Clinical Reasoning: a Tale of a Hypotonic Infant Fouad Al-Ghamdi and Partha S

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Reasoning: a Tale of a Hypotonic Infant Fouad Al-Ghamdi and Partha S RESIDENT & FELLOW SECTION Clinical Reasoning: Section Editor A tale of a hypotonic infant John J. Millichap, MD Fouad Al-Ghamdi, MD SECTION 1 further recurrence. She was extubated after 4 days. Partha S. Ghosh, MD An 11-month-old girl was referred to our center for She had significant swallowing dysfunction requiring evaluation of hypotonia and developmental delays. nasogastric tube feeding. She was the only child of her She was born at term via cesarian delivery because parents and there was no family history of neurologic Correspondence to of breech presentation. Fetal movements were disorders or early unexplained death. Dr. Ghosh: reduced during pregnancy. Delivery and immediate [email protected] Questions for consideration: or Dr. Al-Ghamdi: postnatal events were uneventful. Her birth weight fouad.alghamdi@childrens. was low (2.5 kg). However, at 4 hours of life, she 1. What is the differential diagnosis of a hypotonic harvard.edu developed respiratory distress requiring intubation. neonate? She had 2 brief episodes of right upper extremity 2. What tests would you consider to help narrow twitching on day one following intubation without your differentials in this case? GO TO SECTION 2 From Boston Children’s Hospital (F.A.-G., P.S.G.), MA; and King Fahad Specialist Hospital (F.A.-G.), Dammam, Saudi Arabia. Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article. © 2016 American Academy of Neurology e11 ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. SECTION 2 The child was lethargic at birth, and brief episodes On reviewing medical records from the outside hospi- of right upper extremity twitching were concerning tal, it was noted that she had generalized hypotonia, for seizures, so a central cause of hypotonia cannot poor spontaneous movements of the limbs, and be ruled out. EEG did not disclose any epileptiform reduced tendon reflexes. She was initially lethargic activity. Poor spontaneous movements and reduced but subsequently was more awake. She had swallow- tendon reflexes, however, suggested more of a periph- ing dysfunction but there was no ptosis, extraocular eral cause of hypotonia. movement abnormalities, or tongue fasciculations. Creatine kinase (CK) is a very helpful screening Evaluation of a floppy or hypotonic infant is test to detect myopathy in children with hypotonia. challenging for a child neurologist. Hypotonia is She had high CK (2,787 U/L; normal 30–279 U/L) broadly classified into 2 categories: central (supra- on her second day of life. Among the peripheral segmental) and peripheral (segmental/motor unit).1 causes of hypotonia with high CK at birth, congen- However, this distinction is arbitrary and frequently ital muscular dystrophy (CMD) tops the list of dif- there is overlap of clinical features in a sick neonate. ferentials.1 Other myopathies associated with high Sometimes follow-up examinations are very helpful CK at birth are congenital myopathies (typically CK to establish a diagnosis in a hypotonic child. Sys- values are not very elevated) and some metabolic temic illnesses such as sepsis, hypoxic-ischemic myopathies (e.g., Pompe disease).1 Some muscular encephalopathy, cardiac failure, and electrolyte dystrophies (dystrophinopathies and some forms of and metabolic disturbances are common causes of limb girdle muscular dystrophy) can also present central hypotonia.1 Other causes of central hypoto- with high CK at birth although they typically do nia are brain malformations, various genetic/meta- not present with hypotonia in the neonatal period.1 bolic disorders (e.g., Down syndrome, Pompe Brain MRI on the third day of life was reported as disease), and spinal cord injury.1 The motor unit T2-weighted hyperintense signals in the white mat- hypotonia involves disorders of the anterior horn ter of both cerebral hemispheres with frontoparietal cell, peripheral nerve, neuromuscular junction, predominance, disorganized appearance of the infe- and muscle (table). rior cerebellar folia, and abnormal sulcal gyral There was no evidence of septicemia or gross elec- pattern in both the cerebral hemispheres. Malfor- trolyte or metabolic abnormalities. She had an elec- mations of cortical development or white