Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?

Total Page:16

File Type:pdf, Size:1020Kb

Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome? Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. Kay Langenderfer, our secretary, who has always been there to help us in whatever we needed, regardless of the time of day or night, and who always advocated for me. Dr. Andrea Kalinoski, who taught me many of the techniques that I learnt, and who was a helped me understand the projects in the laboratory. Peter Bazeley, without whom this project would be impossible. His knowledge and expertise was invaluable to me, and all the long hours and countless times that he has explained concepts to me was far beyond his call of duty. Dr. Saad Sikhanderkhel who worked tirelessly on getting the breast cancer database up and running. Dr. David Weaver, for his help not only with managing our SNP data so efficiently, but also, for doing our expression arrays. iii Case Western Reserve Gene Expression and Genotyping core facility-Debora Poruban, Tom Merk and Dr. Martina Veigl, for doing all of our SNP arrays, and for working with us to help us achieve our goals. Dr. Seiichi Matsui and Jeffrey LaDuca for doing the SKY imaging for us. Dr. Amira Gohara, who spent many early morning hours patiently going through slides with me to identify cancerous and normal regions. Even with her exceptionally busy schedule, she always accommodated my requests for help, and did it with such pleasure. It was a pleasure working with you Dr. Gohara. University of Michigan, Microscopy and Imaging Centre for the use of their “devil child” Laser Capture Microdissection Microscope. All the friends I have made in the last few years, especially during my time in the Cicila laboratory. Kyle Robinson, my best friend, who always kept me on my toes, asking pertinent questions, and in other cases providing solid answers. He has supported me; been a shoulder to lean on when I was frustrated; been a listening ear when I needed one, or when I wanted to discuss ideas, and been patient with me, no matter what. My family- particularly my sister, and in many ways, most importantly, my mom, who has through the years picked me up when I fell, stayed up late with me working on projects, and been with me throughout all of my endeavors. Never have I known a stronger woman, thank you for being a superb role model. iv Table of Contents Introduction………………………………………………………..1 Literature Review………..………………………………………..5 Materials and Methods…………………………………………...38 Results……………………………………………………………..46 Discussion…………………………………………………………72 Conclusions………………………………………………………..85 Summary…………………………………………………………...86 References…………………………………………………………87 Appendix 1………………………………………………………….97 Appendix 2………………………………………………………….98 Appendix 3………………………………………………………….99 Appendix 4………………………………………………………….100 Appendix 5………………………………………………………….101 Appendix 6………………………………………………………….102 Appendix 7………………………………………………………….106 Appendix 8………………………………………………………….122 Appendix 9………………………………………………………….126 Appendix 10………………………………………………………...127 Abstract……………………………………………………………...128 v Introduction Although lifestyle and environment play a role in carcinogenesis, it is well-known that cancer is a genetic disease, in which the guardians of the genome have been mutated or lost, resulting in uncontrolled cell division and genetic instability, which favor tumor progression. Genetic instability is defined as subtle changes in DNA sequence such as point mutations, that can subsequently result in chromosomal losses, gains, translocations or copy number changes. The changes from genetic instability can, in turn, lead to the loss of genomic information from one homologous chromosome (parent), known as the loss of heterozygosity (Olshen et al.) (Argos et al., 2008; Dutt & Beroukhim, 2007; Zheng, Peng, Li, & He, 2005). Thus, LOH can potentially be used as a gauge of genomic instability. LOH can be measured using single nucleotide polymorphism (SNP) assays, which are common genetic variations of one base pair, widely distributed throughout the human genome. SNPs are widely used as markers for genetic diseases, and can detect LOHs in relatively small regions of the