Crustal Contributions to Arc Magmatism in the Andes of Central Chile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Andinismo: Desafío Para La Prensa Nacional Memoria Para Optar Al Título De Periodista
UNIVERSIDAD NACIONAL 11111111111111�ñi�íll1i1i1l1lm1111111111111 35612000064981. UNIVERSIDADa ANDRES BELLO UNIVERSIDAD ANDRÉS BELLO FACULTAD DE HUMANIDADES Y EDUCACIÓN ESCUELA DE PERIODISMO ANDINISMO: DESAFÍO PARA LA PRENSA NACIONAL MEMORIA PARA OPTAR AL TÍTULO DE PERIODISTA ALUMNO: CARLA BERTOSSI ARRIBADA PROFESOR GUÍA: SEBASTIANO BERTOLONE GALLETINI SANTIAGO - CHILE Noviembre, 2004 ÍNDICE Justificacióndel Tema ............................................................................................ 2 ANDINISMO: DESAFÍO PARA LA PRENSA NACIONAL ............................................ 4 Introducción............... ......................................................................................... 5 Capítulo I CARACTERÍSTICAS FÍSICAS DE LOS ANDES ......................................................... 8 1. Geografia de Los Andes 2. El ambientede montaña 3. Cumbres emblemáticas Capítulo II MONTAÑAS, TEMPLO DEL DEPORTE.................................................................. 29 l. Breve historia del andinismo 2. El deporte de montaña 3. Andinismo 4. Organización del andinismo en Chile Capítulo m TÉCNICA Y SEGURIDAD EN MONTAÑA.............................................................. 50 l. Peligros en montaña 2. Vestuarioy equipo de montaña 3. Alimentación 4. Orientación Capítulo IV FISIOLOGÍA DE MONTAÑA ................................................................................ 69 1. Patología de la altitud 2. Aclimatización 3. Otraspatologías 4. Primeros auxilios 5. Aspectos psicológicos Capítulo V ACCIDENTES -
Humboldt Penguin Spheniscus Humboldti Population in Chile: Counts of Moulting Birds, February 1999–2008
Wallace & Araya: Humboldt Penguin population in Chile 107 HUMBOLDT PENGUIN SPHENISCUS HUMBOLDTI POPULATION IN CHILE: COUNTS OF MOULTING BIRDS, FEBRUARY 1999–2008 ROBERTA S. WALLACE1 & BRAULIO ARAYA2 1Milwaukee County Zoo, 10001 W. Blue Mound Road, Milwaukee, WI 53226, USA ([email protected]) 2Calle Lima 193. Villa Alemana, V Región, Chile Received 19 August 2014, accepted 9 December 2014 SUMMARY WALLACE, R.S. & ARAYA, B. 2015. Humboldt Penguin Spheniscus humboldti population in Chile: counts of moulting birds, February 1999–2008. Marine Ornithology 43: 107–112 We conducted annual counts of moulting Humboldt Penguins roosting on the mainland coast and on offshore islands in north and central Chile during 1999–2008. The census area included the known major breeding colonies in Chile, where many penguins moult, as well as other sites. Population size was relatively stable across years, with an average of 33 384 SD 2 372 (range: 28 642–35 284) penguins counted, but the number of penguins found at any individual site could vary widely. Shifting penguin numbers suggest that penguins tend to aggregate to moult where food is abundant. While many of the major breeding sites are afforded some form of protected status, two sites with sizable penguin populations, Tilgo Island and Pájaros-1 Island, have no official protection. These census results provide a basis upon which future population trends can be compared. Key words: penguin, Spheniscus humboldti, census, Chile INTRODUCTION penguin taking less than three weeks to moult (Paredes et al. 2003). Penguins remain on land during moult, and they return to The Humboldt Penguin Spheniscus humboldti is a species endemic sea immediately after moulting (Zavalaga & Paredes 1997). -
Large Rock Avalanches and River Damming Hazards in the Andes of Central Chile: the Case of Pangal Valley, Alto Cachapoal
