Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for Their Potential to Host Electricity-Grade Reservoirs

Total Page:16

File Type:pdf, Size:1020Kb

Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for Their Potential to Host Electricity-Grade Reservoirs DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I Final Research Performance Report Federal Agency and Organization: DOE EERE – Geothermal Technologies Program Recipient Organization: ATLAS Geosciences Inc DUNS Number: 078451191 Recipient Address: 3372 Skyline View Dr Reno, NV 89509 Award Number: DE-EE0006725 Project Title: Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs Project Period: 10/1/14 – 10/31/15 Principal Investigator: Lisa Shevenell President [email protected] 775-240-7323 Report Submitted by: Lisa Shevenell Date of Report Submission: October 16, 2015 Reporting Period: September 1, 2014 through October 15, 2015 Report Frequency: Final Report Project Partners: Cumming Geoscience (William Cumming) – cost share partner GEODE (Glenn Melosh) – cost share partner University of Nevada, Reno (Nick Hinz) – cost share partner Western Washington University (Pete Stelling) – cost share partner DOE Project Team: DOE Contracting Officer – Laura Merrick DOE Project Officer – Eric Hass Project Monitor – Laura Garchar Signature_______________________________ Date____10/16/15_______________ *The Prime Recipient certifies that the information provided in this report is accurate and complete as of the date shown. Any errors or omissions discovered/identified at a later date will be duly reported to the funding agency. Page 1 of 152 DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity- Grade Reservoirs Lisa Shevenell, Mark Coolbaugh, Nick Hinz, Pete Stelling, Glenn Melosh, William Cumming A Global Perspective of Volcanic Arc Geothermal Play Fairway Analysis Using knowledge from abroad to target US prospects October 16, 2015 Page 2 of 152 DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I EXECUTIVE SUMMARY This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production. To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public. All work discussed in this report was conducted within the 12 month period of Phase I of this project. These activities included data collection, evaluation, correlations and weightings, fairway and favorability modeling and mapping, prediction of blind systems, and uncertainty analysis to estimate errors associated with model predictions. The project consisted of a large data compilation and collection effort using existing digital databases and data entry from hundreds of published sources. Data plots and summaries were constructed to evaluate trends, correlations and assign both data-driven and expert-driven weighting factors to individual data types. These weighting factors were included in the numerical modeling of the probability of encountering a productive geothermal system at each of the 100 volcanic centers in the Cascade and Aleutian volcanic arcs. Other data types that may be important were not available in this project. A worldwide geothermal well database was identified but was not available within the budget of the current project. Inclusion of well deliverabilities and lithologies in this database have the potential to improve this fairway analysis. Similarly, a lack of available fumarole gas geothermometry limited predictive capabilities in some areas, and increased sharing of that data would help improve model accuracies. The project team modeled play fairways, geothermal favorabilities, and associated errors/uncertainties, and combined them to produce fairway and favorability models. The favorability model was used to modify play fairway results by incorporating direct evidence from springs, wells and surface manifestations. The models provide probabilities of occurrence of power-grade geothermal systems using relationships among structure, tectonics, volcanology, fluid geochemistry and surface manifestations. The model results include a ranking of all 100 sites and a determination of which sites are most prospective, and which are best suited for more detailed direct data collection based on geopolitical criteria. All results are presented in table and map format, noting development constraints associated with each volcanic center based on land classification and transmission issues. Page 3 of 152 DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I Among many tested relationships, five main correlations between geothermal production and geological parameters have been identified and/or clarified during the study. These are: 1) production potential is positively correlated with extensional and transtensional environments and less well correlated with more compressive environments, based on both world-wide and local assessments of stress and strain; 2) production potential increases where the relative plate motion angle of obliqueness (and/or arc-parallel velocity of the under-riding plate) is relatively high; 3) production is greater in systems hosted by Pleistocene calderas relative to Holocene calderas or non-caldera-hosted systems; 4) favorable predictors of geothermal potential include high Quaternary fault scarp densities and high slip rates on faults, and; 5) extensional structural settings favor electrical production, including