146823088.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

146823088.Pdf Syddansk Universitet Identification of genetic elements in metabolism by high-throughput mouse phenotyping ARTICLE DOI: 10.1038/s41467-017-01995-2 OPEN Identification of genetic elements in metabolism by high-throughput mouse phenotyping Jan Rozman et al.# Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate 1234567890 and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co- regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome. Correspondence and requests for materials should be addressed to M.H.d.A. (email: [email protected]) #A full list of authors and their affliations appears at the end of the paper NATURE COMMUNICATIONS | (2018) 9:288 | DOI: 10.1038/s41467-017-01995-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01995-2 etabolic disorders, including obesity and type 2 diabetes results obtained from genotype–phenotype associations in disease Mmellitus, are major challenges for public health. High model organisms14. initial treatment costs are compounded by complica- At the International Mouse Phenotyping Consortium (IMPC), tions that arise after diagnosis, including a number of con- we are generating a comprehensive catalog of mammalian gene sequential diseases, which together generate a significant burden functions to gain functional insights for every protein-coding – for health care systems1 5. Genetic variations play established gene, by producing and phenotyping more than 20,000 knockout – roles in the susceptibility and pathogenesis of these diseases6 11. mouse strains15,16. Knockout strains are analyzed in a compre- However, identification of the underlying gene variants and their hensive, standardized phenotyping screen that covers multiple pathogenic roles is difficult because (1) functional annotation is areas of biology and disease with 14 compulsory test procedures still not available for many genes, especially genes that may be and several additional optional tests (wwww.mousephenotype. involved in disease but currently lack biological characteriza- org/impress). Phenotyping is conducted in 10 research centers in tion12. (2) It also became clear that gene variants do not work in Europe, North America, and Asia. Each site follows the IMPC’s isolation but as parts of networks13. (3) There are concerns standardized operating procedures (IMPReSS), which were regarding the reproducibility, predictability, and relevance of developed during the pilot programs EUMORPHIA and IMPC phenotypic data (2016 knockout mouse strains) Subset of seven metabolic parameters (2016 genes) T0 AUC TG BM MR VO2 RER Down Down Down Down Down Down Down Down Down Down Down Down Down Down Up Up Up Up Up Up Up Up Up Up Up Up Up Up 28 gene lists phenotype/sex/phenotype orientation Ranking/Determination Strong phenotype of 28 outlier lists (974 genes) 0–5%, 95–100% Promoter analysis (225 MORE sets 428 genes) Known link to metabolism 51 OMIM VO2 database No known link to MR BM metabolism 378 545 Genes of unknown AUC Independent function analysis 460 new genes Zranb2 MORE-network Strong phenotype and literature links Slcs2a2 Cpe 5 4 (264 genes) Epha56 Dpm2 Rabl2 5 1 Snap25 4 13 + 5 Dtnbp1 Literature Drd2 Zranb2 Zranb1 3 3 2 2 2 Non-strong phenotype Ggnbp2 6 Bbs5 Prkab2 2 2 (251 genes) Ap4e1 Chmp3 Metabolic pathway Integration mapping of candidate genes (Zranb2) 429 VO2 Pbx3 Shh Gh Grm3 402 human MR Col4A5 II15 Atg3 New orthologs BM Ap4e1 Chmp3 Orc1 Foxo3 phenotypes AUC mouse Anapc4 Prkab2 Iqsec3 SNP/GWAS Overlap with pathways Assignment of 23 genes (268 genes) (AUC 15 genes) phenotype (with human SNPs) (150 genes ) Fig. 1 Strategical abstract depicting the research strategy to identify new genetic elements in metabolism. The IMPC phenotyping data of 2016 knockout mouse strains was systematically evaluated for new links to human metabolic disorders. Nine hundred seventy-four knockout strains showed a strong metabolic phenotype. This set of genes was used as data mining resource. In a multiple line of evidence approach, we finally identified 23 genes that were linked to human disease-related SNPs 2 NATURE COMMUNICATIONS | (2018) 9:288 | DOI: 10.1038/s41467-017-01995-2 | www.nature.com/naturecommunications NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01995-2 ARTICLE Table 1 Number of genes analyzed and candidate hits identified by phenotyping mutant and wild-type mice from both sexes Parameter Number of genes Females and males (in brackets: expected number if sex equally affected) Females Males Both Outlier <5% Outlier >95% Outlier <5% and >95% T0 1843 1840 1839 162 (96) 166 (96) 324 (192) AUC 0–120 1846 1840 1839 172 (96) 163 (96) 334 (192) Triglycerides 1384 1383 1380 124 (73) 129 (72) 249 (145) Body mass 1649 1645 1645 121 (79) 143 (86) 264 (165) Metabolic rate 335 910 329 55 (48) 53 (48) 108 (96) VO2 335 910 329 58 (48) 52 (46) 110 (94) RER 319 901 313 55 (47) 54 (46) 109 (93) Total 1995 2012 2016 575 587 974 EUMODIC17,18. Standardization, data quality control, an auto- percentile of the ratio distributions (shown as the filled areas in mated statistical analysis pipeline, and the phenotyping of refer- Fig. 2). Based on these thresholds, we generated 28 gene lists, one ence strains to assess inter-center variation all help to ensure for every sex parameter combination. Our 28 lists included a total – robust and reproducible data19 22. Adherence to each of these of 974 “strong metabolic phenotype” genes (Fig. 1, second part standards enables derivation of a high-quality, powerful from top). We used these genes as a data mining resource for hypothesis-generating resource that includes genes from a sub- further investigation into potential links to human metabolic stantial proportion of the entire mouse genome. Here we analyze disorders (see Supplementary Data 1—Mutant wildtype ratios for phenotyping data of 2016 knockout strains for strong metabolic complete gene lists and Supplementary Data 2—Strong metabolic phenotypes and identify 974 known and previously unannotated phenotype genes for strong phenotype genes). genes with relevance for metabolic diseases. Twenty-three genes for which we find new strong metabolic phenotypes also have Evaluation of false discovery rates. The reproducibility and links to human metabolic disorders. We introduce a focus on robustness of large-scale biology projects depends on minimizing network/context analysis to demonstrate how systemic phenotype the risks of false-positive or false-negative results. Using a post information can be linked to known metabolic pathways. This hoc approach to evaluate the risk of false-negative findings, we pathway mapping revealed an unexpected degree of metabolic compiled a list of 666 mouse and human genes with published – dimorphism between sexes. In addition, phenotype-associated links to obesity and type 2 diabetes25 29. We then used these regulatory networks allow the prediction of previously unknown candidate genes to estimate the rate of false-negative discoveries gene functions. Therefore, our results underline the value of the in our project (see Supplementary Data 3—Candidate genes for IMPC resource for gene function discovery and augment the false negative discovery). Hundred and one knockout mutants of translational potential of metabolic phenotypes in mice. these genes had been phenotyped by the IMPC at the time when we conducted our analysis. Hundred of 101 had a detectable “ Results metabolic phenotype: 58 (57.4%) scored as strong metabolic phenotype genes” (p value 0.04, null hypothesis was defined as no Strong metabolic phenotypes in IMPC mutants. We analyzed a “ ” “ ” total of 2016 IMPC mouse strains that were homozygous for a enrichment of strong metabolic phenotype genes, see Methods single-gene knockout on a C57BL/6N background or hetero- section for description of the permutation simulation). With only zygous when homozygotes were lethal or sub-viable (see Fig. 1 for one exception (Serpinf1, 210 MGI: 108080), knockout mice of all other 43 remaining genes even though not scoring as “strong a study overview). We chose seven metabolic parameters with ” diagnostic relevance in human clinical research for our study: metabolic phenotype genes had phenotypic deviations in meta- fasting basal blood glucose level before glucose tolerance test (T0), bolic parameters in the range of low 20th or high 80th percentiles area under the curve of blood glucose level after intraperitoneal of their respective frequency distributions (p value 0.047). glucose administration relative to basal blood glucose level (AUC), plasma triglyceride levels (TG), body mass (BM), metabolic rate New knockout mouse models for metabolic
Recommended publications
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Mitochondria Cat. no. 330231 PAHS-087ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Mitochondria RT² Profiler PCR Array profiles the expression of 84 genes involved in the biogenesis and function of the cell's powerhouse organelle. The genes monitored by this array include regulators and mediators of mitochondrial molecular transport of not only the metabolites needed for the electron transport chain and oxidative phosphorylation, but also the ions required for maintaining the mitochondrial membrane polarization and potential important for ATP synthesis. Metabolism and energy production are not the only functions of mitochondria.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Congenital Disorders of Glycosylation from a Neurological Perspective
    brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations
    [Show full text]
  • Intrinsic Disorder in PTEN and Its Interactome Confers Structural Plasticity and 63
    OPEN Intrinsic Disorder in PTEN and its SUBJECT AREAS: Interactome Confers Structural Plasticity CELLULAR SIGNALLING NETWORKS and Functional Versatility CANCER GENOMICS Prerna Malaney1*, Ravi Ramesh Pathak1*, Bin Xue3, Vladimir N. Uversky3,4,5 & Vrushank Dave´1,2 SYSTEMS ANALYSIS GENE REGULATORY NETWORKS 1Morsani College of Medicine, Department of Pathology and Cell Biology, 2Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 3Department of Molecular Medicine, 4USF Health Byrd Alzheimer’s Research Institute, Received University of South Florida, Tampa, FL, 33612, USA, 5Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 11 March 2013 Pushchino, Moscow Region, Russia. Accepted 3 June 2013 IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as Published an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically 20 June 2013 disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTEN’s protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that Correspondence and PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. requests for materials Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by should be addressed to its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of V.D.
    [Show full text]
  • Transcriptomic Signature and Metabolic Programming of Bovine Classical and Nonclassical Monocytes Indicate Distinct Functional Specializations
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.30.362731; this version posted November 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptomic signature and metabolic programming of bovine classical and nonclassical monocytes indicate distinct functional specializations Stephanie C. Talker1,2, G. Tuba Barut1,2, Reto Rufener3, Lilly von Münchow4, Artur Summerfield1,2 1Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland 2Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland 3Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland 4 Bucher Biotec AG, Basel, Switzerland *Correspondence: Corresponding Author [email protected] Keywords: monocyte subsets, transcriptome, metabolism, cattle Abstract Similar to human monocytes, bovine monocytes can be split into CD14+CD16- classical and CD14-CD16+ nonclassical monocytes (cM and ncM, respectively). Here, we present an in-depth analysis of their steady-state transcriptomes, highlighting pronounced functional specializations. Gene transcription indicates that pro-inflammatory and antibacterial processes are associated with cM, while ncM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. In support of these functional differences, we found that oxidative phosphorylation prevails in ncM, whereas cM are clearly biased towards aerobic glycolysis. Furthermore, bovine monocyte subsets differed in their responsiveness to TLR ligands, supporting an antiviral role of ncM. Taken together, these data clearly indicate a variety of subset-specific functions in cM and ncM that are likely to be transferable to monocyte subsets of other species, including humans.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • A CRISPR-Based Screen for Hedgehog Signaling Provides Insights Into Ciliary Function and Ciliopathies
    ARTICLES https://doi.org/10.1038/s41588-018-0054-7 A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies David K. Breslow 1,2,7*, Sascha Hoogendoorn 3,7, Adam R. Kopp2, David W. Morgens4, Brandon K. Vu2, Margaret C. Kennedy1, Kyuho Han4, Amy Li4, Gaelen T. Hess4, Michael C. Bassik4, James K. Chen 3,5* and Maxence V. Nachury 2,6* Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ -tubulin and ε -tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening. he primary cilium is a surface-exposed microtubule-based approach. Indeed, most studies to date have searched for genes that compartment that serves as an organizing center for diverse either intrinsically affect cell growth or affect sensitivity to applied Tsignaling pathways1–3. Mutations affecting cilia cause ciliopa- perturbations16–23. thies, a group of developmental disorders including Joubert syn- Here, we engineered a Hh-pathway-sensitive reporter to enable drome, Meckel syndrome (MKS), nephronophthisis (NPHP), and an antibiotic-based selection platform.
