Sitting on Top of the World

Total Page:16

File Type:pdf, Size:1020Kb

Sitting on Top of the World Notes from Mineralogy lecture on the chemistry and structure of various minerals (pyroxenes and amphiboles) that could crystallize from slowly cooling ers of lava flows and ash flows basalt magma. The different that built up the mountain. minerals reflect the changing In the regions exposed by conditions (temperature and erosion of these half-million- composition) in a magma chamber deep in the earth's year-old volcanoes, Dr. Wulff is crust. able to sample the lavas that poured out of the vents and built up the volcano, flow upon flow. “Sampling each flow allows us to evaluate the separate cycles of eruptive activity. By looking at the mineral compositions and whole- rock chemistry of the ancient PHOTO BY RYAN FILLOON Andrew Wulff and several undergraduate students take a break from sampling lavas, we can tell something about lava flows to plan the next traverse, under the imposing edifice of Volcan Cerro how the volcano has behaved over Azul in the Chilean Andes. time. This means we can make more accurate predictions of what will happen in the future,” he said. Two of his WKU undergraduate students are working with Chilean lava samples to determine whether SITTING ON TOP the volcanic complex is currently in a period of rapid growth or slower growth. “By compiling all these eruptive events into a composite OF THE WORLD history, we can get a good idea of how this complex behaves, and we can model individual eruptive B Y T O M M Y N E W T O N episodes. That’s a different approach from what most others are doing.” SOMEHOW IT SEEMS FITTING THAT Dr. Wulff expects to complete MINERALOGIST ANDREW WULFF WOULD PHOTO BY RYAN FILLOON research at the DGCA complex in two His work has focused on Wulff poses on the edge of the vent at Volcan Quizapu, site of two of the largest his- BE SITTING IN AN OFFICE ON TOP OF THE torical eruptions in South America. The volcano Descabezado Grande looms behind. to three years then continue his work unraveling the eruptive history of a little farther to the north in the HILL. AFTER ALL, THE WELL-TRAVELED several large volcanic complexes in Andes. VOLCANO RESEARCHER HAS SPENT MUCH the Andes Mountains in Chile, but he “Traditionally volcanologists have OF HIS CAREER SITTING ON TOP OF THE also conducts research on volcanoes The Descabezado Grande-Cerro minutes, an eruption could knock it thought that every volcano was a WORLD. in Java along with his numerous other ON Azul (DGCA) volcanic complex in the out.” separate entity and they weren’t geologic interests. Dr. Wulff, an assistant professor in Chilean Andes was the site of two of That’s where Dr. Wulff’s research related in any way. This is unsatisfy- Dr. Wulff seeks projects that can NNA HARM NNA Western Kentucky University’s Depart- the largest eruptions in South Ameri- has an impact for the government, ing because it suggests that there are involve undergraduate students to ment of Geography and Geology, has can history, the last one in the 1930s, geologists, and people of Chile. no large-scale controls on volcanic teach them research skills and to been studying volcanoes since work- but a billion-dollar hydroelectric plant “When we’re looking at volcanoes behavior,” he said. “We’re finding out ing at Crater Lake National Park after expose them to different cultures. PHOTO BY LADO BY PHOTO is being built within ten kilometers of in the Andes, we have a rare opportu- that the comprehensive sampling “That kind of involvement is what his sophomore year in college. His the volcanoes. nity because the rates of both uplift we’re doing is reaping benefits in makes the academic experience spe- doctoral work at the University of “That seems foolish and it is,” and erosion are quite high, exposing terms of identifying some of these Wulff uses a polarizing microscope to identify different cial,” he said. “Once students leave minerals and textures in lava samples from the Chilean Massachusetts gave him necessary Dr. Wulff said. “They didn’t make any parts of volcanoes that normally you controls and by allowing us to com- here, unless they get an extraordinary Andes. Digital photomicrographs can then be used as analytical training and experience, exceptions for the fact they were can’t see,” said Dr. Wulff, who pare eruptive histories.” "maps" for further investigations using the SEM and job, they’re not going to have the and he continued that research at building the plant under these big received his bachelor’s degree at The area where he conducted his electron microprobe. time or the resources to explore a Whittier College in California, where volcanoes — simply because the last Oberlin College and his master’s at doctoral research is about twenty new part of the world in this way, he served as chairman of the Geology big eruptions were sixty years ago. the University of Maryland. For kilometers from his current research with the same measure of freedom.” Department, and at the University of This hydroelectric plant is projected example, one large sector collapse site and he’s finding similar lavas and Or to make a difference in the Iowa before coming to Western in the to be responsible for one-quarter of (landslide) removed the south side of results. “We’re starting to think that lives of people living in the shadow of fall of 2002. Chile’s electrical power, and in five Volcan Cerro Azul, revealing the lay- every volcano is not a mountain unto a volcano. 