Novel Variants in Established Hypopituitarism Genes Expands Our Knowledge of Phenotypic Spectrum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thesis Template
Functional and Structural Characterization Reveals Novel FBXW7 Biology by Tonny Chao Huang A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Medical Biophysics University of Toronto © Copyright by Tonny Chao Huang 2018 Functional and Structural Characterization Reveals Novel FBXW7 Biology Tonny Chao Huang Master of Science Department of Medical Biophysics University of Toronto 2018 Abstract This thesis aims to examine aspects of FBXW7 biology, a protein that is frequently mutated in a variety of cancers. The first part of this thesis describes the characterization of FBXW7 isoform and mutant substrate profiles using a proximity-dependent biotinylation assay. Isoform-specific substrates were validated, revealing the involvement of FBXW7 in the regulation of several protein complexes. Characterization of FBXW7 mutants also revealed site- and residue-specific consequences on the binding of substrates and, surprisingly, possible neo-substrates. In the second part of this thesis, we utilize high-throughput peptide binding assays and statistical modelling to discover novel features of the FBXW7-binding phosphodegron. In contrast to the canonical motif, a possible preference of FBXW7 for arginine residues at the +4 position was discovered. I then attempted to validate this feature in vivo and in vitro on a novel substrate discovered through BioID. ii Acknowledgments The past three years in the Department of Medical Biophysics have defied expectations. I not only had the opportunity to conduct my own independent research, but also to work with distinguished collaborators and to explore exciting complementary fields. I experienced the freedom to guide my own academic development, as well as to pursue my extracurricular interests. -
Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P. -
1A Multiple Sclerosis Treatment
The Pharmacogenomics Journal (2012) 12, 134–146 & 2012 Macmillan Publishers Limited. All rights reserved 1470-269X/12 www.nature.com/tpj ORIGINAL ARTICLE Network analysis of transcriptional regulation in response to intramuscular interferon-b-1a multiple sclerosis treatment M Hecker1,2, RH Goertsches2,3, Interferon-b (IFN-b) is one of the major drugs for multiple sclerosis (MS) 3 2 treatment. The purpose of this study was to characterize the transcriptional C Fatum , D Koczan , effects induced by intramuscular IFN-b-1a therapy in patients with relapsing– 2 1 H-J Thiesen , R Guthke remitting form of MS. By using Affymetrix DNA microarrays, we obtained and UK Zettl3 genome-wide expression profiles of peripheral blood mononuclear cells of 24 MS patients within the first 4 weeks of IFN-b administration. We identified 1Leibniz Institute for Natural Product Research 121 genes that were significantly up- or downregulated compared with and Infection Biology—Hans-Knoell-Institute, baseline, with stronger changed expression at 1 week after start of therapy. Jena, Germany; 2University of Rostock, Institute of Immunology, Rostock, Germany and Eleven transcription factor-binding sites (TFBS) are overrepresented in the 3University of Rostock, Department of Neurology, regulatory regions of these genes, including those of IFN regulatory factors Rostock, Germany and NF-kB. We then applied TFBS-integrating least angle regression, a novel integrative algorithm for deriving gene regulatory networks from gene Correspondence: M Hecker, Leibniz Institute for Natural Product expression data and TFBS information, to reconstruct the underlying network Research and Infection Biology—Hans-Knoell- of molecular interactions. An NF-kB-centered sub-network of genes was Institute, Beutenbergstr. -
PROTEOME of the HUMAN CHROMOSOME 18: GENE-CENTRIC IDENTIFICATION of TRANSCRIPTS, PROTEINS and PEPTIDES Addendum to the Roadmap
PROTEOME OF THE HUMAN CHROMOSOME 18: GENE-CENTRIC IDENTIFICATION OF TRANSCRIPTS, PROTEINS AND PEPTIDES Addendum to the Roadmap: HEALTH ASPECTS 1. PROTEOMICS MEETS MEDICINE At its very beginning, one of the goals of human proteomics became a disease biomarker discovery. Many works compared diseased and normal tissues and liquids to get diagnostic profiles by many proteomics methods. Of them, some cancer proteome profiling studies were considered too optimistic in terms of clinical applicability due to incorrect experimental design [Petricoin], thereby conferring the negative expectations from proteomics in translational medicine [Diamantidis, Nature]. The interlaboratory reproducibility of proteomics pipelines also was considered as a shortage in some papers, e.g. in the works of Bell et al [2009] who tested the proteome MS methods with 20-protein standard sample. These difficulties at the early stage of proteomics were partly caused by the fact that many attempts were mostly directed to the technique adjustment rather than to the clinically relevant result. However, the recent advances in mass-spectrometry including the use of MRM to quantify peptides of proteome [Anderson Hunter 2006] made the community to have a view of cautious optimism on the problem of translation to medicine [Nilsson 2010]. A reproducibility problem stated in [Bell 2009] was shown to be mainly caused by the bioinformatics misinterpretation whereas the MS itself worked properly. The readiness of MRM-based platforms to the clinical use is illustrated by the attempt to pass FDA with the mock application which describes MS-based quantitation test for 10 proteins [Regnier FE 2010]. In its current state, the test has not got a clearance. -
