Quantifying the Effect of Large Earthquakes in Promoting Eruptions Due to Stress Changes on Magma Pathway: the Chile Case

Total Page:16

File Type:pdf, Size:1020Kb

Quantifying the Effect of Large Earthquakes in Promoting Eruptions Due to Stress Changes on Magma Pathway: the Chile Case TECTO-125661; No of Pages 14 Tectonophysics xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma pathway: The Chile case F.L. Bonali a,⁎, A. Tibaldi a, C. Corazzato a, D.R. Tormey b, L.E. Lara c a Dipartimento di Scienze dell'Ambiente e del Territorio e di Scienze della Terra, Università di Milano-Bicocca, Piazza della Scienza 4, 20126, Milano, Italy b Cardno ENTRIX Inc., Los Angeles, CA, USA c Servicio Nacional de Geología y Minería, Volcano Hazards Program, Santiago, Chile article info abstract Article history: Four earthquakes with Mw ≥8 occurred in proximity to 60 Holocene volcanoes, in the Southern Volcanic Zone Received 27 March 2012 of the Andes (SVZ) since 1906. We analyzed these events by numerical modeling and field data to understand Received in revised form 12 October 2012 the key attributes of each volcano that may lead to a seismically-triggered eruption and the general mecha- Accepted 22 October 2012 nisms by which earthquakes could trigger volcanic new activity. We developed a new approach by resolving Available online xxxx the earthquake-induced normal static stress change on the magma pathway of each volcano instead of con- sidering the general crustal volume. We also considered other parameters that may lead to eruption, such as Keywords: Earthquakes magma chamber depth, magma composition and viscosity, local tectonic settings and volcano dimension. The Volcanic unrest dataset includes a total of 18 new volcanic activities following large earthquakes (15 eruptions and 3 minor Magma chamber depth increases in volcanic activity) at 10 volcanoes. Of these, 9 out of 18 events representing unrest occurred at Magma pathway volcanoes that had no activity in the five years before the earthquake. Results indicate that the static stress Unclamping changes were capable of triggering the observed volcanic phenomena up to a distance of 353 km from the Static stress change epicenter. Eleven out of 18 new volcanic events occurred at volcanoes with shallow magma chambers (2–3 km) under conditions of unclamping or very weak clamping. New activity at volcanoes with deeper magma chambers (>7 km) occurred only by magma pathway unclamping. Considering the regional tecton- ics of the SVZ, 5 volcanoes lying along strike–slip faults, 3 on thrust faults and 2 along a transition zone, ex- perienced unrest. Our results show that magma pathway unclamping plays a fundamental role in dictating unrest at volcanoes that are already in a critical state. These studies contribute to possible individuation of those volcanoes that are more prone to seismically-triggered eruptive events. © 2012 Elsevier B.V. All rights reserved. 1. Introduction and associated feedbacks might induce eruptions with a delay of days, months or years after the seismic event (Linde and Sacks, 1998; There is a growing acceptance that large earthquakes could trigger Nostro et al., 1998; Walter and Amelung, 2007; Watt et al., 2009). volcanic activity (Bebbington and Marzocchi, 2011; Delle Donne et al., With longer time delays, it can be difficult to discern a seismically- 2010; Eggert and Walter, 2009; Linde and Sacks, 1998; Walter and induced eruption from the normal background rate of eruptions. Under- Amelung, 2007; Watt et al., 2009). Linde and Sacks (1998) and standing the relative importance of the parameters that might control Manga and Brodsky (2006) identified a large portion of the earthquake-induced volcanism is of paramount importance if we are 1400-km-long Southern Volcanic Zone of the Andes (SVZ) where to achieve the goal of predicting this type of volcanic eruption. eruptions can be rapidly-triggered by large subduction earthquakes; In the present work, we evaluate these parameters by analyzing Watt et al. (2009) suggested that the eruption rate increased after the four post-1900, Mw ≥8 earthquakes of Chile, and the documented the two Chilean earthquakes of August 1906 and May 1960. The volcanic phenomena (Table 