12 The Western Scholar | Spring 2004 Western Kentucky University 13 He’s also bringing his itself. There really are larger scale tectonic expertise on volcanoes factors that may similarly influence entire and other geologic issues segments of a volcanic arc,” he said. After — mineralogy, petrology, we identify these large-scale factors, we can and medical geology — study them closely and then consider other into the classroom. areas that might be influenced by the same Wulff’s geology back- factors.” ground includes working That means the research under way in with a urologist to study ON Chile may provide clues to volcanic activity the mineralogical ARM in the Cascade Mountains of the northwest composition of kidney United States where Mount St. Helens stones, studying sedi- erupted two decades ago. “If there are long- ments in Chesapeake term, large-scale factors that control TO BY LADONNA H LADONNA BY TO Bay, studying the PHO eruptions, our work in the Andes may pro- distribution and health vide us with a predictive tool for volcanic effects of radon in activity in other regions, such as the Maryland and Samples of lava flows from a volcanic complex in Chile are cut into slabs and Cascades. Perhaps Mount St. Helens was Pennsylvania, and made into thin sections for microscope investigations. Portions of each sample telling us that the entire region is very active, working for the are crushed, powdered, and melted for analysis of major and trace element com- position, for isotope analysis, and age determinations. and that we need to monitor the other volca- Maryland Geological noes closely also,” he said. Survey and for a gold A recent increase in large geyser exploration firm in eruptions and in the temperature of soils and Utah and Idaho. “They didn’t make any exceptions groundwater in Yellowstone National Park He is continuing A minor eruption of Villarrica volcano shows lava flowing down the snow-covered slope. could even be related to what’s happening in his research of radon, PHOTO BY ANDREW WOLFF for the fact they were building the the Cascades, Dr. Wulff said. an issue for Southcentral plant under these big volcanoes -- “The idea is, if we can figure out what’s Kentucky’s karst region; the happening in the Andes where everything is medical implications of breathing air- simply because the last big remarkably well-exposed, then we can take borne mineral and chemical “Western’s Department of Geogra- The scientific method, he said, is those models and bring them home to the phy and Geology is well-positioned to eruptions were sixty years ago.” particulates; the connection between designed to train people to make Cascades, Alaska, Japan, and other geology and archaeology, a key have a significant impact on research sense of the unknown. “When you subduction-related volcanic regions.” feature of his research on human and on student achievement,” he get a science degree, you should be migration in Java; and his work on said. Undergraduate students have equipped in a different way to the geochemistry of chert and obsid- the opportunity to work alongside handle something entirely unknown ian artifacts, which reveal clues about faculty mentors, to participate in to you,” he said. “You should have A view into the crater of Villarrica volcano in migration patterns and trading routes regional and national conferences discovered a discipline that allows Southern Chile shows a pool of lava. of Native Americans. and to operate analytical equipment you to systematically explore the “That’s what is fun for me, where like a scanning electron microscope unfamiliar and the familiar in the geology impacts all these other or an X-ray diffractometer. For world around you. The analytical things,” he said. “The idea is that we example, two geology majors just and observational skills that stu- can get students here to understand presented their research at a national dents develop working on these that geology really has a global meeting of the Geological Society of types of projects will make them impact on other subjects of study.