    [Show full text]
  • Dystroglycanopathies; Natural History and Clinical Observations
    Dystroglycanopathies; natural history and clinical observations Katherine Mathews, MD Disclosures • Research funding: NIH, CDC, Friedreich Ataxia Research Alliance • Clinical trial funding (current and recent): PTC Therapeutics, Serepta Therapeutics, Eli Lilly, BioMarin (Prosensa), Horizon therapeutics, , aTyr Pharma. • Advisory board member: MDA, FSH Society, Serepta Therapeutics, aTyr Pharma, Marathon. • No conflicts pertinent to today’s talk Randomly chosen photos of my Wash U connections… Trainee Attending Outline • Introduce the dystroglycanopathies • Two clinically important observations from the natural history study • Preliminary discussion of outcome measures Iowa Wellstone Muscular Dystrophy Cooperative Research Center Kevin P. Campbell, PhD Steven A. Moore, MD, PhD • Professor and Roy J. Carver • Professor of Pathology Biomedical Research Chair in Molecular Physiology and Biophysics • Professor of Neurology and Internal Medicine • Investigator, Howard Hughes Medical Institute Iowa Wellstone Muscular Dystrophy Center Wellstone Medical Student Fellows Jamie Eskuri (2010-2011) Steve McGaughey (2011-2012) Katie Lutz (2012-2013) Cameron Crockett (2013-2014) Pediatric Neurology Resident Pediatric Hospitalist Pediatric Neurology Resident Pediatric Neurology Resident Boston Children’s Hospital Washington University, St. Louis University of Iowa Washington University, St. Louis Julia Collison Braden Jensen (2014-2015) Brianna Brun (2015-2016) Courtney Carlson (2016-2017) CCOM Medical student, M1 CCOM medical student, M3 CCOM medical
    [Show full text]
  • Novel Driver Strength Index Highlights Important Cancer Genes in TCGA Pancanatlas Patients
    medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Novel Driver Strength Index highlights important cancer genes in TCGA PanCanAtlas patients Aleksey V. Belikov*, Danila V. Otnyukov, Alexey D. Vyatkin and Sergey V. Leonov Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia *Corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract Elucidating crucial driver genes is paramount for understanding the cancer origins and mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are usually ranked by the frequency of mutation, which, however, does not necessarily reflect their driver strength. Here we hypothesize that driver strength is higher for genes that are preferentially mutated in patients with few driver mutations overall, because these few mutations should be strong enough to initiate cancer.
    [Show full text]
  • Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability
    ARTICLE Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability Annabel C. Whibley,1 Vincent Plagnol,1,2 Patrick S. Tarpey,3 Fatima Abidi,4 Tod Fullston,5,6 Maja K. Choma,1 Catherine A. Boucher,1 Lorraine Shepherd,1 Lionel Willatt,7 Georgina Parkin,7 Raffaella Smith,3 P. Andrew Futreal,3 Marie Shaw,8 Jackie Boyle,9 Andrea Licata,4 Cindy Skinner,4 Roger E. Stevenson,4 Gillian Turner,9 Michael Field,9 Anna Hackett,9 Charles E. Schwartz,4 Jozef Gecz,5,6,8 Michael R. Stratton,3 and F. Lucy Raymond1,* Copy number variants and indels in 251 families with evidence of X-linked intellectual disability (XLID) were investigated by array comparative genomic hybridization on a high-density oligonucleotide X chromosome array platform. We identified pathogenic copy number variants in 10% of families, with mutations ranging from 2 kb to 11 Mb in size. The challenge of assessing causality was facilitated by prior knowledge of XLID-associated genes and the ability to test for cosegregation of variants with disease through extended pedigrees. Fine-scale analysis of rare variants in XLID families leads us to propose four additional genes, PTCHD1, WDR13, FAAH2, and GSPT2,as candidates for XLID causation and the identification of further deletions and duplications affecting X chromosome genes but without apparent disease consequences. Breakpoints of pathogenic variants were characterized to provide insight into the underlying mutational mechanisms and indicated a predominance of mitotic rather than meiotic events. By effectively bridging the gap between karyotype-level investigations and X chromosome exon resequencing, this study informs discussion of alternative mutational mechanisms, such as non- coding variants and non-X-linked disease, which might explain the shortfall of mutation yield in the well-characterized International Genetics of Learning Disability (IGOLD) cohort, where currently disease remains unexplained in two-thirds of families.
    [Show full text]