genome. As a result of genetic instability, many tumors are aneuploid and no longer have normal diploid genomes (Zheng et al., 2005). By definition, aneuploidy is a change in chromosome number that is not the exact multiple of the normal haploid karyotype (Torres, Williams, & Amon, 2008). Due to the genetic instability characteristic of aneuploid cancers, these cancers frequently contain structurally abnormal chromosomes such as translocations and deletions. Another subtle type of genetic instability, copy number alterations (CNAs), can lead to genome wide deregulation of gene expression, even in diploid cancers and contribute to the development or progression of several cancers (Pollack et al., 2002). Spectral karyotyping (SKY) is an accurate technique of staining each chromosome to visualize chromosomal aberrations, including CNAs (Schrock et al., 2006). 1 Another commonly employed method to look at genetic instability of chromosomes is to investigate the genome wide alterations of gene expression. Gene expression arrays can be used to explore the expression of genes that are essential for survival and also determine which genes are involved in carcinogenesis and tumor progression (Christensen, McCoy, & Ford, 2008). Our first hypothesis is that aneuploidy occurs in cells as a system of retaining at least a haploid genome in cancer cells. We will use genome- wide, Single Nucleotide Polymorphism (SNPs) patterns to test this hypothesis. The novel method developed in this project, which we call Probability Stripes, will aid the detection of LOHs in the SNP patterns to look at aneuploidy, chromosomal instability and LOH. This method also eliminates noise in the SNP data. The probability stripes model will be applied to: 1) normal samples obtained from healthy, twin sisters, to obtain a baseline level of LOH (if any), and to illustrate how the model works; and 2) prostate cancer cell line DU-145 to visualize the LOH patterns in cancer cell lines. This data together with copy number analysis done using Spectral Karyotyping will allow us to see if aneuploid chromosomal abnormalities and SNP- detected LOHs interact. A potential clinical application of this investigation into the molecular mechanisms of aneuploidy could potentially be an important prognostic indicator for cancer patients. Our second hypothesis is that there will be genes expressed throughout the genome, both in tissues and in long-term cell lines, which may be responsible for the retention of structurally abnormal chromosomes found in aneuploid cancers. To test this hypothesis, we first take a genome wide look at the expression of all human genes for which gene expression arrays are available, in a large variety of normal and cancerous cell lines and tissues, to define a set of universally expressed genes. We 2 will then determine whether or not the universally expressed cell survival genes (hypothesis 2) are preserved in the haploid genome that is retained by the cancer cell lines after LOH formation (hypothesis 1). The motivation behind our first long term goal of improving the SNP-LOH assay is to obtain a better screening method for deciding optimal, individualized treatment regimens for breast cancer patients. We currently do not have a method to effectively and individually screen breast cancer patients to determine the best patient treatment regimen from the staging criteria of individual breast cancers. This results in many women receiving treatments that may not be needed or beneficial. Our work may aid in determining whether the observed genetic events can be used as a screen which may be part of a diagnostic panel. It is possible that the use of a whole genome SNP technique to obtain a LOH pattern may distinguish different tumor grades and thereby help predict better treatment regimens for individual patients. The motivation behind our second hypothesis is to explain the reason for selectively retained chromosomal
Recommended publications
  • Exome Sequencing in Bipolar Disorder Reveals Shared Risk Gene AKAP11 with Schizophrenia