Recommended publications
  • University of Nevada, Reno a Study of Pleistocene Volcano Manantial
    University of Nevada, Reno A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Heather Winslow Dr. Philipp Ruprecht, Thesis Advisor May 2018 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by HEATHER WINSLOW Entitled A Study Of Pleistocene Volcano Manantial Pelado, Chile: Unique Access To A Long History Of Primitive Magmas In The Thickened Crust Of The Southern Andes be accepted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Philipp Ruprecht, Ph.D., Advisor Wenrong Cao, Ph.D., Committee Member Adam Csank, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2018 i ABSTRACT Textural and geochemical analysis of lavas and tephra from a poorly studied, glacially dissected, mafic, stratocone, Manantial Pelado, in the Southern Andean Volcanic Zone was collected to characterize the volcano’s petrogenesis and assess its primitive nature. Manantial Pelado lies within the transitional segment of the Southern Volcanic Zone (35.5°S) amidst thickened crust (~55 km) while surrounded by extensive silicic volcanism such as the Descabezado Grande-Cerro Azul Volcanic Complex. How mafic magmas reached the surface through thickened continental crust is a larger question at hand, but prior to addressing broader processes at work, initial geochemical characterization is necessary. Understanding the full extent of its primitive nature is crucial for broader insight of proximal vent interactions and relationships as well as insight towards magma genesis.
    [Show full text]
  • Assessment of Exploitable Geothermal Resources Using Magmatic Heat Transfer Method, Maule Region, Southern Volcanic Zone, Chile
    GRC Transactions, Vol. 36, 2012 Assessment of Exploitable Geothermal Resources Using Magmatic Heat Transfer Method, Maule Region, Southern Volcanic Zone, Chile Diego Aravena and Alfredo Lahsen Departamento de Geología, Universidad de Chile, Centro de Excelencia en Geotermia de los Andes (CEGA) Keywords ment, and establishes a semi-logarithmic correlation between the Resource assessment, Maule, Southern Volcanic Zone, vol- resources and the volume of magma emplaced in the upper crust. canic arc, magmatic heat transfer, volcanic system, Monte Other heat-in-place techniques have been developed for estimat- Carlo, Chile ing geothermal resource size (e.g., Williams et al., 2008; Garg and Combs, 2010; 2011), but these methods are better suited for explored and identified geothermal systems. Abstract The mean calculated resources for the Maule region are ~1,400 MWe. These values are distributed between five main eruptive The Andean volcanic arc includes over 200 active strato- complexes with individual values that range from 177 to 392 volcanoes and at least 12 giant caldera systems. Nevertheless, MWe for 30 years. there is not a standard procedure for estimating geothermal resources associated with unexplored volcanic systems. The 1. Introduction study area corresponds to the main cordillera in the Maule re- gion, Chile, along the Southern Volcanic Zone (SVZ) between The Andean volcanic arc includes over 200 potentially active 34.8º and 36.5º S. The tectonic style and magma emplacement Quaternary volcanoes, and at least 12 giant caldera/ignimbrite model of this zone favors the occurrence of volcanic associated systems, occurring in four separate segments referred to as the geothermal systems, due to the presence of shallow magmatic Northern (ZVN; 2ºN-5ºS), Central (ZVC; 14-28ºS), Southern chambers and Cenozoic thrust faults that generate secondary (ZVS; 33-46ºS) and Austral (ZVA; 49-55ºS) Volcanic Zones.
    [Show full text]
  • Early British Ascents in the Andes (1831-1946)
    61 Early British Ascents in the Andes (1831-1946) Evelio Echevarria Plate 27 The purpose of this short contribution is to summarize those British ascents that took place in the Andes of South America, from 1831, year of the first British Andean ascent, until 1946. Most of these ascents are probably known to the readers of this journal, but some may be wholly new. A few ascents that for several reasons should no longer be included in this chronicle are discussed at the end. Readers who may feel inclined to study this survey are asked to maintain a proper sense of proportions and of time. A peak that 30 years ago demanded a long and frustrating approach may today be reached in a few hours of driving; a nOOm peak in S Chile has far more glaciation than a 5700m mountain of the Peruvian desert; what was considered to be a difficult ascent some seven decades ago may be regarded today as an easy one-day excursion for a hiker; and a mountain at present devoid of snow may have been snowclad until the end of last century. And so on. In the following list, names of climbers, peaks climbed (with height and location) and exact date of ascent are given whenever possible. A short comment is added when it may provide some useful or interesting additional information. Hall, 1831. Col Francis Hall joined French explorer Jean-Baptiste Boussing­ ault to attempt several peaks in the Ecuadorian Andes, but only one actual ascent took place, that of Pichincha (4791m), in the Cordillera Occidental.