Geophysical Research Abstracts Vol. 21, EGU2019-6079, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Large rock avalanches and river damming hazards in the Andes of central Chile: the case of Pangal valley, Alto Cachapoal Sergio A. Sepulveda (1,2), Diego Chacon (2), Stella M. Moreiras (3), and Fernando Poblete (1) (1) Universidad de O0Higgins, Instituto de Ciencias de la Ingeniería, Rancagua, Chile ([email protected]), (2) Universidad de Chile, Departamento de Geología, Santiago, Chile, (3) CONICET – IANIGLA- CCT, Mendoza, Argentina A cluster of five rock avalanche deposits of volumes varying from 1.5 to 150 millions of cubic metres located in the Pangal valley, Cachapoal river basin in the Andes of central Chile is studied. The landslides are originated in volcanic rocks affected by localised hydrothermal alteration in a short section of the fluvial valley. The largest rock avalanches, with deposit thicknesses of up to about 100 m, have blocked the valley to be later eroded by the Pangal river. Lacustrine deposits can be found upstream. A detailed geomorphological survey of the valley and dating of the landslide deposits is being performed, in order to assess the likelihood of new large volume landslide events with potential of river damming. Such events would endanger hydroelectric facilities and human settlements downstream. A total of eighteen potential landslide source areas were identified, with potential of damming up to 10^7 million cubic metres. This case study illustrates a poorly studied hazard of large slope instabilities and related river damming in the Chilean Andes, extensively covered by large landslide deposits along their valleys. -
Universita' Degli Studi Di Milano Bicocca
Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra Università degli studi di Milano-Bicocca Dottorato di Ricerca in Scienze della Terra XXVI ciclo Earthquake-induced static stress change in promoting eruptions Tutore: Prof. Alessandro TIBALDI Co-tutore: Dott.ssa Claudia CORAZZATO Fabio Luca BONALI Matr. Nr. 040546 This work is dedicated to my uncle Eugenio Marcora who led my interest in Earth Sciences and Astronomy during my childhood Abstract The aim of this PhD work is to study how earthquakes could favour new eruptions, focusing the attention on earthquake-induced static effects in three different case sites. As a first case site, I studied how earthquake-induced crustal dilatation could trigger new eruptions at mud volcanoes in Azerbaijan. Particular attention was then devoted to contribute to the understanding of how earthquake-induced magma pathway unclamping could favour new volcanic activity along the Alaska-Aleutian and Chilean volcanic arcs, where 9 seismic events with Mw ≥ 8 occurred in the last century. Regarding mud volcanoes, I studied the effects of two earthquakes of Mw 6.18 and 6.08 occurred in the Caspian Sea on November 25, 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the five years following the earthquakes. Results show that crustal dilatation might have triggered only 7 eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Dynamic rather than static strain is thus likely to have been the dominating “promoting” factor because it affected all the studied unrested volcanoes and its magnitude was much larger. -
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
Field Excursion Report 2010
Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010). -
"Tectonic Deformation Re Great Subduction Zone Earthquakes
_ _ _ _ _ _ _ _ _ _ ____ ._ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . 3 TECTONIC DEFORMATION RELATED TO GREAT SUBDUCTION ZONE EARTliQUAKES George Plafker, U.S. Geological Survey Abstract Vertical and horizontal displacements associated with plate convergence at consuming plate margins are the algebraic sum of interseismic, coseismic, and transient deformat- ions through a complete earthquake cycle on a time scale of tens to thousands of years. Elastic and permanent deformations accumulated during the interseismic period are a function of coupling across the megathrust interface between the underthrusting oceanic crust and the upper plate, and of the direction, rate, and duration of relative plate motions. Coseismic deformations result frbm seaward