1) in the five years following each earth- above authors suggest a feedback effect between large earthquakes quake (Table 2) within a search radius calculated following Delle and volcanic eruptions mainly based upon two approaches: i) focusing Donne et al. (2010). We took into consideration the following attri- on the time-relationships between seismic and volcanic events, or ii) butes of each volcano: magma chamber depth, magma rheology, tec- the reconstruction of earthquake-induced crustal stress (dilation). tonic settings and dimension of volcanic edifice. We applied a new One of the main problems in assessing the real triggering effect of numerical approach to model the earthquake-induced static stress earthquakes is that the inherent complexity of the magmatic systems change by resolving it on the magma feeding system reconstructed at each single unrest volcano of the SVZ. This approach produces ⁎ Corresponding author. Tel.: +39 02 64482066; fax: +39 02 64482073. much higher resolution in the modeled static stress change in com- E-mail address: [email protected] (F.L. Bonali). parison to considering only a generalized crustal volume. 0040-1951/$ – see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tecto.2012.10.025 Please cite this article as: Bonali, F.L., et al., Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma pathway: The Chile case, Tectonophysics (2012), http://dx.doi.org/10.1016/j.tecto.2012.10.025 2 pathway: The Chile case, Tectonophysics (2012), Please cite this article as: Bonali, F.L., et al., Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma Table 1 Characteristics of the volcanic events at each volcano following the large earthquakes, including: volcano name, Type, SiO2 content of erupted lavas, distance from the epicenter, time-gap between the earthquake and the volcanic event, VEI of the eruption, amount of normal stress change (N.S.C.), activity in the five year before the earthquake (P–E activity), azimuth of the inferred magma pathway (M.P.) and depth of the magma chamber (M.C. depth), and volcano height. In light gray, the post-2010 minor volcanic events are represented. Data based on satellite images, SRTM90 DEM (srtm.csi.cgiar.org), Global Volcanism Program Digital Information Series (http://www.volcano.si.edu/gvp/world) and data reported in the literature (Hickey-Vargas et al., 19841; Hildreth and Moorbath, 19882; Tormey et al., 19913; Hildreth and Drake, 19924; Gonzalez-Ferran, 19955; López-Escobar et al., 19956; Tormey et al., 19957; Dixon et al., 19998; Déruelle and López-Escobar, 19999; Mamani et al., 200010; Naranjo and Haller, 200211; Lara et al., 2006b12; Varekamp et al., 200613; Maksimov, 200714; Rea et al., 200915; Reubi et al., 201116). Earthquake Volcano name Type Silica (wt.%) Distance (km) Time-gap (days) VEI N.S.C. (MPa) P-E activity M.P. (azimuth) M.C. depth (km) Height (m) First new volcanic events Valparaiso (1906) Tupungatito B+ 60.52 210 183 2 −0.052 N N22.5°E 7 − 101,2,3 2000 Valparaiso (1906) Villarrica A 52.04 − 52.715 712 262 ± 4 2 0.001 Y N47.5°E 2 − 31,3 2447 Valparaiso (1906) Nevados de Chillan B 66.6 − 67.68,9 432 319 ± 182 1 0.004 Y N140°E 2 − 31,2,3 1912 Valparaiso (1906) Llaima A − 16 632 319 ± 182 2 0.000 Y N62.5°E − 1,3 1925 http://dx.doi.org/10.1016/j.tecto.2012.10.025 52.04 52.71 2 3 F.L. Bonali et al. / Tectonophysics xxx (2012) xxx Valparaiso (1906) Cerro Azul (Quizapu) B+ 67 − 684 316 346 2 −0.052 N N8°E 7 − 101,2,14 2288 Valdivia (1960) Puyehue− Cordon Caulle B+ 68.9 − 70.0112 418 2 3 −0.512 N N135°E 2 − 31,3 2447 Valdivia (1960) Planchon− Peteroa B 63.05 − 63.1211 378 49 1 0.019 Y N0°E 2 − 37 2107 Valdivia (1960) Tupungatito B 60.52 543 54 2 0.008 Y N22.5°E 7 − 101,2,3 2000 Valdivia (1960) Calbuco B+ 55.76 − 56.486 504 255 3 −1.657 N N45°E 18 − 246 1803 Valdivia (1960) Copahue B+ 54.9 − 56.913 245 405 ± 182 2 −0.125 N N60°E 9 − 2010 1397 Valdivia (1960) Villarrica A 52.04 − 52.715 338 405 ± 182 1 −0.823 Y N47.5°E 2 − 31,3 2447 Santiago (1985) Tupungatito B+ 60.52 192 323 1 −0.035 N N22.5°E 7 − 101,2,3 2000 Santiago (1985) Llaima A 5216 605 1820 1 0.000 N N62.5°E 2 − 31,3 1925 Maule (2010) Planchon− Peteroa B+ 63.05 − 63.1211 210 191 2 −0.403 N N0°E 2 − 37 2107 Maule (2010) Puyehue− Cordon