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]
  • Supplementary Material
    Supplementary Material In the following, the relevant data sets and test results, together with the corresponding figures, are shown for each volcano, together with a short comment on the volcano characteristics and the fit quality. The names adopted for the repose time fit parameters are exponential distribution: Weibull distribution: log-logistic distribution: Tupungatito year VEI year VEI year VEI Tupungatito Volcano is located in the high Andes east of Chile's capital 1829 2 1925 2 1961 2 Santiago, which is inhabited by six million people and by far Chile's 1835 2? 1946 2 1964 2 most important industrial and commercial centre. The volcano built up 1861 2 1958 2 1968 2 since Pleistocene times in the Nevado Sin Nombre Caldera (Siebert and 1889 2 1959 2 1980 2 Simkin, 2002), its recent activity consists of 18 smaller historical 1897 2 1959 2 1986 1 eruptions, which produced a total erupted volume of about 6 km³ 1901 2 1960 2 1987 2 (Sruoga et al., 1993). 1907 2 2 fit A t k d x0 p ²/DoF R KS-diff. AICc exp. 15.17±0.36 10.57±0.39 0.384 0.978 0.097 14.0 16± 0 9.97±0.27 0.442 0.974 0.095 14.0 WB 15.37±0.98 0.0970 0.9297 0.364 0.975 0.108 15.1 ±0.009 ±0.092 16± 0 0.1023 0.8811 0.356 0.975 0.126 13.3 ±0.003 ±0.039 log 15.04±0.51 6.881 1.494 0.445 0.976 0.134 17.1 ±0.470 ±0.097 16± 0 6.140 1.385 0.479 0.973 0.177 16.5 ±0.247 ±0.072 KS-threshold: 0.328 all fits pass the K-S-test The difference in AICc for fixed vs.
    [Show full text]
  • Evolución Geomorfológica Del Valle Del Indio, Región Del Maule, Chile: Procesos Glaciales Y Volcánicos
    UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS QUÍMICAS DEPARTAMENTO CIENCIAS DE LA TIERRA EVOLUCIÓN GEOMORFOLÓGICA DEL VALLE DEL INDIO, REGIÓN DEL MAULE, CHILE: PROCESOS GLACIALES Y VOLCÁNICOS Memoria para optar al Título de Geóloga Paulina Victoria Henry Osorio Profesor Patrocinante: Dr. Joaquín Alejandro Cortés Aranda Profesionales Guía: Dra. María Hinia Mardones Flores Sr. Pablo Antonio Salas Reyes Profesores Comisión: MSc. Abraham Elías González Martínez Dra. Verónica Laura Oliveros Clavijo CONCEPCIÓN, 2019 A mi familia. ÍNDICE RESUMEN Página 1. INTRODUCCIÓN ………………………………………………………... 1 1.1. Presentación del problema ………………………………………… 1 1.2. Hipótesis ……………………………………………………………….. 2 1.3. Objetivos ………………………………………………………………. 2 1.3.1. Objetivo general ………………………………………………….. 2 1.3.2. Objetivos específicos ……………………………………………… 2 1.4. Metodología …………………………………………………………… 3 1.4.1. Etapa de gabinete pre-terreno …………………………………… 3 1.4.2. Etapa de terreno ………………………………………………….. 3 1.4.3. Etapa de gabinete post-terreno ………………………………….. 3 1.5. Ubicación y accesos ………………………………………………….. 4 1.6. Trabajos anteriores …………………………………………………. 5 1.7. Marco teórico …………………………………………………………. 7 1.8. Agradecimientos ……………………………………………………… 7 2. REVISIÓN BIBLIOGRÁFICA ……………………………………….. 9 2.1. Síntesis estratigráfica ………………………………………………. 9 2.1.1. Formación Abanico (Eoceno superior- Mioceno inferior) …….. 9 2.1.2. Formación Cola de Zorro (Plioceno inferior- Pleistoceno inferior) …………………………………………………………... 9 2.1.3. Depósitos cuaternarios recientes ………………………………... 10 2.2. Zona Volcánica
    [Show full text]
  • Crustal Contributions to Arc Magmatism in the Andes of Central Chile
    Contributions to Contrib Mineral Petrol (1988) 98:455M89 Mineralogy and Petrology Springer-Verlag 1988 Crustal contributions to arc magmatism in the Andes of Central Chile Wes Hildreth 1 and Stephen Moorbath 2 1 USGS, Menlo Park, California 94025, USA 2 Department of Earth Sciences, University of Oxford, OX1 3PR, UK Abstract. Fifteen andesite-dacite stratovolcanoes on the vol- ascending magmas, but the base-level geochemical signature canic front of a single segment of the Andean arc show at each center reflects the depth of its MASH zone and along-arc changes in isotopic and elemental ratios that dem- the age, composition, and proportional contribution of the onstrate large crustal contributions to magma genesis. All lowermost crust. 