thrusting of the upper plate and depend upon dip of the megathrust, displacement along the megathrust, and the dip and displacements along subsidiary faults that may break through the upper plate. Transient postseismic displacements may occur that result from relatively slow elastic strain i release or creep deformation following an earthquake, | i Coseismic regional vertical displacements typically involve a central broad asymmetric downwarp elongate parallel to the arc with a flanking zone of marked uplift on the sea- | t ward side, and a zone of relatively minor uplift on the landward side. The major zones I of uplift and subsidence may extend from the trench to its associated volcanic are. In the 1960 Chile earthquake (Mw=9.5] deformation occurred for about 1,050 km parallel to the are over an area of 85,000+ km with shoreline vertical displacements to +5.7 m and -2.3 m. -
Recent Deformation Around Domuyo Volcano, Argentina Inferred from Time-Series Analyses of Insar Image
SVC45-22 JpGU-AGU Joint Meeting 2020 Recent Deformation around Domuyo Volcano, Argentina Inferred from Time-series Analyses of InSAR Image *Satoshi Miura1, Micaela Colavita1, Yu Morishita2 1. Graduate School of Science, Tohoku University, 2. Geospatial Information Authority of Japan Domuyo volcano, located in the southern Central Andes of Argentina (36°37’S-70°26’W), is a Plio-Pleistocene dome complex hosting at least 14 dacitic lava domes (https://volcano.si.edu/ volcano.cfm?vn=357067) and other monogenetic basaltic centers (Astort et al., 2019). It occupies a retroarc position and can be found in the northernmost region of Cordillera del Viento (36°35’ to 36° 45’S), a N-S trending basement block crossed and rise by the Cortaderas lineament which is believed to exert a major structural control for the Neogene-to-Quaternary tectonic processes of the area (Galleto et al., 2018). With a height of 4,702 m the volcano constitutes the highest mountain in the Argentinian Patagonia and is related to an intense geothermal activity field that has been described as a fault controlled system associate with graben-like structures and shoshonitic volcanism developed under extensional regime during the Quaternary (Galleto et al., 2018). Without any historical eruption recorded this volcano was considered dormant, but the recent geophysical analysis has demonstrated unrest ongoing at the volcano. According to Astort et al. (2019), it has been growing at a rate of 12 cm/yr, calculated from the InSAR data. Along with seismic, gravimetric and morphometric data, they studied the deformation around the volcano using Sentinel-1 InSAR images from both ascending and descending orbits, within the 2014-2018 period of time. -
The Alaska Earthquake Regional Effects
The Alaska Earthquake March 27,1964: Regional Effects This volume was published as separate chapters A-J GEOLOGICAL SURVEY PROFESSIONAL PAPER 543 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director CONTENTS [Letters designate the separately published chapters] ('1) Slide-induced waves, seiching, and ground fracturing caused by the earthquake of March 27, 1964, at Kenai Lake, Alaska, by David S. McCulloch. (B) Geomorphic effects of the earthquake of March 27, 1964. in the Martin-Bering Rivers area, Alaska, by Samuel J. Tuthill and Wilson M. Laird. (C) Gravity survey and regional geology of the Prince William Sound, epicentral region. Alaska, by J. E. Case, L). F. Barnes, George Plafker, and S. L. Robbins. (D) Geologic effects of the March 1964 earthquake and associated seismic sea waves on Kadiali and nearby islands, Alaska, by George Plafker and Reuben Kachadooria~~. (E) Effects of the earthquake of Marc11 27. 1964, in the Coljl~erRiver Basin area, Alaska, by Oscar J. Ferrians, Jr. (F) Ground breakage and associated effects ill the Cook Inlet area. Alaska, resulting from the JIarch 27, 1964, earthquake, by Helen L. Foster and Thor x. V. Karlstrorn. (G) Surface faults on Montague Island associated with the 1964 Alahka earthquake, by George Plaflter. (13) Erosion and deposition on a beach raised by the 19ki4 earthyuake. Jfontagne Island, Alaska, by 11. J. Kirkby and Anne V. Kirkby. (I) Tectonics d the March 27,1964, Alaska earthquake. by Grorge I'lafker. (J) Effects of the Alaska earbhquake of March 27. 1964, on shore processes and beach ~norphology, by Kirk W. -