matter tive cesarian delivery and there were no immediate changes on neuroimaging are common in children postnatal complications, making hypoxic-ischemic with certain variants of CMD (merosinopathies encephalopathy less likely. She had a normal ECG [merosin-deficient CMD] and dystroglycanopathies and echocardiogram ruling out cardiac involvement. [Fukuyama, Walker-Warburg, muscle-eye-brain Table Common causes of neonatal/infantile hypotonia Type of hypotonia Clinical conditions Investigations Central (suprasegmental) hypotonia Systemic illness (sepsis, meningitis, electrolyte Workup for sepsis, blood count, cultures, electrolytes disturbances) Normal muscle strength Hypoxic ischemic encephalopathy Brain MRI, EEG Preserved or brisk tendon Inborn errors of metabolism Blood, CSF, and urine tests for metabolic disorders reflexes Altered sensorium Cardiac failure ECG, echocardiogram Brain malformations Brain MRI Genetic syndromes (Down syndrome, Prader-Willi syndrome, Genetic studies and others) Spinal cord injury Spine MRI Peripheral (segmental/motor unit) Anterior horn cell disorder (e.g., spinal muscular atrophy type 1: EMG (neurogenic changes), genetic studies Werdnig-Hoffmann disease) Reduced muscle strength Peripheral nerve disorders (e.g., hypomyelinating neuropathy, EMG (peripheral neuropathy), genetic studies Dejerine-Sottas disease) Diminished or absent tendon Neuromuscular junction disorders (e.g., transient neonatal EMG (repetitive nerve stimulation and single-fiber EMG reflexes myasthenia, congenital myasthenic syndrome, infantile botulism) studies), anti-acetylcholine receptor antibodies in transient myasthenia, genetic studies for congenital myasthenic syndrome, toxin assay in botulism Normal sensorium Muscle disorders (e.g., congenital myopathy, congenital muscular EMG (myopathic EMG), muscle biopsy, genetic studies dystrophy, Pompe disease, congenital myotonic dystrophy)2 e12 Neurology 87 July 12, 2016 ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. disease]).2 Based on the above findings, a provisional workup including thyroid function testing, serum diagnosis of CMD was considered. Seizures can be amino acid profile, lactate, and acylcarnitine were a clinical manifestation in children with CMD due normal. to underlying brain malformations. Swallowing Question for consideration: assessment demonstrated a moderate to severe oral-pharyngeal dysphagia, with frequent laryngeal 1. What further testing would you consider to obtain penetration and direct aspiration. Metabolic a diagnosis? GO TO SECTION 3 Neurology 87 July 12, 2016 e13 ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. SECTION 3 continued to have poor weight gain and swallowing EMG can be helpful in narrowing the differential dysfunction and underwent gastrostomy-tube place- diagnosis of peripheral causes of hypotonia, although ment at 7 months. At the same time, she had left neonatal EMG is technically challenging and some- vastus lateralis muscle biopsy, which did not show times difficult to interpret. Targeted genetic testing any evidence of myopathy or neurogenic atrophy. often identifies causative mutations, characteristic Subsequently, she was referred to us for further eval- phenotype, or MRI appearance.2 However, as there uation. At age 11 months, she had global developmen- was no clear pattern in this case, the sequencing and tal delays pertaining to motor, language, and social deletion/duplication panel for CMD was sent, which milestones. She started gaining weight after 8 months did not detect any known pathogenic variants. The of life. Her weight was 10.1 kg (73rd percentile), genes that will be of interest in this case with possible height 71 cm (20th percentile), and head circumfer- CMD, high CK, and brain imaging abnormalities are ence 45.5 cm (66th percentile). She had dysmorphic LAMA2 (merosin-deficient CMD), Fukuyama CMD facial features: almond-shaped eyes, upturned nose, (FKTN), Walker-Warburg syndrome (POMT1, tented and thin upper lip, and small chin (figure). POMT2, POMGNT1, FKRP, LARGE), and muscle- She had mild diffuse hypotonia with good antigravity eye-brain disease (POMGNT1, FKRP).2 On follow-up movements in the arms and legs and normal tendon neurologic evaluation at the outside hospital at 2 reflexes. CK was checked and was found to be normal. months of age, there were no obvious dysmorphic Question for consideration: features; she