A High Throughput, Functional Screen of Human Body Mass Index GWAS Loci Using Tissue-Specific Rnai Drosophila Melanogaster Crosses Thomas J
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J. Baranski Washington University School of Medicine in St. Louis Aldi T. Kraja Washington University School of Medicine in St. Louis Jill L. Fink Washington University School of Medicine in St. Louis Mary Feitosa Washington University School of Medicine in St. Louis Petra A. Lenzini Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Baranski, Thomas J.; Kraja, Aldi T.; Fink, Jill L.; Feitosa, Mary; Lenzini, Petra A.; Borecki, Ingrid B.; Liu, Ching-Ti; Cupples, L. Adrienne; North, Kari E.; and Province, Michael A., ,"A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses." PLoS Genetics.14,4. e1007222. (2018). https://digitalcommons.wustl.edu/open_access_pubs/6820 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Thomas J. Baranski, Aldi T. Kraja, Jill L. Fink, Mary Feitosa, Petra A. Lenzini, Ingrid B. Borecki, Ching-Ti Liu, L. Adrienne Cupples, Kari E. North, and Michael A. Province This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/6820 RESEARCH ARTICLE A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J. -
The Role of Integrins in Enterovirus Infections and in Metastasis of Cancer
TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS _____________________________________________________________________ SARJA – SER. D OSA– TOM. 908 MEDICA - ODONTOLOGICA THE ROLE OF INTEGRINS IN ENTEROVIRUS INFECTIONS AND IN METASTASIS OF CANCER by Åse Karttunen TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2010 TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS _____________________________________________________________________ SARJA – SER. D OSA– TOM. 908 MEDICA - ODONTOLOGICA THE ROLE OF INTEGRINS IN ENTEROVIRUS INFECTIONS AND IN METASTASIS OF CANCER by Åse Karttunen TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2010 From the Department of Virology, University of Turku, Turku, the Department of Virology, Haartman Institute, the Helsinki Biomedical Graduate School, University of Helsinki, Helsinki, and the Department of Biochemistry and Pharmacy, Åbo Akademi University, Turku, Finland. Supervised by Professor Timo Hyypiä Department of Virology University of Turku Turku, Finland Reviewed by Professor Klaus Hedman Haartman Institute Department of Virology University of Helsinki Helsinki, Finland and Docent Arno Hänninen Department of Medical Microbiology and Immunology University of Turku Turku, Finland Opponent Professori Ari Hinkkanen A. I. Virtanen-instituutti Bioteknologia ja molekulaarinen lääketiede Itä-Suomen yliopisto Kuopio, Finland ISBN 978-951-29-4313-5 (PRINT) ISBN 978-951-29-4314-2 (PDF) ISSN 03559483 Helsinki University Printing House Helsinki 2010 To my Family ABSTRACT Åse Karttunen THE ROLE OF INTEGRINS IN ENTEROVIRUS INFECTIONS AND IN METASTASIS OF CANCER The Department of Virology, University of Turku, Turku, the Department of Virology, Haartman Institute, and the Helsinki Biomedical Graduate School, University of Helsinki, Helsinki, and the Department of Biochemistry and Pharmacy, Åbo Akademi University, Turku, Finland. Annales Universitatis Turkuensis, Medica-Odontologica, Yliopistopaino, Helsinki, 2010. Integrins are a family of transmembrane glycoproteins, composed of two different subunits (α and β). -
TGIF1 Antibody (Center A160) Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap12062c
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 TGIF1 Antibody (Center A160) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP12062c Specification TGIF1 Antibody (Center A160) - Product Information Application WB,E Primary Accession Q15583 Other Accession Q90655, NP_733796.2, NP_003235.1 Reactivity Human Predicted Chicken Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 43013 Antigen Region 145-174 Western blot analysis of TGIF1 (arrow) using TGIF1 Antibody (Center A160) - Additional rabbit polyclonal TGIF1 Antibody (Center Information A160) (Cat. #AP12062c). 293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or Gene ID 7050 transiently transfected (Lane 2) with the TGIF1 gene. Other Names Homeobox protein TGIF1, 5'-TG-3'-interacting factor 1, TGIF1, TGIF TGIF1 Antibody (Center A160) - Background Target/Specificity This TGIF1 antibody is generated from The protein encoded by this gene is a member rabbits immunized with a KLH conjugated of the synthetic peptide between 145-174 amino three-amino acid loop extension (TALE) acids from the Central region of human superclass of atypical TGIF1. homeodomains. TALE homeobox proteins are highly conserved Dilution transcription regulators. This particular WB~~1:1000 homeodomain binds to a previously characterized retinoid X receptor Format responsive element Purified polyclonal antibody supplied in PBS from the cellular retinol-binding protein II with 0.09% (W/V) sodium azide. This promoter. In addition antibody is prepared by Saturated to its role in inhibiting 9-cis-retinoic Ammonium Sulfate (SAS) precipitation acid-dependent RXR alpha followed by dialysis against PBS. transcription activation of the retinoic acid Storage responsive element, Maintain refrigerated at 2-8°C for up to 2 the protein is an active transcriptional weeks. -
Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ...................................................... -
Centre for Arab Genomic Studies a Division of Sheikh Hamdan Award for Medical Sciences
Centre for Arab Genomic Studies A Division of Sheikh Hamdan Award for Medical Sciences The Catalogue for Transmission Genetics in Arabs CTGA Database Transforming Growth Factor-Beta-Induced Factor Alternative Names Mutations in the TGIF1 gene have been associated TGIF with Holoprosencephaly 4 (HPE4), an autosomal TGIF1 dominant neurological condition. TGFB-Induced Factor TG-Interacting Factor Molecular Genetics Record Category The TGIF1 gene is located on the short arm of Gene locus chromosome 18. It spans a length of 48.3 kb of DNA and its coding sequence is spread across 12 WHO-ICD exons. The gene encodes a 43 kDa protein product N/A to gene loci comprised of 401 amino acids. Four distinct isoforms of the TGIF1 protein exist due to Incidence per 100,000 Live Births alternatively spliced transcript variants. The gene is N/A to gene loci expressed in various tissues, including the liver, lung, thymus, bone marrow and brain. OMIM Number Heterozygous mutations in the TGIF1 gene 602630 associated with HPE4 include deletions, missense variants and premature truncations that impair its Mode of Inheritance function. N/A to gene loci Epidemiology in the Arab World Gene Map Locus Saudi Arabia 18p11.31 Monies et al. (2017) reported the genomic landscape of Saudi Arabia based on the findings of Description 1000 diagnostic panels and exomes. One patient, an Retinoid X receptors (RXRs) are nuclear receptors 11-year-old male, suffered from that function as transcriptional activators. In hemimegalencephaly, developmental delay and response to retinoids, they bind to specific cis- ADHD. He also had abnormal pigmentation all acting RXR responsive promoter elements of the over his body. -
VU Research Portal
VU Research Portal Genetic architecture and behavioral analysis of attention and impulsivity Loos, M. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Loos, M. (2012). Genetic architecture and behavioral analysis of attention and impulsivity. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28. Sep. 2021 Chapter 5 Independent genetic loci for sensorimotor gating and attentional performance in BXD recombinant inbred strains Maarten Loos, Jorn Staal, Tommy Pattij, Neuro-BSIK Mouse Phenomics consortium, August B. Smit, Sabine Spijker Genes Brain and Behavior, In Press 87 88 Sensorimotor gating and attention Abstract A startle reflex in response to an intense acoustic stimulus is inhibited when a barely detectable pulse precedes the startle stimulus by 30 – 500 ms. -
Investigating Developmental and Epileptic Encephalopathy Using Drosophila Melanogaster
International Journal of Molecular Sciences Review Investigating Developmental and Epileptic Encephalopathy Using Drosophila melanogaster Akari Takai 1 , Masamitsu Yamaguchi 2,3, Hideki Yoshida 2 and Tomohiro Chiyonobu 1,* 1 Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; [email protected] 2 Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; [email protected] (M.Y.); [email protected] (H.Y.) 3 Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto 619-0237, Japan * Correspondence: [email protected] Received: 15 August 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: Developmental and epileptic encephalopathies (DEEs) are the spectrum of severe epilepsies characterized by early-onset, refractory seizures occurring in the context of developmental regression or plateauing. Early infantile epileptic encephalopathy (EIEE) is one of the earliest forms of DEE, manifesting as frequent epileptic spasms and characteristic electroencephalogram findings in early infancy. In recent years, next-generation sequencing approaches have identified a number of monogenic determinants underlying DEE. In the case of EIEE, 85 genes have been registered in Online Mendelian Inheritance in Man as causative genes. Model organisms are indispensable tools for understanding the in vivo roles of the newly identified causative genes. In this review, we first present an overview of epilepsy and its genetic etiology, especially focusing on EIEE and then briefly summarize epilepsy research using animal and patient-derived induced pluripotent stem cell (iPSC) models. The Drosophila model, which is characterized by easy gene manipulation, a short generation time, low cost and fewer ethical restrictions when designing experiments, is optimal for understanding the genetics of DEE. -
146823088.Pdf
Syddansk Universitet Identification of genetic elements in metabolism by high-throughput mouse phenotyping ARTICLE DOI: 10.1038/s41467-017-01995-2 OPEN Identification of genetic elements in metabolism by high-throughput mouse phenotyping Jan Rozman et al.# Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate 1234567890 and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co- regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome. Correspondence and requests for materials should be addressed to M.H.d.A. (email: [email protected]) #A full list of authors and their affliations appears at the end of the paper NATURE COMMUNICATIONS | (2018) 9:288 | DOI: 10.1038/s41467-017-01995-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01995-2 etabolic disorders, including obesity and type 2 diabetes results obtained from genotype–phenotype associations in disease Mmellitus, are major challenges for public health.