pull-aparts, step-overs, accommodation zones, and displacement transfer zones. These relationships are used to define a comprehensive list of structural play fairway types. Several criteria were tested but not used in the analysis in the Cascades or Aleutians because of a lack of correlation with geothermal production. These included criteria widely expected to be correlated with production, including the volume of volcanic rock in each center, the presence and number of domes and other flank vents, eruptive chemistry and the recency of eruptive activity. These criteria turned out to not have a significant correlation. Correlated and uncorrelated criteria in this study will provide guidance for geothermal exploration efforts worldwide. The project has clearly defined relative favorabilities along the Cascade and Aleutian arcs. The best fairway potential in the Cascades lies near its southern end where extensional processes related to Basin and Range extension overlap the heat corridor of the Cascade arc. In the Aleutians, the geothermal fairway improves noticeably west of the transition from continental to oceanic crust near Akutan and Makushin; such an improvement in favorabilities is related to more complex structural settings that may in turn be related to more complex deformational processes associated with changes in crustal rheologies. Four sites in the Cascades (Lassen, Newberry, Olallie Butte, and Shasta) show probabilities of >25% based on favorability model results, with Lassen and parts of Shasta being unavailable for development based on land use designations. Six of the centers in the Aleutians (Akutan, Makushin, Recheschnoi, Little Sitkin, Korovin, and Adagdak) have probabilities >25%, with all nominally available for development based on land status considerations. Although these and many other Aleutian volcanic centers could be developable based on technical considerations, most will likely not be developed unless/until market and/or population dynamics change (except for at Akutan, which is currently being evaluated in other projects, Makushin, and possibly Korovin, each of which have small population bases and industries to support a power market). Most of the other Aleutians volcanic centers are remote with no population or access to transmission. Page 4 of 152 DE-EE0006725 ATLAS Geosciences Inc FY2016, Final Report, Phase I Average scores in the fairway model for the Cascades and Aleutians are similar to the average scores calculated for producing volcanic arc centers outside the U.S. However, geothermal power plants and thermal manifestations indicative of potential for geothermal production are more common in the arcs outside the U.S. Since 2 or possibly 3 volcanic centers in the Cascades (Lassen, Medicine Lake, and possibly Meager) could produce electrical energy under more favorable market circumstances, and if 2-3 systems in the Aleutians are likely power-capable (e.g., Akutan, Makushin) but haven’t been developed because of remoteness and/or cost, then approximately 5% of the volcanic centers in both the Cascades and Aleutians could be considered developable based on known data. This is less than the world arc average of 10% of centers that are either producing electricity or have been shown to be power-capable. The discrepancy between the fairway scores in the U.S. and the relative lack of direct evidence of hydrothermal activity in the U.S. arcs suggests that either there are more blind systems or that important conceptual issues are not constrained in the current analysis.
Recommended publications
  • Plant Diversity and Composition Changes Along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon
    diversity Article Plant Diversity and Composition Changes along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon Pablo Lozano 1,*, Omar Cabrera 2 , Gwendolyn Peyre 3 , Antoine Cleef 4 and Theofilos Toulkeridis 5 1 1 Herbario ECUAMZ, Universidad Estatal Amazónica, Km 2 2 vía Puyo Tena, Paso Lateral, 160-150 Puyo, Ecuador 2 Dpto. de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110-104 Loja, Ecuador; [email protected] 3 Dpto. de Ingeniería Civil y Ambiental, Universidad de los Andes, Cra. 1E No. 19a-40, 111711 Bogotá, Colombia; [email protected] 4 IBED, Paleoecology & Landscape ecology, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, The Netherlands; [email protected] 5 Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, P.O.Box, 171-5-231B Sangolquí, Ecuador; [email protected] * Correspondence: [email protected]; Tel.: +593-961-162-250 Received: 29 April 2020; Accepted: 29 May 2020; Published: 8 June 2020 Abstract: The paramo is a unique and severely threatened ecosystem scattered in the high northern Andes of South America. However, several further, extra-Andean paramos exist, of which a particular case is situated on the active volcano Sumaco, in the northwestern Amazon Basin of Ecuador. We have set an elevational gradient of 600 m (3200–3800 m a.s.l.) and sampled a total of 21 vegetation plots, using the phytosociological method. All vascular plants encountered were typified by their taxonomy, life form and phytogeographic origin. In order to determine if plots may be ensembled into vegetation units and understand what the main environmental factors shaping this pattern are, a non-metric multidimensional scaling (NMDS) analysis was performed.