continued to have diffuse hypotonia but her muscle strength improved. The child 1. What diagnostic testing will confirm the diagnosis? Figure Patient photograph. GO TO SECTION 4 Dysmorphic facial features: almond-shaped eyes, upturned nose, tented and thin upper lip, and small chin. e14 Neurology 87 July 12, 2016 ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. SECTION 4 developmental delay, intellectual disability, speech Salient points in her history and examination at this articulation defect, autistic spectrum disorder, behav- point were global developmental delays, low birth ioral issues, including obsessive-compulsive disorder, weight, failure to thrive followed later
Recommended publications
  • Hypotonia and Lethargy in a Two-Day-Old Male Infant Adrienne H
    Hypotonia and Lethargy in a Two-Day-Old Male Infant Adrienne H. Long, MD, PhD,a,b Jennifer G. Fiore, MD,a,b Riaz Gillani, MD,a,b Laurie M. Douglass, MD,c Alan M. Fujii, MD,d Jodi D. Hoffman, MDe A 2-day old term male infant was found to be hypotonic and minimally abstract reactive during routine nursing care in the newborn nursery. At 40 hours of life, he was hypoglycemic and had intermittent desaturations to 70%. His mother had an unremarkable pregnancy and spontaneous vaginal delivery. The mother’s prenatal serology results were negative for infectious risk factors. Apgar scores were 9 at 1 and 5 minutes of life. On day 1 of life, he fed, stooled, and voided well. Our expert panel discusses the differential diagnosis of hypotonia in a neonate, offers diagnostic and management recommendations, and discusses the final diagnosis. DRS LONG, FIORE, AND GILLANI, birth weight was 3.4 kg (56th PEDIATRIC RESIDENTS percentile), length was 52 cm (87th aDepartment of Medicine, Boston Children’s Hospital, d e percentile), and head circumference Boston, Massachusetts; and Neonatology Section, Medical A 2-day old male infant born at Genetics Section, cDivision of Child Neurology, and 38 weeks and 4 days was found to be was 33 cm (12th percentile). His bDepartment of Pediatrics, Boston Medical Center, Boston, limp and minimally reactive during physical examination at birth was Massachusetts routine care in the newborn nursery. normal for gestational age, with Drs Long, Fiore, and Gillani conceptualized, drafted, Just 5 hours before, he had an appropriate neurologic, cardiac, and and edited the manuscript; Drs Douglass, Fujii, and appropriate neurologic status when respiratory components.
    [Show full text]
  • Hypotonia Surestep Product Catalog Page 29 in Step with Pediatric Hypotonia
    SPECIAL EDUCATIONAL SERIES DIAGNOSTIC INSIGHTS ANALYZING GAIT CHANGES GROSS MOTOR SKILLS ORTHOTIC MANAGEMENT CLI N I CAL CASE STUDIES Sponsored by an educational grant from: In Step With Pediatric Hypotonia SureStep Product Catalog Page 29 In Step With Pediatric Hypotonia Contents VIEWPOINT FROM THE EDITOR: An Unexpected Path, Mobility and More an Invaluable Perspective At the most basic level, mobility is about get- PAGE 3 ting from point A to point B. But, for many children with hypotonia, it’s about so much 4 more. FEATURES It’s about independence. It’s about con- fidence. It’s about maintaining strength, fit- ness, and healthy bones. It’s about not being Understanding Hypotonia excluded from activities enjoyed by their PAGE 4 typically developing peers. And improved mobility may have even Gait: The Cornerstone more benefits in those children whose hy- potonia is associated with social and behav- of Intervention ioral developmental delays. New research PAGE 8 has identified an association between motor skills and sociobehavioral milestones in chil- 8 The Importance of Gross dren with autism spectrum disorder, who often present with hypotonia (see “The Im- Motor Skills portance of Gross Motor Skills,” page 12). PAGE 12 This suggests that early intervention to improve gross motor skills—including or- thotic devices and physical therapy—may Orthotic Solutions for also help certain children interact more Children with Hypotonia comfortably with others. That won’t come as PAGE 16 a surprise to the clinicians and parents who 12 have personally seen it happen. This special issue is filled with evidence- Orthotic Success Stories: based information and personal success sto- Four Cases in a Series ries illustrating how effective interventions can enhance mobility in children with hy- PAGE 20 potonia.
