Exploration of Interaction Between Common and Rare Variants in Genetic Susceptibility to Holoprosencephaly Artem Kim

Total Page:16

File Type:pdf, Size:1020Kb

Exploration of Interaction Between Common and Rare Variants in Genetic Susceptibility to Holoprosencephaly Artem Kim Exploration of interaction between common and rare variants in genetic susceptibility to holoprosencephaly Artem Kim To cite this version: Artem Kim. Exploration of interaction between common and rare variants in genetic susceptibility to holoprosencephaly. Human health and pathology. Université Rennes 1, 2020. English. NNT : 2020REN1B019. tel-03199534 HAL Id: tel-03199534 https://tel.archives-ouvertes.fr/tel-03199534 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE DE RENNES 1 ECOLE DOCTORALE N° 605 Biologie Santé Spécialité : Génétique, génomique et bio-informatique Par Artem KIM « Prénom NOM » Exploration de l’interaction entre variants rares et communs dans la susceptibilité génétique à holoprosencéphalie Thèse présentée et soutenue à Rennes, le 30/09/2020 Unité de recherche : Institut de Génétique et Développement de Rennes (IGDR), UMR6290 CNRS, Université Rennes 1 Rapporteurs avant soutenance : Composition du Jury : Thomas BOURGERON Thomas BOURGERON Professeur des universités Professeur des universités, Université de Paris, CNRS UMR3571 Université de Paris, CNRS UMR3571 Gaël Nicolas Gaël Nicolas Maître de conférences des universités, Université de Rouen, Inserm U1079 Maître de conférences des universités Université de Rouen, Inserm U1079 Sylvain Lehmann Professeur des universités, Université de Montpellier, CNRS UMR1051 Président Sandrine Lagarrigue Professeur des universités, Agrocampus Ouest, UMR13448 Directeur de thèse Marie de Tayrac Maître de conférences des universités, Université Rennes 1, CNRS UMR6290 Co-directeur de thèse Véronique David Professeur des universités, Université Rennes 1, CNRS UMR6290 SUMMARY INTRODUCTION .............................................................................................................. 1 I. Mendelian and complex genetic disorders ....................................................................... 2 a. The human genome ................................................................................................................. 2 B. Genetic disorders and mutations ............................................................................................. 3 c. Mendelian disease era and single-gene disorders ..................................................................... 5 d. Complex non-Mendelian disorders .......................................................................................... 7 e. Towards the end of the Mendelian disease era ...................................................................... 11 II. Holoprosencephaly ....................................................................................................... 13 a. Definition ............................................................................................................................... 13 B. Clinical spectrum ................................................................................................................... 13 c. Etiology .................................................................................................................................. 17 d. Diagnostic and molecular testing ........................................................................................... 23 III. Molecular and genetic Basis of HPE ............................................................................. 25 a. ForeBrain and facial development .......................................................................................... 25 B. Molecular pathways of HPE ................................................................................................... 32 c. Genetic mechanisms of HPE ................................................................................................... 43 d. Non-mendelian HPE - Article I. ............................................................................................... 50 IV. Next Generation Sequencing in medical genomics ....................................................... 51 a. Main principles ...................................................................................................................... 52 B. Applications ........................................................................................................................... 53 c. DNA-Seq and identification of disease-causing variants .......................................................... 55 d. Novel strategies and future challenges for clinical variant interpretation ............................... 62 RESULTS ......................................................................................................................... 70 I. Implication of hypomorphic variants and oligogenic inheritance in HPE. ....................... 70 a. Background and oBjectives .................................................................................................... 70 B. Methods ................................................................................................................................ 70 c. Results - Article II ................................................................................................................... 78 II. Pathogenic impact of synonymous variants in SHH gene .............................................. 82 a. Background ............................................................................................................................ 82 B. Strategy ................................................................................................................................. 87 c. Results - Article III .................................................................................................................. 