    [Show full text]
  • Elaboración De Cartografía Geológica Y Geomorfológica De Cinco Subcuencas De La Parte Alta De La Cuenca Alta Del Río Nahualate
    ELABORACIÓN DE CARTOGRAFÍA GEOLÓGICA Y GEOMORFOLÓGICA DE CINCO SUBCUENCAS DE LA PARTE ALTA DE LA CUENCA ALTA DEL RÍO NAHUALATE María Mildred Moncada Vásquez Marzo 16, 2017 ÍNDICE 1. INTRODUCCIÓN ...................................................................................................................................... 6 2. OBJETIVOS .............................................................................................................................................. 7 3. ANTECEDENTES ...................................................................................................................................... 7 4. ENCUADRE TECTÓNICO REGIONAL ........................................................................................................ 9 5. CONTEXTO VOLCÁNICO REGIONAL ......................................................................................................10 6. METODOLOGÍA .....................................................................................................................................12 7. CARTOGRAFÍA GEOLÓGICA ..................................................................................................................16 7.1 Procesos y unidades litológicas asociadas a Calderas Atitlán ......................................................16 7.1.1 Rocas graníticas (Tb - Tbg) ..........................................................................................................16 7.1.2 Toba María Tecún (Tmt) .....................................................................................................20
    [Show full text]
  • Tungurahua Volcano, Ecuador: Structure, Eruptive History and Hazards
    Journal of Volcanology and Geothermal Research 91Ž. 1999 1±21 www.elsevier.comrlocaterjvolgeores Tungurahua Volcano, Ecuador: structure, eruptive history and hazards Minard L. Hall a,1, Claude Robin b,), Bernardo Beate c, Patricia Mothes a,1, Michel Monzier a,d,2 a Instituto Geofõsico,ÂÂ Escuela Politecnica Nacional, P.O. Box 1701-2759, Quito, Ecuador b Institut de Recherches Pour le DeÂÕeloppement() IRD, ex-ORSTOM , UR 6, OPGC, 5 Rue Kessler, 63038, Clermont-Ferrand, France c Departamento de Geologõa,ÂÂÂ Facultad de Geologõa, Minas y Petroleos, Escuela Politecnica Nacional, P.O. Box 1701-2759, Quito, Ecuador d Institut de Recherches pour le DeÂÕeloppement() IRD, ex-ORSTOM , UR 6, A.P. 17-11-6596, Quito, Ecuador Accepted 25 March 1999 Abstract Tungurahua, one of Ecuador's most active volcanoes, is made up of three volcanic edifices. Tungurahua I was a 14-km-wide andesitic stratocone which experienced at least one sector collapse followed by the extrusion of a dacite lava series. Tungurahua II, mainly composed of acid andesite lava flows younger than 14,000 years BP, was partly destroyed by the last collapse event, 2955"90 years ago, which left a large amphitheater and produced a ;8-km3 debris deposit. The avalanche collided with the high ridge immediately to the west of the cone and was diverted to the northwest and southwest for ;15 km. A large lahar formed during this event, which was followed in turn by dacite extrusion. Southwestward, the damming of the Chambo valley by the avalanche deposit resulted in a ;10-km-long lake, which was subsequently breached, generating another catastrophic debris flow.
    [Show full text]
  • Chilean Notes, 1962-1963
    CHILEAN NOTES ' CHILEAN NOTES, 1962-1963 BY EVELIO ECHEVARRfA C. (Three illustrations: nos. 2I-23) HE mountaineering seasons of I 962 and I 963 have seen an increase in expeditionary activity beyond the well-trodden Central Andes of Chile. This activity is expected to increase in the next years, particularly in Bolivia and Patagonia. In the Central Andes, \vhere most of the mountaineering is concen­ trated, the following first ascents were reported for the summer months of I962: San Augusto, I2,o6o ft., by M. Acufia, R. Biehl; Champafiat, I3,I90 ft., by A. Diaz, A. Figueroa, G. and P. de Pablo; Camanchaca (no height given), by G. Fuchloger, R. Lamilla, C. Sepulveda; Los Equivo­ cados, I3,616 ft., by A. Ducci, E. Eglington; Puente Alto, I4,764 ft., by F. Roulies, H. Vasquez; unnamed, I4,935 ft., by R. Biehl, E. Hill, IVI. V ergara; and another unnamed peak, I 5,402 ft., by M. Acufia, R. Biehl. Besides the first ascent of the unofficially named peak U niversidad de Humboldt by the East German Expedition, previously reported by Mr. T. Crombie, there should be added to the credit of the same party the second ascent of Cerro Bello, I7,o6o ft. (K. Nickel, F. Rudolph, M. Zielinsky, and the Chilean J. Arevalo ), and also an attempt on the un­ climbed North-west face of Marmolejo, 20,0I3 ft., frustrated by adverse weather and technical conditions of the ice. In the same area two new routes were opened: Yeguas Heladas, I5,7I5 ft., direct by the southern glacier, by G.