15 centers lie 90 km above the Benioff zone and 280 _+ 20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and sea- floor are nearly constant along the segment. Nonetheless, Introduction from S to N along the volcanic front (at 57.5% SiO2) K20 rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Despite growing acceptance that several mantle, crustal, Ce from 25 to 50 ppm, whereas FeO*/MgO declines from and subducted reservoirs contribute to arc magmas along >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part continental margins, there is still no real consensus concern- reflecting suppression of HREE enrichment by deep-crustal ing the proportions of the various contributions nor con- garnet. Rb, Cs, Th, and U contents all rise markedly from cerning the loci and mechanisms of mixing among source S to N, but Rb/Cs values double northward opposite components or among variably evolved magma batches.
    [Show full text]
  • A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P
    Land of the living Mountains A geo-referenced visual guide to 70 Chilean volcanoes Photography by Gerard Prins Mission Impossible Corcovado volcano (p. 98) Ever since, in 1990, I laid eyes on “my first volcano” – Vol- that will likely take the rest of my life and still be grossly in- Additional handicaps are that I’m no mountaineer nor an ex- cán Villarrica in the Chilean South – I have been impressed by complete. pert by any measure and, thus, constantly fear to be wrong. their beauty as well as by the imposing forces that lie behind Especially because even detailed maps of the Chilean In- their creation, and have, willingly or unwillingly, pointed In the process, I have picked up some passing knowledge stituto Geográfico Militar – or Google Earth for that mat- my camera at them over and again. on geology and volcanism. However, “passing” is the opera- ter – provide precious little info on mountain names and Unwillingly, because in a country that is part of the Pacific tive word here, which is why I am relying on shameless (but locations. Ring of Fire and counts with over 600 volcanic phenomena, often edited) copy/paste from the Global Volcanism Program Moreover, I have been chasing the González-Ferrán Chil- it is virtually impossible to look towards the Andes Cordill- Web site to textually accompany the images, and generate at ean volcano “Bible” for the last ten years or so, to no avail. era and not capture something that is somehow related with least some sort of context. Still, I hope this document will be a source of entertain- the incessant subduction of the Nazca Plate under the South Although this presentation visually documents roughly ment and reason enough for travellers to either get a good tour American- and Antarctica Plates.
    [Show full text]
  • Plan Regulador Intercomunal De Talca
    PLAN REGULADOR INTERCOMUNAL DE TALCA SEREMI MINVU REGIÓN DEL MAULE INFORME DE RIESGOS Edición 1 Septiembre 2019 Desiderio Alejandro Velis Cabello Geógrafo Especialista en riesgos Informe de Riesgos Fuente Imágenes portada: Registro URBE 2018 ESTUDIO PLAN REGULADOR INTERCOMUNAL DE TALCA, SEREMI MINVU REGIÓN DEL MAULE 2 Informe de Riesgos ÍNDICE 1 ESTUDIO DE RIESGOS NATURALES Y PROTECIÓN AMBIENTAL .................... 7 1.1 Introducción ..................................................................................................................... 7 1.2 Objetivos del estudio ....................................................................................................... 7 1.3 Área de estudio ............................................................................................................... 8 1.4 Alcances y limitaciones ................................................................................................... 8 1.5 Marco jurídico .................................................................................................................. 9 2 Línea de base medio físico y natural .................................................................. 12 2.1 Clima ............................................................................................................................. 12 2.2 Hidrografía ..................................................................................................................... 17 2.3 Hidrogeología ...............................................................................................................