Event History of the Santiago Area (Chile): the Sedimentological Archive of Lago Lo Encañado
Event History of the Santiago area (Chile): the sedimentological archive of Lago Lo Encañado Thomas Pille 1 2 Acknowledgements Om te beginnen zou ik graag mijn promotor, Prof. Dr. Marc De Batist, bedanken voor dit interessante onderwerp en voor de tijd die u hierin gestoken hebt, voor de snelle verbeteringen en de veelbetekende tips en commentaren. Ook Maarten, mijn begeleider, verdient een welgemeende bedanking. Terwijl je het dit jaar zelf heel druk had (een doctoraat dat afgemaakt moest worden, je eerste kindje, een nieuw onderzoeksproject) vond je toch altijd de tijd om mij bij te staan. Vooral je enthousiasme en je doorzettingsvermogen zullen me bijblijven. Voor ieder klein vraagje waarmee ik kwam waren we een paar uur bezig, en vertrok ik niet enkel met een antwoord, maar ook met een hoofd vol extra ideeën. Philipp, obwohl ich ursprünglich nicht dein Thesis-Student war, hast du in der Abwesenheit von Maarten sehr viel Zeit in mein Project investiert. Was mir vor allem gefallen hat war das du bei einer Frage nicht einfach die Antwort gegeben hast, sondern auch versucht hast mir das Prinzip dahinter zu erklären. Vielen Dank für al deine Hilfe, und für eine schöne Reise nach Brest. Ich wünsche dir alles Gute bei deiner Doktorarbeit. I would also like to thank the rest of the RCMG staff, especially to Thomas, Mario, Willem, Oscar, Stan, Katrien and Koen. You were always there to help me if needed, or for a chat during a coffee break. The RCMG is a fantastic working environment. Mijn familie heeft er dit jaar (en eigenlijk doorheen mijn 5-jarige universitaire carrier) altijd voor mij gestaan. -
Percepciones Y Analogías De Dos Geografías Desencontradas
Contretas Véliz, Claudio. Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío Vol. X, No. 10, enero-junio 2020 Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío On stoves and traffic lights: Perceptions and analogies of two uneven geographies. The case of the Callaqui volcano in the Pehuenche ancestral geography of Alto Biobío Recibido el 08 de mayo de 2020, aceptado el 08 de junio de 2020 Claudio Contreras Véliz* Resumen En Alto Biobío, área cordillerana del centro sur de Chile, habita parte del pueblo originario Pehuenche, cuyas comunidades o lob mapu, se emplazan alrededor del volcán Callaqui (‘Callavquen’ en la lengua local, que significa ‘celoso de los hom- bres’). El volcán en el último tiempo ha sido monitoreado por la institucionalidad vulcano- lógica y de emergencias del país (SERNAGEOMIN, ONEMI y Universidades), que busca generar planes y acciones para gestionar la alarma de una posible erupción, y advertir a través de un semáforo y escalas de riesgos, la peligrosidad que representa para la población local. No obstante, los pehuenches, habitantes ancestrales del área de influencia del volcán, han convivido con él de una manera intrínseca por genera- ciones, y le han asociado gran parte de sus actividades económicas, sociales y cultu- rales, otorgándole un sentido protector desde sus propias percepciones respecto del macizo montañoso. * Magíster en Geografía con mención en intervención ambiental y territorial de la Universidad Acade- mia de Humanismo Cristiano (PIIT-UAHC), [email protected] 73 Vol. -
Final Copy 2021 03 23 Ituarte
This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring differential erosion patterns using volcanic edifices as a proxy in South America Lia S. Ituarte A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master by Research in the Faculty of Science, School of Earth Sciences, October 2020.