    [Show full text]
  • Una Teorãła Sobre El Origen De Los Peces De Xiloã€
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Investigations of the Ichthyofauna of Nicaraguan Lakes Papers in the Biological Sciences 1976 Una teoría sobre el origen de los peces de Xiloà Jaime Villa Cornell University Follow this and additional works at: https://digitalcommons.unl.edu/ichthynicar Part of the Aquaculture and Fisheries Commons Villa, Jaime, "Una teoría sobre el origen de los peces de Xiloà" (1976). Investigations of the Ichthyofauna of Nicaraguan Lakes. 12. https://digitalcommons.unl.edu/ichthynicar/12 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Investigations of the Ichthyofauna of Nicaraguan Lakes by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in INVESTIGATIONS OF THE ICHTHYOFAUNA OF NICARAGUAN LAKES, ed. Thomas B. Thorson (University of Nebraska-Lincoln, 1976). Copyright © 1976 School of Life Sciences, University of Nebraska-Lincoln. Reprinted from ENCUENTRO: REv. UNIV. CENTROAMERICANA 1(4):202-214, July-Aug., 1968. J.lme VIII. Una leoria sobre el orlgen• de los peces de Xiloa 1.- INTRODUCCION A finales de 1965 v en conexion con estudios en curso sobre la herpetolo­ g(a nicaragiiense colec te una pequena serie de peces de la Laguna de Xiloa que revela- ron aspectos interesantes y me indujeron a realizar colecciones extensivas en toda la laguna; estas colecciones se realizaron durante 1966-68 y cons tan de varios cien­ tos de ejemplares, depositados en la Universidad de Costa Rica y en mi coleccion particular. El material acumulado durante estos anos y las notas tomadas durante todo el tiempo en que se realizaron han sido suficientes para permitir una serie de conclusiones en diversos aspectos, algunas de las cuales han sido ya publicadas 0 se encuentran en preparacion.
    [Show full text]
  • Preliminary Ranking of Geothermal Potential in the Cascade and Aleutian Volcanic Arcs, Part I: Data Collection
    GRC Transactions, Vol. 39, 2015 Preliminary Ranking of Geothermal Potential in the Cascade and Aleutian Volcanic Arcs, Part I: Data Collection Lisa Shevenell1, Mark Coolbaugh1,2, Nicholas H. Hinz2, Pete Stelling3, Glenn Melosh4, William Cumming5, and Corné Kreemer2 1ATLAS Geoscience, Inc., Reno NV, USA 2Nevada Bureau of Mines and Geology, UNR, Reno NV, USA 3Western Washington University, Bellingham WA, USA 4GEODE, Santa Rosa CA, USA • 5Cumming Geoscience, Santa Rosa CA, USA [email protected][email protected][email protected][email protected] [email protected][email protected][email protected] Keywords Cascade, Aleutian, volcanic, geothermal, potential, structure, database ABSTRACT As part of a DOE funded project on Geothermal Play Fairway Analysis, a geothermal assessment of volcanic centers in the Cascade and Aleutian volcanic arcs is being conducted that includes a large data gathering effort dis- cussed in this paper, and a statistical modeling effort to qualitatively rank the geothermal potential of individual VCs in these two US arcs, discussed in a second companion paper. The data compiled from the Cascades and Aleutians are compared to geologic, geochemical and geophysical information from productive volcanic arc centers in the other parts of the world. Seven other volcanic arc segments from around the globe are used in this comparative study. Preliminary findings from data evaluation indicate that there are systematic changes in structural setting, from an extensional influ- ence south of Mt. Hood (in part due to encroachment of the back arc in the southern half) to more compressional north of Mt. Hood. Comparison with productive geothermal fields around the world shows that large fumarolic areas are associated with most >240°C power-producing geothermal systems outside the US arcs (e.g., Kamojang, Indonesia, among others), whereas there is a general absence of large fumarolic areas in the Cascades and Aleutian arcs, aside from of the Lassen volcano area.