90 III. Autosomal recessive holoprosencephaly in consanguineous families .......................... 94 a. Background ............................................................................................................................ 94 B. Strategy ................................................................................................................................. 94 c. Results ................................................................................................................................. 100 DISCUSSION ................................................................................................................ 108 I. Oligogenic inheritance in complex genetic disorders .................................................... 108 II. Novel strategies for investigating the clinical impact of hypomorphic variants ........... 110 III. Autosomal recessive inheritance in HPE .................................................................... 113 IV. Perspectives .............................................................................................................. 113 Conclusion ...................................................................................................................... 117 REFERENCES ................................................................................................................ 120 ACKNOWLEDGEMENTS AND PERSONAL NOTES .................................................. 144 INTRODUCTION 1 I. Mendelian and complex genetic disorders a. The human genome The haploid human genome is composed of roughly 3 billion pairs of nucleotides. While a small amount of genetic information is found in the mitochondria (mitochondrial genome), the major part of human DNA is condensed within the nucleus as 23 pairs of chromosomes, one inherited from each parent. The nuclear genome encodes approximately 30,000 protein-coding genes consisting of coding (exonic) and non- coding (intronic) regions. The exonic regions are spliced and translated into ~100,000 different proteins containing ~6,000,000 amino acids, but compose less than 3 % of the human genome (Bohlander, 2013). The function is much less understood for the remaining, untranslated part of the genome. Sometimes referred to as the genomic ‘dark matter’, the non-coding part of the genome has been shown to play key roles in coordinating critical biological processes (Blaxter, 2010). More than 70% of the human genome is transcribed into RNA that does not encode proteins (ncRNA) but is involved in various regulatory processes of gene expression including splicing (lncRNA), post- transcriptional regulation (miRNA) and translational machinery (rRNA, tRNA) among others (Carcini et al., 2005; Romero-Barios et al., 2018). The non-coding genome also contains over 14,000 pseudogenes - copies of functional genes with coding-sequence alterations. Although considered as evolutionary relics, some pseudogenes have been shown to regulate their protein-coding counterparts (Jackson et al., 2018). In 2007, the authors of the Encyclopedia of DNA Elements (ENCODE) project claimed that a “biochemical function” could be assigned to 80% of the human genome (ENCODE Project Consortium, 2007; 2013). This statement was heavily debated afterwards, based on a loose definition of “function” by the authors and by invoking
Recommended publications
  • Thesis Template
    Functional and Structural Characterization Reveals Novel FBXW7 Biology by Tonny Chao Huang A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Medical Biophysics University of Toronto © Copyright by Tonny Chao Huang 2018 Functional and Structural Characterization Reveals Novel FBXW7 Biology Tonny Chao Huang Master of Science Department of Medical Biophysics University of Toronto 2018 Abstract This thesis aims to examine aspects of FBXW7 biology, a protein that is frequently mutated in a variety of cancers. The first part of this thesis describes the characterization of FBXW7 isoform and mutant substrate profiles using a proximity-dependent biotinylation assay. Isoform-specific substrates were validated, revealing the involvement of FBXW7 in the regulation of several protein complexes. Characterization of FBXW7 mutants also revealed site- and residue-specific consequences on the binding of substrates and, surprisingly, possible neo-substrates. In the second part of this thesis, we utilize high-throughput peptide binding assays and statistical modelling to discover novel features of the FBXW7-binding phosphodegron. In contrast to the canonical motif, a possible preference of FBXW7 for arginine residues at the +4 position was discovered. I then attempted to validate this feature in vivo and in vitro on a novel substrate discovered through BioID. ii Acknowledgments The past three years in the Department of Medical Biophysics have defied expectations. I not only had the opportunity to conduct my own independent research, but also to work with distinguished collaborators and to explore exciting complementary fields. I experienced the freedom to guide my own academic development, as well as to pursue my extracurricular interests.
    [Show full text]
  • Astrin-SKAP Complex Reconstitution Reveals Its Kinetochore
    RESEARCH ARTICLE Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80 David M Kern1,2, Julie K Monda1,2†, Kuan-Chung Su1†, Elizabeth M Wilson-Kubalek3, Iain M Cheeseman1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Cell Biology, The Scripps Research Institute, La Jolla, United States Abstract Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions. *For correspondence: DOI: https://doi.org/10.7554/eLife.26866.001 [email protected] †These authors contributed equally to this work Introduction Competing interests: The The macromolecular kinetochore complex links chromosomes to dynamic microtubule polymers and authors declare that no harnesses the forces generated by microtubule growth and depolymerization to facilitate accurate competing interests exist.