Caulle B+ 68.9 − 70.0112 522 462 3 0.002 N N135°E 2 − 31,3 2447 Maule (2010) Callaqui B >6015 251 674 1 −0.260 Y N55°E Unknown 1964 − 8,9 − − 1,2,3 Maule (2010) Nevados de Chillan B+ 66.6 67.6 161 3 0 0.122 N N140°E 2 3 1912 – xxx Maule (2010) Villarrica A 53.77 − 54.445 396 37 1 0.005 Y N47.5°E 2 − 31,3 2447 Other volcanic events Valparaiso (1906) Villarrica A 52.04 − 52.715 712 807 2 - - N47.5°E 2 − 31,3 2447 Valparaiso (1906) Villarrica A 52.04 − 52.715 712 1099 2 - - N47.5°E 2 − 31,3 2447 Valdivia (1960) Tupungatito B 60.52 543 348 ± 4 2 - - N22.5°E 7 − 101,2,3 2000 Valdivia (1960) Planchon− Peteroa B 63.05 − 63.1211 378 603 ± 15 1 - - N0°E 2 − 37 2107 Valdivia (1960) Villarrica A 52.04 − 52.715 338 1009 3 - - N47.5°E 2 − 31,3 2447 Valdivia (1960) Villarrica A 52.04 − 52.715 338 1380 2 - - N47.5°E 2 − 31,3 2447 Valdivia (1960) Tupungatito B 60.52 543 1534 2 - - N22.5°E 7−101,2,3 2000 Santiago (1985) Tupungatito B 60.52 192 1000 2 - - N22.5°E 7−101,2,3 2000 F.L.
Recommended publications
  • Universita' Degli Studi Di Milano Bicocca
    Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra Università degli studi di Milano-Bicocca Dottorato di Ricerca in Scienze della Terra XXVI ciclo Earthquake-induced static stress change in promoting eruptions Tutore: Prof. Alessandro TIBALDI Co-tutore: Dott.ssa Claudia CORAZZATO Fabio Luca BONALI Matr. Nr. 040546 This work is dedicated to my uncle Eugenio Marcora who led my interest in Earth Sciences and Astronomy during my childhood Abstract The aim of this PhD work is to study how earthquakes could favour new eruptions, focusing the attention on earthquake-induced static effects in three different case sites. As a first case site, I studied how earthquake-induced crustal dilatation could trigger new eruptions at mud volcanoes in Azerbaijan. Particular attention was then devoted to contribute to the understanding of how earthquake-induced magma pathway unclamping could favour new volcanic activity along the Alaska-Aleutian and Chilean volcanic arcs, where 9 seismic events with Mw ≥ 8 occurred in the last century. Regarding mud volcanoes, I studied the effects of two earthquakes of Mw 6.18 and 6.08 occurred in the Caspian Sea on November 25, 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the five years following the earthquakes. Results show that crustal dilatation might have triggered only 7 eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Dynamic rather than static strain is thus likely to have been the dominating “promoting” factor because it affected all the studied unrested volcanoes and its magnitude was much larger.
    [Show full text]
  • Percepciones Y Analogías De Dos Geografías Desencontradas
    Contretas Véliz, Claudio. Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío Vol. X, No. 10, enero-junio 2020 Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío On stoves and traffic lights: Perceptions and analogies of two uneven geographies. The case of the Callaqui volcano in the Pehuenche ancestral geography of Alto Biobío Recibido el 08 de mayo de 2020, aceptado el 08 de junio de 2020 Claudio Contreras Véliz* Resumen En Alto Biobío, área cordillerana del centro sur de Chile, habita parte del pueblo originario Pehuenche, cuyas comunidades o lob mapu, se emplazan alrededor del volcán Callaqui (‘Callavquen’ en la lengua local, que significa ‘celoso de los hom- bres’). El volcán en el último tiempo ha sido monitoreado por la institucionalidad vulcano- lógica y de emergencias del país (SERNAGEOMIN, ONEMI y Universidades), que busca generar planes y acciones para gestionar la alarma de una posible erupción, y advertir a través de un semáforo y escalas de riesgos, la peligrosidad que representa para la población local. No obstante, los pehuenches, habitantes ancestrales del área de influencia del volcán, han convivido con él de una manera intrínseca por genera- ciones, y le han asociado gran parte de sus actividades económicas, sociales y cultu- rales, otorgándole un sentido protector desde sus propias percepciones respecto del macizo montañoso. * Magíster en Geografía con mención en intervención ambiental y territorial de la Universidad Acade- mia de Humanismo Cristiano (PIIT-UAHC), [email protected] 73 Vol.