    [Show full text]
  • Amenaza Volcánica Del Área De Managua Y Sus Alrededores (Nicaragua)”
    Parte II.3: Amenaza volcánica 127 Parte II.3 Guía técnica de la elaboración del mapa de “Amenaza volcánica del área de Managua y sus alrededores (Nicaragua)” 128 Parte II.3: Amenaza volcánica Índice 1 Resumen.......................................................................................................................130 2 Lista de figuras y tablas...............................................................................................131 3 Introducción.................................................................................................................132 4 Objetivos.......................................................................................................................132 5 Metodología.................................................................................................................133 5.1 Recopilación de los datos y análisis de los peligros volcánicos existentes............133 5.1.1 Complejo Masaya.............................................................................................133 5.1.1.1 Flujos de lava..............................................................................................134 5.1.1.2 Caída de tefra..............................................................................................134 5.1.1.3 Flujos piroclásticos y Oleadas piroclásticas...............................................135 5.1.1.4 Flujos de lodo y detritos (lahares)..............................................................135 5.1.1.5 Emanaciones de gas....................................................................................136
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]
  • Observation and Modeling of Source Effects in Coda Wave Interferometry at Pavlof Volcano Matthew M
    Boise State University ScholarWorks Center for Geophysical Investigation of the Shallow CGISS Publications and Presentations Subsurface (CGISS) 5-1-2009 Observation and Modeling of Source Effects in Coda Wave Interferometry at Pavlof Volcano Matthew M. Haney Boise State University Kasper van Wijk Boise State University Leiph A. Preston Sandia National Laboratories David F. Aldridge Sandia National Laboratories This document was originally published by Society of Exploration Geophysicists in The Leading Edge. Copyright restrictions may apply. DOI: 10.1190/1.3124930 SPECIALSeismic SECTION: modeling S e i s m i c m o d e l i n g Observation and modeling of source effects in coda wave interferometry at Pavlof volcano MATTHEW M. HANEY, U.S. Geological Survey Alaska Volcano Observatory KASPER VAN WIJK, Boise State University LEIPH A. PRESTON and DAVID F. ALDRIDGE, Sandia National Laboratories orting out source and path eff ects for seismic waves Sat volcanoes is critical for the proper interpretation of underlying volcanic processes. Source or path eff ects imply that seismic waves interact strongly with the volcanic subsurface, either through partial resonance in a conduit (Garces et al., 2000; Sturton and Neuberg, 2006) or by random scattering in the heterogeneous volcanic edifi ce (Wegler and Luhr, 2001). As a result, both source and path eff ects can cause seismic waves to repeatedly sample parts of the volcano, leading to enhanced sensitivity to small changes in material properties at those locations. Th e challenge for volcano seismologists is to detect and reliably interpret these subtle changes for the purpose of monitoring eruptions. We examine seismic records of repeating explosions from Pavlof volcano, Alaska, during its 2007 eruption.
    [Show full text]
  • Hoyas Hidrográficas De Chile: Segunda Región
    HOYAS HIDROGRÁFICAS DE CHILE: SEGUNDA REGIÓN REALIZADO POR: HANS NIEMEYER F. HOVA DEL RlO LOA La hoya hidrográfica del río Loa~ con una superf! cie tota~'de 33 570 km2 , se desarrolla en el tercio norte de la IIa R~ gión de Chile, entre latitudes extremas 20Q52' y 22Q57' L.S. ylongit~ des 68QOO' y 7oQ02' L.o. El río Loa nace en la falda norte del Vn. Mi­ ño~ en los Ojos del Hiño, casi en los límites entre la la y IIa Regio­ nes de Chile, en 21Q15' L.S. y 70Q L.O~ Su longitud total se acerca a 440 km. A pesar de su extensa hoya, los recursos h!dricos provienen de la cuenca alta que comprende alrededor del 20% de la su~ perficie total. Con curso aproximadamente norte-sur~ el Loa reco­ rre casi 150 km en un profundo cañón de altura variable, desde su nací miento hasta el oasis de Chiu ~hiu, pueblo que se levanta en su margen izquierda. En este trayecto recibe sus dos tributarios más importantes que le caen del este: el río San Pedro o Inacaliri y el río Salado. En Chiu Chiu dobla su curso sensiblemente hacia el oeste para alcanzar en un recorrido de 115 km el punto denominado Chacance. En él se le reúne por la derecha el río San Salvador. En Chacance,el Loa toma franca di= recci6n sur-norte hasta fertilizar el oasis de Quillagua, despu~s de una trayectoria de 80 km. A partir de Quillagua el Loa describe un gran arco y luego desemboca en el Pacífico~ en Caleta Huel~n, despu~8 de trasponer el macizo costero en un tajo profundo~ de más de 500 m de al­ tura.