    [Show full text]
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • Identifying Novel Disease-Associated Variants and Understanding The
    Identifying Novel Disease-variants and Understanding the Role of the STAT1-STAT4 Locus in SLE A dissertation submitted to the Graduate School of University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Immunology Graduate Program of the College of Medicine by Zubin H. Patel B.S., Worcester Polytechnic Institute, 2009 John B. Harley, M.D., Ph.D. Committee Chair Gurjit Khurana Hershey, M.D., Ph.D Leah C. Kottyan, Ph.D. Harinder Singh, Ph.D. Matthew T. Weirauch, Ph.D. Abstract Systemic Lupus Erythematosus (SLE) or lupus is an autoimmune disorder caused by an overactive immune system with dysregulation of both innate and adaptive immune pathways. It can affect all major organ systems and may lead to inflammation of the serosal and mucosal surfaces. The pathogenesis of lupus is driven by genetic factors, environmental factors, and gene-environment interactions. Heredity accounts for a substantial proportion of SLE risk, and the role of specific genetic risk loci has been well established. Identifying the specific causal genetic variants and the underlying molecular mechanisms has been a major area of investigation. This thesis describes efforts to develop an analytical approach to identify candidate rare variants from trio analyses and a fine-mapping analysis at the STAT1-STAT4 locus, a well-replicated SLE-risk locus. For the STAT1-STAT4 locus, subsequent functional biological studies demonstrated genotype dependent gene expression, transcription factor binding, and DNA regulatory activity. Rare variants are classified as variants across the genome with an allele-frequency less than 1% in ancestral populations.
    [Show full text]
  • Comprehensive Analysis of Differentially Expressed Lncrnas Mirnas and Mrna and Their Cerna Network of Patients with Rare-Earth Pneumoconiosis
    fgene-12-700398 July 13, 2021 Time: 17:18 # 1 ORIGINAL RESEARCH published: 19 July 2021 doi: 10.3389/fgene.2021.700398 Comprehensive Analysis of Differentially Expressed lncRNAs miRNAs and mRNA and Their ceRNA Network of Patients With Rare-Earth Pneumoconiosis Xue-min Shi, Yu-chao Bai, Yan-rong Gao, Ning Bu, Hai-yan Song, Li-hua Huang, Yu-hang Zhao* and Su-hua Wang* School of Public Health, Baotou Medical College, Baotou, China Rare-earth pneumoconiosis (REP) is the main occupational disease of rare earth exposed workers and there is no specific treatment. In this study, we performed high-throughput sequencing on the plasma of nine REP to describe and analyze the expression profiles of long non-coding RNA (lncRNA), micro RNA (miRNA) and Edited by: Duc-Hau Le, mRNA and investigate their regulatory networks. Our results identified a total of 125 Vingroup Big Data Institute, Vietnam lncRNAs, 5 miRNAs, and 82 mRNAs were differentially expressed in the plasma of Reviewed by: patients with REP. Furthermore, Ontology (GO) and Kyoto Encyclopedia of Genes and Eman Toraih, Genomes (KEGG) analysis were used to analyze the differentially expressed non-coding Tulane University, United States Isha Monga, RNAs (ncRNA). We found the differential expression of ncRNA are mainly related to Columbia University Irving Medical the response of cells to stimulation, Hedgehog signaling pathway and so on. We Center, United States also constructed lncRNA-miRNA-mRNA networks to further explore their underlying *Correspondence: Yu-hang Zhao mechanism and possible relationships in REP. We found that in the competitive [email protected] endogenous RNA (ceRNA) networks, lncRNA acts as a sponge of miRNA to regulate the Su-hua Wang target gene.
