13,500 years; the Lic ân ignimbrite at Villarrica volcano and the Curacautïn ignimbrite at Llairna, respectively), within the context of the history of each volcanic complex.
    [Show full text]
  • Plan Estratégico Para La Gestión De Los Recursos Hídricos, Región De Antofagasta
    GOBIERNO DE CHILE MINISTERIO DE OBRAS PÚBLICAS DIRECCIÓN GENERAL DE AGUAS DIVISIÓN DE ESTUDIOS Y PLANIFICACIÓN PLAN ESTRATÉGICO PARA LA GESTIÓN DE LOS RECURSOS HÍDRICOS, REGIÓN DE ANTOFAGASTA INFORME FINAL REALIZADO POR: ARCADIS S.I.T. N° 379 Santiago, Julio de 2016 MINISTERIO DE OBRAS PÚBLICAS Ministro de Obras Públicas Ingeniero Comercial Sr. Alberto Undurraga Vicuña Director General de Aguas Abogado Sr. Carlos Estévez Valencia Jefe División de Estudios y Planificación Ingeniero Civil Sr. Adrián Lillo Zenteno Inspector Fiscal Ingeniero Civil Sr. Norberto Portillo Araya Profesionales División de Estudios y Planificación Ingeniero Civil Sra. Andrea Osses Vargas ARCADIS Jefe de Proyecto Ingeniero Agrónomo Sr. Cristian Ortiz Especialista Sénior Ingeniero Civil Sr. Humberto Peña Ingeniero Civil Sr. Eduardo Varas Coordinador de Proyecto Ingeniero Civil Sra. Ximena Orrego Profesionales Ingeniero Civil Sra. Francisca Chadwick Ingeniero Civil Srta. Gabriela Sepúlveda Ingeniero Civil Srta. Milena Calvo Ingeniero Industrial Sr. Fernando Varas Sociólogo Sra. Sofía López Cartógrafo Sr. Leonardo Bravo Julio, 2016 PÁGINA I ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS ................................................................................... II ÍNDICE DE FIGURAS ........................................................................................ III ÍNDICE DE TABLAS ............................................................................................. V 1 INTRODUCCIÓN ............................................................................................
    [Show full text]
  • What's Your Next Dream?
    PARTING SHOTS WHAT’S YOUR NEXT DREAM? Gerhard Wörner1 DOI: 10.2113/gselements.14.4.286 While working on extinct volcanoes in Germany, I always wanted to see Hawaii. This dream came true in 1984 when I was on my way to study volcanoes in Antarctica when we passed through Hawaii … and I got the thrill of seeing Pu‘u ‘O¯ ‘o¯ erupt. Later, over a beer, I was telling my friend, Russ Harmon, how my fieldwork adventures had fulfilled a long-held dream. “So, what’s your next dream?”, he asked. “I want Two-peso coins ‘minted’ by the nitrate mine company, Compania de to work on the volcanoes of the Atacama in South America”, was my FIGURE 2 Salitre de Antofagasta. These coins are made from bakelite (the first answer, not realizing that he and his colleagues were planning a field plastic made from synthetic components). These coins could only be spent in the campaign to work on Parinacota Volcano in northern Chile the next company’s store. PHOTO: G. WÖRNER. year. I was invited to join. This was 1986 and Chile’s dictator, Augusto Pinochet, was still in power. the surviving workers were forced to return to the mines. The military The shaggy border town of Arica, our departing spot to the high Andes, colonel who was responsible for this massacre was even awarded for had just one lonely place to hang out before departing to the field: restoring order. Those mines became ghost towns after the synthetic Café 21 on calle 21. The café was the center of town, an uneasy place fixation of nitrogen from air (the Haber–Bosch process) was invented.
    [Show full text]
  • Download PDF 'Review and Reassessment of Hazards Owing To
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2007 Review and reassessment of hazards owing to volcano–glacier interactions in Colombia Huggel, Christian ; Ceballos, Jorge Luis ; Pulgarín, Bernardo ; Ramírez, Jair ; Thouret, Jean-Claude Abstract: The Cordillera Central in Colombia hosts four important glacier-clad volcanoes, namely Nevado del Ruiz, Nevado de Santa Isabel, Nevado del Tolima and Nevado del Huila. Public and scientific attention has been focused on volcano–glacier hazards in Colombia and worldwide by the 1985 Nevado del Ruiz/Armero catastrophe, the world’s largest volcano–glacier disaster. Important volcanological and glaciological studies were undertaken after 1985. However, recent decades have brought strong changes in ice mass extent, volume and structure as a result of atmospheric warming. Population has grown and with it the sizes of numerous communities located around the volcanoes. This study reviews and reassesses the current conditions of and changes in the glaciers, the interaction processes between ice and volcanic activity and the resulting hazards. Results show a considerable hazard potential from Nevados del Ruiz, Tolima and Huila. Explosive activity within environments of snow and ice as well as non-eruption-related mass movements induced by unstable slopes, or steep and fractured glaciers, can produce avalanches that are likely to be transformed into highly mobile debris flows. Such events can have severe consequences for the downstream communities. Integrated monitoring strategies are therefore essential for early detection of emerging activity that may result in hazardous volcano–ice interaction. Corresponding efforts are currently being strengthened within the framework of international programmes.
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]