    [Show full text]
  • IUGR: Intrauterine Growth Restriction
    Table S1. Clinical features observed in the 6 patients described so far harboring pathogenic variants in FOXRED1. Evolutionary symptoms Variants Prenatal Onset Onset clinical Patient Lactic/ Survival FOXRED1 period age symptoms Muscular Psychomotor Metabolic Epilepsy MRI Visual Respiratory Cardiovascular Others tone development acidosis IUGR 2m Hypotonia Yes (+++) Yes ↓ Normal Latent Bronchospasm Normal AEP normal IQ: 48 Alive c.920G>A Development refractary (2m,4y,7y3m) strabismus of episodes in (15y) 1 (p.Gly307Glu) / al delay right eye infant c.733+1G>A c.920G>A NI 4y Clumsiness With No Normal Normal Normal Normal Normal Learning IQ: 99 Alive 2 (p.Gly307Glu) / exercise (+) disorders (19y) c.733+1G>A - Neonatal Premature; No (only ↑ Yes ↓ Decreased Normal Normal Normal Normal Gradually loss Alive period Hypoglycemia lactate in attenuation in of motor (22y)) Congenital LCR) the putamen skills; c.694C>T lactic acidosis and cerebellar wheelchair; (p.Gln232X) / 3 atrophy (6y) no expressive c.1289A>G language; 18 (p.Asn430Ser) understands simple commands NI Neonatal Truncal Yes Yes ↓ Delayed Eye Normal Mild non- Persistent Psychomotor Alive period hypotonia myelination movements obstructive left hepatomegaly retardation (10y) c.1054 C>T Poor feeding ventricular have always ventricular (p.Arg352Trp) / dilatation; been roving hypertrophy 4 c.1054 C>T abnormal signal bilateral optic (p.Arg352Trp) 19 in the thalami atrophy and basal ganglia (8m) c.1308G>A ND ND ND ND Yes NA NA NA NA NA NA Severe Alive (p.Val421Met) / psychomotor (¿) 5 c.1308G>A retardation (p.Val421Met)20 IUGR; Neonatal Congenital Yes Yes ↓ Large -- Persistent Dilated right - - Death (3 c.612_615dupA Cerebral period lactic periventricular severe ventricle and months) CTG intraventric acidosis.
    [Show full text]
  • Cerebral Hypotonia by Mihee Bay MD (Dr
    Cerebral hypotonia By Mihee Bay MD (Dr. Bay of Kennedy Krieger Institute and Johns Hopkins School of Medicine has no relevant financial relationships to disclose.) Originally released July 12, 2006; last updated February 1, 2016; expires February 1, 2019 Introduction This article includes discussion of cerebral hypotonia, central hypotonia, essential hypotonia, benign congenital hypotonia, and floppy infant. The foregoing terms may include synonyms, similar disorders, variations in usage, and abbreviations. Overview Hypotonia is a clinical manifestation of numerous diseases affecting the central and/or peripheral motor nervous system. The key to accurate diagnosis involves integral steps of evaluation that include a detailed history, examination, and diagnostic tests. “Cerebral” (or central) hypotonia implies pathogenesis from abnormalities from the central nervous system, and related causal disorders include cerebral dysgenesis and genetic or metabolic disorders. Patients with central hypotonia generally have hypotonia without associated weakness, in contrast to the peripheral (lower motor neuron) causes, which typically produce both hypotonia and muscle weakness. Hypotonia is a clinical manifestation of over 500 genetic disorders; thus, a logical, stepwise approach to diagnosis is essential. With recent advances in the field of genetic testing, diagnostic yield will undoubtedly improve. There is no cure, but treatment includes supportive therapies, such as physical and occupational therapy, and diagnosis-specific management. Key points • Hypotonia is reduced tension or resistance of passive range of motion. • The first step in the evaluation of a child with hypotonia is localization to the central (“cerebral”) or peripheral nervous system, or both. • Central hypotonia is more likely to be noted axially with normal strength and hyperactive to normal deep tendon reflexes.