    [Show full text]
  • File Download
    The genetic dissection of Myo7a gene expression in the retinas of BXD mice Ye Lu, Zhejiang University Diana Zhou, University of Tennessee Rebeccca King, Emory University Shuang Zhu, University of Texas Medical Branch Claire L. Simpson, University of Tennessee Byron C. Jones, University of Tennessee Wenbo Zhang, University of Texas Medical Branch Eldon Geisert Jr, Emory University Lu Lu, University of Tennessee Journal Title: Molecular Vision Volume: Volume 24 Publisher: Molecular Vision | 2018-02-03, Pages 115-126 Type of Work: Article | Final Publisher PDF Permanent URL: https://pid.emory.edu/ark:/25593/s87np Final published version: http://www.molvis.org/molvis/ Copyright information: © 2018 Molecular Vision. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommerical-NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Accessed September 30, 2021 2:32 AM EDT Molecular Vision 2018; 24:115-126 <http://www.molvis.org/molvis/v24/115> © 2018 Molecular Vision Received 7 June 2017 | Accepted 1 February 2018 | Published 3 February 2018 The genetic dissection of Myo7a gene expression in the retinas of BXD mice Ye Lu,1 Diana Zhou,2 Rebecca King,3 Shuang Zhu,4 Claire L. Simpson,2 Byron C. Jones,2 Wenbo Zhang,4 Eldon E. Geisert,3 Lu Lu2 (The first two authors contributed equally to this work.) 1Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; 2Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN; 3Department of Ophthalmology and Emory Eye Center, Emory University, Atlanta, GA; 4Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX Purpose: Usher syndrome (US) is characterized by a loss of vision due to retinitis pigmentosa (RP) and deafness.
    [Show full text]
  • ZCCHC8, the Nuclear Exosome Targeting Component, Is Mutated in Familial Pulmonary Fibrosis and Is Required for Telomerase RNA Maturation
    Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation Dustin L. Gable,1,2,3 Valeriya Gaysinskaya,2,3 Christine C. Atik,2,3 C. Conover Talbot Jr.,4 Byunghak Kang,5 Susan E. Stanley,1,2,3 Elizabeth W. Pugh,6 Nuria Amat-Codina,2,3 Kara M. Schenk,7 Murat O. Arcasoy,8 Cory Brayton,5 Liliana Florea,6 and Mary Armanios2,3,6,9,10 1Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 2Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 3Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 4Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 5Department of Comparative and Molecular Pathobiology, 6Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 7Osler Medical Housestaff Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 8Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA; 9Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function.
    [Show full text]
  • Produktinformation
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic MYCBP monoclonal antibody (M13), clone 1B12 Catalog # : H00026292-M13 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant Western Blot (Transfected lysate) Description: MYCBP. Immunogen: MYCBP (NP_036465.2, 34 a.a. ~ 103 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: LYEEPEKPNSALDFLKHHLGAATPENPEIELLRLELAEMKEKYEAIVEENK KLKAKLAQYEPPQEEKRAE enlarge Host: Mouse Western Blot (Recombinant protein) Reactivity: Human Sandwich ELISA (Recombinant Isotype: IgG2a Kappa protein) Quality Control Antibody Reactive Against Recombinant Protein. Testing: enlarge ELISA Western Blot detection against Immunogen (33.44 KDa) . Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Datasheet: Download Applications Western Blot (Transfected lysate) Page 1 of 3 2016/5/23 Western Blot analysis of MYCBP expression in transfected 293T cell line by MYCBP monoclonal antibody (M13), clone 1B12. Lane 1: MYCBP transfected lysate(12 KDa). Lane 2: Non-transfected lysate. Protocol Download Western Blot (Recombinant protein) Protocol Download Sandwich ELISA (Recombinant protein) Detection limit for recombinant GST tagged MYCBP is 0.1 ng/ml as a capture antibody.