    [Show full text]
  • Volcanes Cercanos Volcanes Cercanos
    Localidades al interior de un radio de 30 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá Callaqui, Copahue Ralco Santa Bárbara Bio Bio Bio Bio Nevados de Chillán Recinto Los Lleuques Pinto Ñuble Bio Bio Villarrica, Quetrupillán, Lanín, Sollipulli Curarrehue Curarrehue Cautín La Araucanía Llaima, Sollipulli Mellipeuco Melipeuco Cautín La Araucanía Villarrica, Quetrupillán, Lanín Pucón Pucón Cautín La Araucanía Llaima Cherquenco Vilcún Cautín La Araucanía Villarrica Lican Ray Villarrica Cautín La Araucanía Villarrica Villarrica Villarrica Cautín La Araucanía Llaima, Lonquimay Curacautín Curacautín Malleco La Araucanía Llaima, Lonquimay Lonquimay Lonquimay Malleco La Araucanía Villarrica, Quetrupillán, Lanín, Mocho Coñaripe Panguipulli Valdivia Los Rios Calbuco, Osorno Alerce Puerto Montt Llanquihue Los Lagos Calbuco, Osorno Las Cascadas Puerto Octay Osorno Los Lagos Chaitén, Michinmahuida, Corcovado Chaitén Chaitén Palena Los Lagos Hornopirén, Yate, Apagado, Huequi Rio Negro Hualaihue Palena Los Lagos Localidades al interior de un radio de 50 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá San José San Alfonso San José de Maipo Cordillera Metropolitana San José San José de Maipo San José de Maipo Cordillera Metropolitana Tupungatito La Parva Lo Barnechea Santiago
    [Show full text]
  • Abrupt Climatic Changes As Triggering Mechanisms of Massive Volcanic Collapses
    Journal of Volcanology and Geothermal Research 155 (2006) 329–333 www.elsevier.com/locate/jvolgeores Short communication Abrupt climatic changes as triggering mechanisms of massive volcanic collapses Lucia Capra Instituto de Geografía, UNAM, CU Coyoacan, 04510, Mexico DF, Mexico Received 7 March 2006; received in revised form 31 March 2006; accepted 19 April 2006 Available online 5 June 2006 Abstract Abrupt climate change can trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas. © 2006 Published by Elsevier B.V. Keywords: volcanic collapse; global warming 1. Introduction Wyk de Vries et al., 2001; Clavero et al., 2002). Several analogue experiments have been performed to demon- Although climate changes have been considered to be strate how faults can deform volcanoes that finally a triggering mechanism for large eruptions (Rampino et collapse (Van Wyk de Vries and Borgia, 1996; Lagmay et al., 1979; McGuire et al., 1997), they have not, so far, al., 2000; Acocella, 2005; Norini and Lagmay, 2005). been related to the collapse of volcanoes. Unstable This is probably a very common mechanism, but it is volcanoes, whatever the origin of their instability, can spatially localized and can occur in an indeterminate collapse from the same triggering mechanism (McGuire, period of time.