    [Show full text]
  • Bul Le Tin of the Global Vol Can Ism Net Work
    Bul le tin of the Global Vol can ism Net work Vol ume 30, Num ber 11, November 2005 Karthala (Como ros Is lands) Eruption on 24 Novem ber 2005; big evacu a tion and one fa tality .........2 Piton de la Fournaise (Re union Island) Eruption on 5 Oc tober follows four months of heightened ac tivity ..5 Montagu Island (S Sand wich Islands ) N-coast delta grew during 14 Sep tem ber-4 Octo ber 2005 .......5 Aoba (Vanuatu) New eruption begins on 27 Novem ber 2005 and builds cone in crater lake ..........7 Garbuna (Pa pua New Guinea) First his tor i cally wit nessed erup tion in Oc to ber 2005 .............10 Langila (Pa pua New Guinea) Ac tive dur ing Au gust-Sep tem ber, de creas ing dur ing Oc to ber-No vem ber ....13 Fukutoku-Okanoba (Ja pan) July 2005 subma rine eruption; dis colored wa ter and debris ...........13 Karymsky (Kamchatka Pen in sula) Ex plo sions con tin ued dur ing De cem ber 2004-June 2005 .........15 Bezymianny (Kamchatka Pen in sula) Ash plumes to 10 km al titude in 2005, hot ava lanche s from the dome..16 Ed itors: Rick Wunderman, Catherine Gal ley, Ed ward Venzke, and Gari May berry Vol un teer Staff: Robert Andrews, Jerome Hudis, Jackie Gluck, Angela Stavropoulos, Ve ron ica Bemis, Wil liam Henoch, and Ste phen Bentley Global Vol canism Program · National Museum of Natu ral His tory, Room E-421, PO Box 37012 · Wash ing ton, DC 20013-7012 · USA Tele phone: (202) 633-1800 · Fax: (202) 357- 2476 · Email: gvn@vol cano.si.edu · URL: http://www.vol cano.si.edu/ The text of the Bul le tin is also distrib uted through the Volcano Listserv (vol [email protected]).
    [Show full text]
  • Grea3tfpermhl RESOURCES of the ALEUTIAN ARC
    GrEa3TFPERMhL RESOURCES OF THE ALEUTIAN ARC Wy Roman .I. Mntylcw, RlairB~yA. Lics, Chri~',Boph~r.I. WYC, and Mary A. Moomnsa GEOTHERMAL RESOURCES OF THE ALEUTIAN ARC By Roman J. Motyka, Shirley A. Liss, Christopher J. Nye, and Mary A. Moorman Roman Motyka sampling an upper Glacier Valley hot spring in the Makushin geothermal area. Photo by Shirley Liss. Professional Report 114 Division of Geological & Geophysical Surveys Cover photo: "Old Faithful" of the Geyser Bight geothermal resource area. When- ever it has been observed (1870, 1948, 1980, and 1988),spring G8, Fairbanks, Alaska shown here at maximum activity, has had an eruption cycle of 1993 12 minutes. Photo by Shirley Liss. STATE OF ALASKA Walter J. Hickel, Governor DEPARTMENT OF NATURAL RESOURCES Harry A. Noah, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Thomas E. Smith, State Geologist Division of Geological & GeophysicalSurveys publications can be inspected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological University of Alaska Anchorage Library & Geophysical Surveys 321 1 Providence Drive 794 University Avenue, Suite 200 Anchorage, Alaska 99508 Fairbanks, Alaska 99709-3645 Elmer E. Rasmuson Library Alaska Resource Library University of Alaska Fairbanks 222 W. 7th Avenue Fairbanks, Alaska 99775-1005 Anchorage, Alaska 995 13-7589 Alaska State Library State Office Building, 8th moor 333 Willoughby Avenue Juneau, Alaska 9981 1-0571 This publication released by the Division of Geological & Geophysical Surveys, was
    [Show full text]