    medRxiv preprint doi: https://doi.org/10.1101/2021.03.09.21252930; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Exome sequencing in bipolar disorder reveals shared risk gene AKAP11 with schizophrenia Duncan S Palmer1,2,*, Daniel P Howrigan1,2, Sinéad B Chapman2, Rolf Adolfsson3, Nick Bass4, Douglas Blackwood5, Marco PM Boks6, Chia-Yen Chen7,1,2, Claire Churchhouse1,8,2, Aiden P Corvin9, Nicholas Craddock10, David Curtis11,12, Arianna Di Florio13, Faith Dickerson14, Fernando S Goes15, Xiaoming Jia16, Ian Jones10, Lisa Jones17, Lina Jonsson18,19, Rene S Kahn20, Mikael Landén18,21, Adam Locke22, Andrew McIntosh5, Andrew McQuillin4, Derek W Morris23, Michael C O'Donovan24, Roel A Ophoff 25,26, Michael J Owen24, Nancy Pedersen21, Danielle Posthuma27, Andreas Reif28, Neil Risch29, Catherine Schaefer30, Laura Scott31, Tarjinder Singh1,2, Jordan W Smoller32,33, Matthew Solomonson8, David St. Clair34, Eli A Stahl 35, Annabel Vreeker26, James Walters24, Weiqing Wang35, Nicholas A Watts 8, Robert Yolken36, Peter Zandi15, and Benjamin M Neale1,8,2,*. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.03.09.21252930; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Genome-Wide Analysis of Host-Chromosome Binding Sites For
    Lu et al. Virology Journal 2010, 7:262 http://www.virologyj.com/content/7/1/262 RESEARCH Open Access Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) Fang Lu1, Priyankara Wikramasinghe1, Julie Norseen1,2, Kevin Tsai1, Pu Wang1, Louise Showe1, Ramana V Davuluri1, Paul M Lieberman1* Abstract The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP- Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A con- sensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, sug- gesting that some of these sites are indirectly bound by EBNA1.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • PRODUCT SPECIFICATION Prest Antigen ACRV1 Product
    PrEST Antigen ACRV1 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen ACRV1 Product Number APrEST80590 Gene Description acrosomal vesicle protein 1 Alternative Gene D11S4365, SP-10, SPACA2 Names Corresponding Anti-ACRV1 (HPA038718) Antibodies Description Recombinant protein fragment of Human ACRV1 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: TSSQPNELSGSIDHQTSVQQLPGEFFSLENPSDAEALYETSSGLNTLSEH GSSEHGSSKHTVAEHTSGEHAE Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 25 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • TCTE1 Is a Conserved Component of the Dynein Regulatory Complex and Is Required for Motility and Metabolism in Mouse Spermatozoa
    TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa Julio M. Castanedaa,b,1, Rong Huac,d,1, Haruhiko Miyatab, Asami Ojib,e, Yueshuai Guoc,d, Yiwei Chengc,d, Tao Zhouc,d, Xuejiang Guoc,d, Yiqiang Cuic,d, Bin Shenc, Zibin Wangc, Zhibin Huc,f, Zuomin Zhouc,d, Jiahao Shac,d, Renata Prunskaite-Hyyrylainena,g,h, Zhifeng Yua,i, Ramiro Ramirez-Solisj, Masahito Ikawab,e,k,2, Martin M. Matzuka,g,i,l,m,n,2, and Mingxi Liuc,d,2 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bResearch Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; cState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; dDepartment of Histology and Embryology, Nanjing Medical University, Nanjing 210029, People’s Republic of China; eGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; fAnimal Core Facility of Nanjing Medical University, Nanjing 210029, People’s Republic of China; gCenter for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; hFaculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; iCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; jWellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom; kThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639, Japan; lDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; mDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and nDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • ACRV1 (NM 020069) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC214263 ACRV1 (NM_020069) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: ACRV1 (NM_020069) Human Tagged ORF Clone Tag: Myc-DDK Symbol: ACRV1 Synonyms: D11S4365; SP-10; SPACA2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC214263 representing NM_020069 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGAACAGGTTTCTCTTGCTAATGAGTCTTTATCTGCTTGGATCTGCCAGAGGAACATCAAGTCAGCCTA