    [Show full text]
  • Mean Platelet Volume in Asymptomatic Chorioamnionitis-Exposed Infants
    www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2021;10(1):e100132 doi: 10.7363/100132 Received: 2019 Aug 22; revised: 2020 Jan 26; accepted: 2020 Feb 02; published online: 2020 Dec 28 Original article Mean platelet volume in asymptomatic chorioamnionitis- exposed infants. A retrospective case-control study Atef Alshafei, Moustafa Hassan, Yaser El saba, Anwar Khan, Mahmoud Ahmed Neonatology Section, Pediatric Department, Dubai Hospital, Dubai, UAE Abstract Introduction: Maternal chorioamnionitis (CA) is a serious condition causing several neonatal morbidities and long-term neurodevelopmental sequelae in exposed infants. Current guidelines still recommend admission, laboratory evaluation, and antibiotic administration to all CA-exposed infants. The incidence of early-onset neonatal sepsis (EOS) is currently low, owing to the routine intrapartum antibiotic administration to mothers identified to be at risk of developing CA. New diagnostic tools for early diagnosis of sepsis in apparently healthy infants exposed to maternal CA are needed. Previous studies showed that mean platelet volume (MPV) is evolving as a potential inflammatory marker of neonatal sepsis. We aimed to study whether MPV can be used as an adjuvant diagnostic tool for EOS in asymptomatic CA-exposed infants. Objective: To evaluate the role of MPV as an adjuvant biomarker of EOS in cases of asymptomatic CA-exposed infants. Design: Retrospective case-control study. Setting: A tertiary care Neonatal Intensive Care Unit (NICU). Patients: Asymptomatic CA-exposed infants 37-40 weeks of gestation admitted between May 2016 and April 2019 to the NICU of Dubai Hospital, UAE. Results: A total of 1,300 infants were admitted to NICU during the study period.
    [Show full text]
  • Long-Term Outcome After Neonatal Meconium Obstruction
    Long-term Outcome After Neonatal Meconium Obstruction Julie R. Fuchs, MD, and Jacob C. Langer, MD ABSTRACT. Objective. It is unclear whether children meconium ileus and those undergoing resection or enter- with cystic fibrosis (CF) who present with neonatal ostomy. Patients with meconium obstruction who do not meconium ileus have a different long-term outcome from have CF have an excellent long-term prognosis. This those presenting later in childhood with pulmonary com- information will be useful in counseling the families of plications or failure to thrive. We examined a cohort of infants presenting with neonatal meconium obstruction. patients with meconium ileus, and compared their long- Pediatrics 1998;101(4). URL: http://www.pediatrics.org/ term outcome with children who had CF without meco- cgi/content/full/101/4/e7; cystic fibrosis, meconium ileus, nium ileus and neonates who had meconium obstruction meconium plug syndrome. without CF (meconium plug syndrome). Study Design. Comparative study using retrospective and follow-up interview data. ABBREVIATION. CF, cystic fibrosis. Patients. Group 1 consisted of 35 surviving CF pa- tients who presented with meconium ileus between 1966 econium obstruction in the neonate is a and 1992. Two control groups were also studied: 35 age- spectrum of disease that includes meco- and sex-matched CF patients without meconium ileus 1 (group 2), and 12 infants presenting with meconium plug Mnium ileus and meconium plug syndrome. syndrome during the same time period (group 3). Meconium ileus is characterized by extremely viscid, Outcome Measures. Pulmonary, gastrointestinal, nu- protein-rich inspissated meconium causing terminal tritional, and functional status were reviewed, and sur- ileal obstruction, and accounts for approximately gical complications were recorded.
    [Show full text]
  • Common Anomalies Associated To
    ISSN: 2643-3885 Muhsin. Int J Foot Ankle 2018, 2:013 Volume 2 | Issue 2 Open Access International Journal of Foot and Ankle RESEARCH ARTICLE Common Anomalies Associated To Congenital Vertical Talus: A Single Center Experience Elmas Muhsin* Check for Department of Medical Genetic, Afyon Kocatepe University, Turkey updates *Corresponding author: Elmas Muhsin, Department of Medical Genetic, Afyon Kocatepe University, Afyonkarahisar, Turkey vicular. The incidence is estimated to be one in 10,000. Abstract Approximately half of all cases (idiopathic) are associ- Background: Congenital vertical talus is defined as a foot deformity in which the calcaneus is in equinus, the talus is ated with deformity and 2-5 neuromuscular and genet- plantarflexed, and there is a rigid and irreducible dislocation ic disorders in the remaining cases. There is evidence of the talonavicular joint complex, with the navicular articu- that some isolated deformities are transmitted as an lating on the dorsolateral aspect of the talar neck. It is often autosomal dominant feature with incomplete pene- associated with systemic involvement. trance [1-4]. The deformity is also known by congenital Aims: To identify the most common anomalies accompany- “rocker-bottom” flatfoot because of its rigid deformity ing to CVT (Congenital Vertical Talus). No literature investi- gating similar clinical data was found in the literature review. with the forefoot dorsiflexed and the hindfoot plantar- Study design: CVT has a systemic effect and is accom- flexed. The term “congenital convex pes valgus” is also panied by many anomalies. At the same time as this study, frequently used. To make a definite diagnosis, it is im- anomalies were frequently found accompanying CVT.