    [Show full text]
  • Southern Andes Supersite Coupled Geohazards at Southern Andes: Copahue-Lanín Arc Volcanoes and Adjacent Crustal Faults
    Version 1.3 15 October 2018 www.geo-gsnl.org Biennial report for Permanent Supersite/Natural Laboratory GeoHazSA: Southern Andes Supersite Coupled geohazards at Southern Andes: Copahue-Lanín arc volcanoes and adjacent crustal faults History https://geo-gsnl.org/supersites/permanent- supersites/southern-andes-supersite/ Supersite Coordinator Luis E. Lara, SERNAGEOMIN, CIGIDEN, Av. Santa María 0104, Santiago, CHILE 1 Version 1.3 15 October 2018 www.geo-gsnl.org 1. Abstract The Southern Andes (33°-46°S) is a young and active mountain belt where volcanism and tectonic processes pose a significant threat to the communities nearby. In fact, only recent eruptions caused evacuations of 250-3500 people and critical infrastructure is present there. The segment here considered corresponds to a low altitude orogen (<2000 masl on average) but characterized by a high uplift rate as a result of competing tectonic and climate forces. This Supersite focuses on a ca. 200 km long segment of the Southern Andes where 9 active stratovolcanoes (Copahue, Callaqui, Tolhuaca, Lonquimay, Llaima, Sollipulli, Villarrica, Quetrupillan and Lanín) and 2 distributed volcanic fields (Caburgua and Huelemolles) are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Fault System (LOFS). Activity of the LOFS has been detected prior to some eruptions and coeval with some others. There are several tectonic and volcanic models to be investigated that derive from a strong two-way coupling between tectonics and volcanism, recently detected by either geophysical techniques or numerical modeling. Hazards in the segment derive mostly from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting but weak current activity (e.g., Copahue) or some volcanoes with low eruptive frequency but high magnitude eruptions in the geological record (e.g., Lonquimay).
    [Show full text]
  • Geothermal Regulatory Framework in Chile
    Unlocking Geothermal Investments in Central America: Strengthening Enabling Policy and Regulatory Frameworks San Salvador - August 2017 Geothermal Regulatory Framework in Chile Rubén Muñoz Bustos Head of Geothermal Unity Renewable Energy Division Ministry of Energy Government of Chile Geothermal Energy in Chile – Electric Market Context • Generation sector is conceived open and competitive. • While the market is structured as exchanges marginal cost, there are PPAs to stabilize prices. • The investment is free private initiative: Freedom to decide technology, size, date of entry, etc. • Renewable Portfolio Standard for Non-Conventional Renewable Energy (ERNC, does not include hydro > 20 MW): ​​20% by 2025 goal. 25% 20% Ley 20.698 (2013) 15% Ley 20.257 (2008) 10% 5% 0% 2010 2011 2012 2013 2014 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2027 2028 2029 2030 2031 2032 2033 2034 2015 2026 Ley 20.257 Ley 20.698 2 www.energia.gob.cl División Energías Renovables 2 Energy Generation Evolution 80000 250 Wind 70000 Solar 200 Geotermia 60000 Biomass ] 50000 150 Hydro GWh 40000 Natural Gas 100 30000 Energía[ Oil 20000 Coal 50 Cmg 10000 Costo Marginal Promedio [USD/MWh] Promedio Marginal Costo 0 0 2000 2002 2004 2006 2008 2010 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2012 2014 2016 Periodo de sequías Desintegración Acuerdos internacionales del mercado de importación de gas Recortes de gas www.energia.gob.cl División Energías Renovables Expected installed capacity by 2021 Installed capacity [MW] Installed capacity
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]
  • Crustal Contributions to Arc Magmatism in the Andes of Central Chile
    Contributions to Contrib Mineral Petrol (1988) 98:455M89 Mineralogy and Petrology Springer-Verlag 1988 Crustal contributions to arc magmatism in the Andes of Central Chile Wes Hildreth 1 and Stephen Moorbath 2 1 USGS, Menlo Park, California 94025, USA 2 Department of Earth Sciences, University of Oxford, OX1 3PR, UK Abstract. Fifteen andesite-dacite stratovolcanoes on the vol- ascending magmas, but the base-level geochemical signature canic front of a single segment of the Andean arc show at each center reflects the depth of its MASH zone and along-arc changes in isotopic and elemental ratios that dem- the age, composition, and proportional contribution of the onstrate large crustal contributions to magma genesis. All lowermost crust. 15 centers lie 90 km above the Benioff zone and 280 _+ 20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and sea- floor are nearly constant along the segment. Nonetheless, Introduction from S to N along the volcanic front (at 57.5% SiO2) K20 rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Despite growing acceptance that several mantle, crustal, Ce from 25 to 50 ppm, whereas FeO*/MgO declines from and subducted reservoirs contribute to arc magmas along >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part continental margins, there is still no real consensus concern- reflecting suppression of HREE enrichment by deep-crustal ing the proportions of the various contributions nor con- garnet. Rb, Cs, Th, and U contents all rise markedly from cerning the loci and mechanisms of mixing among source S to N, but Rb/Cs values double northward opposite components or among variably evolved magma batches.