    [Show full text]
  • Proteomic and Metabolomic Analyses of Mitochondrial Complex I-Deficient
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20652–20663, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene*□S Received for publication, November 25, 2011, and in revised form, April 5, 2012 Published, JBC Papers in Press, April 25, 2012, DOI 10.1074/jbc.M111.327601 Dillon W. Leong,a1 Jasper C. Komen,b1 Chelsee A. Hewitt,a Estelle Arnaud,c Matthew McKenzie,d Belinda Phipson,e Melanie Bahlo,e,f Adrienne Laskowski,b Sarah A. Kinkel,a,g,h Gayle M. Davey,g William R. Heath,g Anne K. Voss,a,h René P. Zahedi,i James J. Pitt,j Roman Chrast,c Albert Sickmann,i,k Michael T. Ryan,l Gordon K. Smyth,e,f,h b2 a,h,m,n3 David R. Thorburn, and Hamish S. Scott Downloaded from From the aMolecular Medicine Division, gImmunology Division, and eBioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, the bMurdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia, the cDépartement de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland, the dCentre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia, the hDepartment of Medical Biology
    [Show full text]
  • The Struggle to Find Reliable Results in Exome Sequencing Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE METHODS ARTICLEprovided by Frontiers - Publisher Connector published: 12 February 2014 doi: 10.3389/fgene.2014.00016 The struggle to find reliable results in exome sequencing data: filtering out Mendelian errors Zubin H. Patel 1,2 †, Leah C. Kottyan1,3 †, Sara Lazaro1,3 , Marc S. Williams 4 , David H. Ledbetter 4 , GerardTromp 4 , Andrew Rupert 5 , Mojtaba Kohram 5 , Michael Wagner 5 , Ammar Husami 6 , Yaping Qian 6 , C. Alexander Valencia 6 , Kejian Zhang 6 , Margaret K. Hostetter 7 , John B. Harley 1,3 and Kenneth M. Kaufman1,3 * 1 Division of Rheumatology, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 2 Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 3 Department of Veterans Affairs, Veterans Affairs Medical Center – Cincinnati, Cincinnati, OH, USA 4 Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA 5 Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 6 Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 7 Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA Edited by: Next Generation Sequencing studies generate a large quantity of genetic data in a Helena Kuivaniemi, Geisinger Health relatively cost and time efficient manner and provide an unprecedented opportunity to System, USA identify candidate causative variants that lead to disease phenotypes. A challenge to these Reviewed by: studies is the generation of sequencing artifacts by current technologies. To identify and Tatiana Foroud, Indiana University School of Medicine, USA characterize the properties that distinguish false positive variants from true variants, we Goo Jun, University of Michigan, USA sequenced a child and both parents (one trio) using DNA isolated from three sources *Correspondence: (blood, buccal cells, and saliva).
    [Show full text]
  • 1A Multiple Sclerosis Treatment
    The Pharmacogenomics Journal (2012) 12, 134–146 & 2012 Macmillan Publishers Limited. All rights reserved 1470-269X/12 www.nature.com/tpj ORIGINAL ARTICLE Network analysis of transcriptional regulation in response to intramuscular interferon-b-1a multiple sclerosis treatment M Hecker1,2, RH Goertsches2,3, Interferon-b (IFN-b) is one of the major drugs for multiple sclerosis (MS) 3 2 treatment. The purpose of this study was to characterize the transcriptional C Fatum , D Koczan , effects induced by intramuscular IFN-b-1a therapy in patients with relapsing– 2 1 H-J Thiesen , R Guthke remitting form of MS. By using Affymetrix DNA microarrays, we obtained and UK Zettl3 genome-wide expression profiles of peripheral blood mononuclear cells of 24 MS patients within the first 4 weeks of IFN-b administration. We identified 1Leibniz Institute for Natural Product Research 121 genes that were significantly up- or downregulated compared with and Infection Biology—Hans-Knoell-Institute, baseline, with stronger changed expression at 1 week after start of therapy. Jena, Germany; 2University of Rostock, Institute of Immunology, Rostock, Germany and Eleven transcription factor-binding sites (TFBS) are overrepresented in the 3University of Rostock, Department of Neurology, regulatory regions of these genes, including those of IFN regulatory factors Rostock, Germany and NF-kB. We then applied TFBS-integrating least angle regression, a novel integrative algorithm for deriving gene regulatory networks from gene Correspondence: M Hecker, Leibniz Institute for Natural Product expression data and TFBS information, to reconstruct the underlying network Research and Infection Biology—Hans-Knoell- of molecular interactions. An NF-kB-centered sub-network of genes was Institute, Beutenbergstr.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]