    [Show full text]
  • Factors Associated with Low Muscle Tone and Impact of Common
    Original Article DOI: 10.7860/JCDR/2019/39551.12675 Factors Associated with Low Muscle Tone and Section Physiotherapy Impact of Common Musculoskeletal Problems on Motor Development in Preterm Infants at One Year of Corrected Age SRIVARSHA TELEDEVARA1, M RAJESWARI2, R SIVA KUMAR3, N UDAYAKUMAR4 ABSTRACT motor development. Backward multiple regression, Chi-square Introduction: Structural immaturity of muscular system in test Pearson’s correlation were used for data analysis. Preterm Infants (PTI) results in maturation related hypotonia Results: Backward multiple regression analysis showed which is found to be influenced by risk factors present at the statistically significant association of Birth weight, Gestational time of birth. Low muscle tone can lead to lower extremity Age, and Apgar score with low muscle tone in PTI (p<0.05). Chi- malalignment, abnormal positioning and loading resulting in square test was used to compare the muscle tone of PTI and FTI musculoskeletal problems that could have an impact on motor which showed that ATA of PTI was significantly higher than FTI development which is not well established. but within physiological limits (p<0.05). Pearson’s correlation Aim: This study was carried out to analyse the risk factors coefficient showed that there is statistically significant positive associated with low muscle tone in PTI and the impact of correlation between muscle tone and musculoskeletal problems common musculoskeletal problems on motor development of and a negative correlation between musculoskeletal problems PTI at 1 year of corrected age. and Gross Motor Quotient (GMQ) of PDMS 2 in PTI at 1 year of corrected age (p<0.05). Materials and Methods: This Cross sectional study was carried out in 36 PTI and 36 Full Term Infants (FTI) who were recruited Conclusion: Maturation related hypotonia carried during the first from Child Development unit and the details of risk factors were year of life brings about musculoskeletal problems which have obtained from the records.
    [Show full text]
  • WHO Recommendations on Interventions to Improve Preterm Birth Outcomes
    WHO recommendations on interventions to improve preterm birth outcomes For more information, please contact: Department of Reproductive Health and Research World Health Organization ISBN 978 92 4 150898 8 Avenue Appia 20, CH-1211 Geneva 27, Switzerland Fax: +41 22 791 4171 E-mail: [email protected] www.who.int/reproductivehealth WHO recommendations on interventions to improve preterm birth outcomes WHO Library Cataloguing-in-Publication Data WHO recommendations on interventions to improve preterm birth outcomes. Contents: Appendix: WHO recommendations on interventions to improve preterm birth outcomes: evidence base 1.Premature Birth – prevention and control. 2.Infant, Premature. 3.Infant Mortality – prevention and control. 4.Prenatal Care. 5.Infant Care. 6.Guideline. I.World Health Organization. ISBN 978 92 4 150898 8 (NLM Classifi cation: WQ 330)Contents © World Health Organization 2015 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Neonatal Hypotonia
    Neonatal Hypotonia Clinical Approach to Floppy Baby Hypotonia in the newborn is a common presenting feature of systemic illness or neurologic dysfunction at any level of the central or peripheral nervous system. It is defined as reduced resistance to passive range of motion in joints. Etiology: diverse Causes include (but are not limited to): Central Sepsis (most common) Hypoxic ischemic encephalopathy Intracranial hemorrhage Cerebral malformations Chromosomal abnormalities (e.g.Trisomy 21, Prader-Willi syndrome) Congenital infections (TORCH) Drug effects (e.g. benzodiazepines, Magnesium toxicity) Inborn errors of metabolism Endocrine: hypothyroidism Benign congenital hypotonia Spinal cord Birth trauma (especially Breech delivery) Syringomyelia Anterior Horn Cell Spinal Muscular Atrophy Neurogenic arthrogryposis Neuromuscular Myasthenia gravis (transient/ congenital) junction Infantile botulism Peripheral nerves Congenital hypomyelinating neuropathy Hereditary motor and sensory neuropathies (Dejerine-Sottas disease) Hereditary sensory and autonomic neuropathy Guillain Barre syndrome (very rare) Muscle Congenital myopathies (e.g. central core disease, Nemaline Rod myopathy, myotubular myopathy, congenital fiber type disproportion and multicore myopathy) Congenital muscular dystrophies( merosin deficient, Walker- Warburg disease, muscle-eye-brain disease, Fukuyama disease Muscular dystrophies (inc. congenital myotonic dystrophy) Metabolic myopathies Disease of Glycogen Metabolism and multisystem Acid maltase deficiency