    [Show full text]
  • A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P
    Land of the living Mountains A geo-referenced visual guide to 70 Chilean volcanoes Photography by Gerard Prins Mission Impossible Corcovado volcano (p. 98) Ever since, in 1990, I laid eyes on “my first volcano” – Vol- that will likely take the rest of my life and still be grossly in- Additional handicaps are that I’m no mountaineer nor an ex- cán Villarrica in the Chilean South – I have been impressed by complete. pert by any measure and, thus, constantly fear to be wrong. their beauty as well as by the imposing forces that lie behind Especially because even detailed maps of the Chilean In- their creation, and have, willingly or unwillingly, pointed In the process, I have picked up some passing knowledge stituto Geográfico Militar – or Google Earth for that mat- my camera at them over and again. on geology and volcanism. However, “passing” is the opera- ter – provide precious little info on mountain names and Unwillingly, because in a country that is part of the Pacific tive word here, which is why I am relying on shameless (but locations. Ring of Fire and counts with over 600 volcanic phenomena, often edited) copy/paste from the Global Volcanism Program Moreover, I have been chasing the González-Ferrán Chil- it is virtually impossible to look towards the Andes Cordill- Web site to textually accompany the images, and generate at ean volcano “Bible” for the last ten years or so, to no avail. era and not capture something that is somehow related with least some sort of context. Still, I hope this document will be a source of entertain- the incessant subduction of the Nazca Plate under the South Although this presentation visually documents roughly ment and reason enough for travellers to either get a good tour American- and Antarctica Plates.
    [Show full text]
  • Geología Del Sector NE Del Volcán Copahue Y Geoquímica De Los Fluídos Volcánicos Asociados
    Tesis de Grado Geología del sector NE del volcán Copahue y geoquímica de los fluídos volcánicos asociados Szentiványi, Juliana Maria 2018 Este documento forma parte de las colecciones digitales de la Biblioteca Central Dr. Luis Federico Leloir, disponible en bibliotecadigital.exactas.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the digital collection of the Central Library Dr. Luis Federico Leloir, available in bibliotecadigital.exactas.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Szentiványi, Juliana Maria. (2018). Geología del sector NE del volcán Copahue y geoquímica de los fluídos volcánicos asociados. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. https://hdl.handle.net/20.500.12110/seminario_nGEO001109_Szentivanyi Cita tipo Chicago: Szentiványi, Juliana Maria. "Geología del sector NE del volcán Copahue y geoquímica de los fluídos volcánicos asociados". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2018. https://hdl.handle.net/20.500.12110/seminario_nGEO001109_Szentivanyi Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: bibliotecadigital.exactas.uba.ar Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Ciencias Geológicas Trabajo Final de Licenciatura Geología del
    [Show full text]