    [Show full text]
  • Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
    Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers.
    [Show full text]
  • Catalogue of Satellite Photography of the Active Volcanoes of the World
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) LA-6279-1 Informal Report UC-11 Reporting Date: March 1976 Issued: March 1976 63AS 1H Catalogue of Satellite Photography of the Active Volcanoes of the World by Grant Heiken IO5\MAlofIamoS scientific laboratory of the University of California LOS ALAMOS, NEW MEXICO 87545 An Affirmative Action/Equal Opportunity Employer UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W7185 •ENO. DS DISTRIBUTION OF THI S DOCUMENT IS UNLIMITED RW^]CavSt.Y.:..wyr^trlaF....^ewa..k^. ,..a_,. zv.ieJ SR .t ^_...,^.. ... ..a.,, .pRsnxa3.s .;.., ., .^... _.. .. _.. - ._. ... .-.^., .r.. ,°1 , ;a ^ Kul h Ij t: z. u ;' i a t 1 n e (^1 BLANKPA GE d 1 Ati.. j: 3 h ^ YC f .w 5 Y6t..a.>. •gym ... .. [...a...... ,.I .. rt... \ ,. .. .. fi 1 L 4 t Earlier stages of this compilation were made while the i) author was employed by the National Aeronautics and Space i Administration.
    [Show full text]
  • PLAN ESPECÍFICO DE EMERGENCIA POR VARIABLE DE RIESGO – ERUPCIONES VOLCÁNICAS V0.0 Página 1 De 46 Fecha: 01-02-2018
    OFICINA NACIONAL DE EMERGENCIA PLANTILLA DEL MINISTERIO DEL INTERIOR Y SEGURIDAD PÚBLICA VERSION: 0.0 PLAN ESPECÍFICO DE EMERGENCIA POR VARIABLE DE RIESGO – ERUPCIONES VOLCÁNICAS v0.0 Página 1 de 46 Fecha: 01-02-2018 PLAN ESPECÍFICO DE EMERGENCIA POR VARIABLE DE RIESGO Erupciones Volcánicas Nivel Nacional OFICINA NACIONAL DE EMERGENCIA PLANTILLA DEL MINISTERIO DEL INTERIOR Y SEGURIDAD PÚBLICA VERSION: 0.0 PLAN ESPECÍFICO DE EMERGENCIA POR VARIABLE DE RIESGO – ERUPCIONES VOLCÁNICAS v0.0 Página 2 de 46 Fecha: 01-02-2018 INDICE 1. Introducción 3 1.1. Antecedentes 3 1.2. Objetivos 1.2.1. Objetivo General 3 1.2.2. Objetivos Específicos 3 1.3. Cobertura, Amplitud y Alcance 4 1.4. Activación del Plan 4 1.5. Relación con Otros Planes 5 2. Descripción de la Variable de Riesgo 5 3. Sistema de Alertas 5 3.1. Sistema Nacional de Alertas 5 3.2. Alertamiento Organismos Técnicos 6 4. Roles y Funciones 8 5. Coordinación 13 5.1. Fase Operativa - Alertamiento 13 5.2. Fase Operativa - Respuesta 15 5.3. Fase Operativa - Rehabilitación 18 6. Zonificación de la Amenaza 19 6.1. Zonificación Áreas de Amenaza 19 6.2. Proceso de Evacuación (Niveles Regionales, Provinciales y Comunales) 22 7. Comunicación e Información 22 7.1. Flujos de Comunicación e Información 22 7.2. Medios de Telecomunicación 24 7.3. Información a la Comunidad y Medios de Comunicación 24 8. Evaluación de Daños y Necesidades 24 9. Implementación y Readecuación del Plan 25 9.1. Implementación 25 9.2. Revisión Periódica 26 9.3. Actualización 26 10. Anexos 27 10.1.
    [Show full text]