    [Show full text]
  • Review and Hypothesis: Syndromes with Severe Intrauterine Growth
    RESEARCH REVIEW Review and Hypothesis: Syndromes With Severe Intrauterine Growth Restriction and Very Short Stature—Are They Related to the Epigenetic Mechanism(s) of Fetal Survival Involved in the Developmental Origins of Adult Health and Disease? Judith G. Hall* Departments of Medical Genetics and Pediatrics, UBC and Children’s and Women’s Health Centre of British Columbia Vancouver, British Columbia, Canada Received 4 June 2009; Accepted 29 August 2009 Diagnosing the specific type of severe intrauterine growth restriction (IUGR) that also has post-birth growth restriction How to Cite this Article: is often difficult. Eight relatively common syndromes are dis- Hall JG. 2010. Review and hypothesis: cussed identifying their unique distinguishing features, over- Syndromes with severe intrauterine growth lapping features, and those features common to all eight restriction and very short stature—are they syndromes. Many of these signs take a few years to develop and related to the epigenetic mechanism(s) of fetal the lifetime natural history of the disorders has not yet been survival involved in the developmental completely clarified. The theory behind developmental origins of origins of adult health and disease? adult health and disease suggests that there are mammalian Am J Med Genet Part A 152A:512–527. epigenetic fetal survival mechanisms that downregulate fetal growth, both in order for the fetus to survive until birth and to prepare it for a restricted extra-uterine environment, and that these mechanisms have long lasting effects on the adult health of for a restricted extra-uterine environment [Gluckman and Hanson, the individual. Silver–Russell syndrome phenotype has recently 2005; Gluckman et al., 2008].
    [Show full text]
  • AMERICAN ACADEMY of PEDIATRICS Management of Hyperbilirubinemia in the Newborn Infant 35 Or More Weeks of Gestation
    AMERICAN ACADEMY OF PEDIATRICS CLINICAL PRACTICE GUIDELINE Subcommittee on Hyperbilirubinemia Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation ABSTRACT. Jaundice occurs in most newborn infants. Hyperbilirubinemia”3 for a description of the meth- Most jaundice is benign, but because of the potential odology, questions addressed, and conclusions of toxicity of bilirubin, newborn infants must be monitored this report.) This guideline is intended for use by to identify those who might develop severe hyperbili- hospitals and pediatricians, neonatologists, family rubinemia and, in rare cases, acute bilirubin encephalop- physicians, physician assistants, and advanced prac- athy or kernicterus. The focus of this guideline is to tice nurses who treat newborn infants in the hospital reduce the incidence of severe hyperbilirubinemia and bilirubin encephalopathy while minimizing the risks of and as outpatients. A list of frequently asked ques- unintended harm such as maternal anxiety, decreased tions and answers for parents is available in English breastfeeding, and unnecessary costs or treatment. Al- and Spanish at www.aap.org/family/jaundicefaq. though kernicterus should almost always be prevent- htm. able, cases continue to occur. These guidelines provide a framework for the prevention and management of DEFINITION OF RECOMMENDATIONS hyperbilirubinemia in newborn infants of 35 or more The evidence-based approach to guideline devel- weeks of gestation. In every infant, we recommend that clinicians 1) promote and support successful breastfeed- opment requires that the evidence in support of a ing; 2) perform a systematic assessment before discharge policy be identified, appraised, and summarized and for the risk of severe hyperbilirubinemia; 3) provide that an explicit link between evidence and recom- early and focused follow-up based on the risk assess- mendations be defined.
    [Show full text]