  • PLAN ESPECÍFICO DE EMERGENCIA POR VARIABLE DE RIESGO – ERUPCIONES VOLCÁNICAS V0.0 Página 1 De 46 Fecha: 01-02-2018
    OFICINA NACIONAL DE EMERGENCIA PLANTILLA DEL MINISTERIO DEL INTERIOR Y SEGURIDAD PÚBLICA VERSION: 0.0 PLAN ESPECÍFICO DE EMERGENCIA POR VARIABLE DE RIESGO – ERUPCIONES VOLCÁNICAS v0.0 Página 1 de 46 Fecha: 01-02-2018 PLAN ESPECÍFICO DE EMERGENCIA POR VARIABLE DE RIESGO Erupciones Volcánicas Nivel Nacional OFICINA NACIONAL DE EMERGENCIA PLANTILLA DEL MINISTERIO DEL INTERIOR Y SEGURIDAD PÚBLICA VERSION: 0.0 PLAN ESPECÍFICO DE EMERGENCIA POR VARIABLE DE RIESGO – ERUPCIONES VOLCÁNICAS v0.0 Página 2 de 46 Fecha: 01-02-2018 INDICE 1. Introducción 3 1.1. Antecedentes 3 1.2. Objetivos 1.2.1. Objetivo General 3 1.2.2. Objetivos Específicos 3 1.3. Cobertura, Amplitud y Alcance 4 1.4. Activación del Plan 4 1.5. Relación con Otros Planes 5 2. Descripción de la Variable de Riesgo 5 3. Sistema de Alertas 5 3.1. Sistema Nacional de Alertas 5 3.2. Alertamiento Organismos Técnicos 6 4. Roles y Funciones 8 5. Coordinación 13 5.1. Fase Operativa - Alertamiento 13 5.2. Fase Operativa - Respuesta 15 5.3. Fase Operativa - Rehabilitación 18 6. Zonificación de la Amenaza 19 6.1. Zonificación Áreas de Amenaza 19 6.2. Proceso de Evacuación (Niveles Regionales, Provinciales y Comunales) 22 7. Comunicación e Información 22 7.1. Flujos de Comunicación e Información 22 7.2. Medios de Telecomunicación 24 7.3. Información a la Comunidad y Medios de Comunicación 24 8. Evaluación de Daños y Necesidades 24 9. Implementación y Readecuación del Plan 25 9.1. Implementación 25 9.2. Revisión Periódica 26 9.3. Actualización 26 10. Anexos 27 10.1.
    [Show full text]
  • Comuna Completa
    PLANO DE PRECIOS DE TERRENO REAVALÚO DE BIENES RAÍCES NO AGRÍCOLAS CORRESPONDIENTE A SITIOS NO EDIFICADOS, PROPIEDADES ABANDONADAS Y POZOS LASTREROS 2016 COMUNA DE QUILPUE 628 RSS139 3308 330300001 3343 3356 334400001 627 330200001 RSS017 627 RSS016 SERVIDUMBRE DE PASO 3354 626 626 PSJE. LOS CAQUIS 3300 3307 LOS ALAMOS LOS ALAMOS 3342 PTO. NATALES CARAHUE 1601 3642 ANCUD WILSON QUEMCHI 626 SUBIDA A LA CAVA 3642 626 ANGELMO STA. FE PELLUCO 3307 QUEILEN ELICURA NEUQUEN 4407 616 626 3640 QUELLON PJE. ISLA LEMUY ISIDORA ZEGERS PJE. PJE. ISLA GUAMBLIN 3344 3307 CAULIN 3641 4407 4407 3642 EDUARDO CALLE LA UNION CHONCHI MATURANA JAIME ATRIA TERESA BELLOTO EL AV. C. CARO C. ENRIQUE SORO JUAN AMENABAR OSMAN PEREZ FREIRE AV. PARKINSONIAS CARELMAPU CARLOS RIESCO PTO. OCTAY 4407 3307 3344 4407 JOSE MOLINARE 616 DALCAHUE 3342 EL BOSQUE EL 330400001 ZAPIOLANICANOR CARLOS 3355 ADVIS PARGUA 3342 ISAMITT LUIS 4407 3344 ISLA GUAFO ISLA NINA SALAMANCA ACHAO 3344 ISLA SAN FELIX SAN ISLA 3344 CELTA DUMAS ISLA PJE. GABRIELA FRICK ABTAO 4407 4407 3344 PIZARRO 3642 QUIRIQUINAS I. PJE. COYHAIQUE 623 TOLEDO MALLORCA 3344 CLARA PJE. ISLA CAILIN SOLOVERA 4407 RILEN ACARIO COTAPOS 4407 3342PJE. ISLA QUILIN 3344 4407 620 HILDA MADRID SEGOVIA BARCELONA FRUTILLAR 4407 SEVILLA CALLE 1 TERESA DE LOS ANDES 3642 3344 PJE. TARRAGONA PJE. 3643 CARTAGENA HBM155 3342 PJE. CARLOS BOTTO WSS141 624 PJE. ISLA HUAPI 621 HAB013624 DORIS MARTINEZ A. 3317 3342 3344 ELENA CANALES C. PUELO 3645 HBB082 624 3639 PJE. ISLA MANCERA PJE. ALFONSO LENG 188 94 PJE SANTA CECILIA 3635 3342 FUTALEUFU 3302 CHAITEN 3344 PJE.
    [Show full text]