ATGAGCTTTCTGGCTCCATAGATCATCAAACTTCAGTTCAGCAACTTCCAGGTGAGTTCTTTTCACTTGA AAACCCTTCTGATGCTGAGGCTTTATATGAGACTTCTTCAGGCCTGAACACTTTAAGTGAGCATGGTTCC AGTGAGCATGGTTCAAGCAAGCACACTGTGGCCGAGCACACTTCTGGAGAACATGCTGAGAGTGAGCATG CTTCAGGTGAGCCCGCTGCGACTGAACATGCTGAAGGTGAGCATACTGTAGGTGAGCAGCCTTCAGGAGA ACAGCCTTCAGGTGAACACCTCTCCGGAGAACAGCCTTTGAGTGAGCTTGAGTCAGGTGAACAGCCTTCA GATGAACAGCCTTCAGGTGAACATGGCTCCGGTGAACAGCCTTCTGGTGAGCAGGCCTCGGGTGAACAGC CTTCAGGCACAATATTAAATTGCTACACATGTGCTTATATGAATGATCAAGGAAAATGTCTTCGTGGAGA GGGAACCTGCATCACTCAGAATTCCCAGCAGTGCATGTTAAAGAAGATCTTTGAAGGTGGAAAACTCCAA TTCATGGTTCAAGGGTGTGAGAACATGTGCCCATCTATGAACCTCTTCTCCCATGGAACGAGGATGCAAA TTATATGCTGTCGAAATCAATCTTTCTGCAATAAGATC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA This product is
    [Show full text]
  • Gpr161 Anchoring of PKA Consolidates GPCR and Camp Signaling
    Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling Verena A. Bachmanna,1, Johanna E. Mayrhofera,1, Ronit Ilouzb, Philipp Tschaiknerc, Philipp Raffeinera, Ruth Röcka, Mathieu Courcellesd,e, Federico Apeltf, Tsan-Wen Lub,g, George S. Baillieh, Pierre Thibaultd,i, Pia Aanstadc, Ulrich Stelzlf,j, Susan S. Taylorb,g,2, and Eduard Stefana,2 aInstitute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria; bDepartment of Chemistry and Biochemistry, University of California, San Diego, CA 92093; cInstitute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria; dInstitute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada H3C 3J7; eDépartement de Biochimie, Université de Montréal, Montreal, QC, Canada H3C 3J7; fOtto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; gDepartment of Pharmacology, University of California, San Diego, CA 92093; hInstitute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; iDepartment of Chemistry, Université de Montréal, Montreal, QC, Canada H3C 3J7; and jInstitute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria Contributed by Susan S. Taylor, May 24, 2016 (sent for review February 18, 2016; reviewed by John J. G. Tesmer and Mark von Zastrow) Scaffolding proteins organize the information flow from activated G accounts for nanomolar binding affinities to PKA R subunit dimers protein-coupled receptors (GPCRs) to intracellular effector cascades (12, 13). Moreover, additional components of the cAMP signaling both spatially and temporally. By this means, signaling scaffolds, such machinery, such as GPCRs, adenylyl cyclases, and phosphodiester- as A-kinase anchoring proteins (AKAPs), compartmentalize kinase ases, physically interact with AKAPs (1, 5, 11, 14).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles
    UNIVERSITY OF CALIFORNIA Los Angeles Integrating molecular phenotypes and gene expression to characterize DNA variants for cardiometabolic traits A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Human Genetics by Alejandra Rodriguez 2018 ABSTRACT OF THE DISSERTATION Integrating molecular phenotypes and gene expression to characterize DNA variants for cardiometabolic traits by Alejandra Rodriguez Doctor of Philosophy in Human Genetics University of California, Los Angeles, 2018 Professor Päivi Elisabeth Pajukanta, Chair In-depth understanding of cardiovascular disease etiology requires characterization of its genetic, environmental, and molecular architecture. Genetic architecture can be defined as the characteristics of genetic variation responsible for broad-sense phenotypic heritability. Massively parallel sequencing has generated thousands of genomic datasets in diverse human tissues. Integration of such datasets using data mining methods has been used to extract biological meaning and has significantly advanced our understanding of the genome-wide nucleotide sequence, its regulatory elements, and overall chromatin architecture. This dissertation presents integration of “omics” data sets to understand the genetic architecture and molecular mechanisms of cardiovascular lipid disorders (further reviewed in Chapter 1). In 2013, Daphna Weissglas-Volkov and coworkers1 published an association between the chromosome 18q11.2 genomic region and hypertriglyceridemia in a genome-wide
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]