PAVLEK & MAMMOLA 2020: Niche-based processes explaining the distributions of closely related subterranean spider Niche-based processes explaining the distributions of closely related subterranean spiders Martina Pavlek1,2,3, Stefano Mammola4,5 1 Ruđer Bošković Institute, Zagreb, Croatia 2 Croatian Biospeleological Society, Zagreb, Croatia 3 Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain 4 Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland 5 Molecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania Pallanza, Italy Correspondence: Martina Pavlek, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia. Email:
[email protected] Funding information H2020 Marie Skłodowska-Curie Actions, Grant/Award Number: 882221 and 749867; European Union’s Human Resources Development Operational Programme, Grant/Award Number: HR.3.2.01-0015 Abstract Aim: To disentangle the role of evolutionary history, competition and environmental filtering in driving the niche evolution of four closely related subterranean spiders, with the overarching goal of obtaining a mechanistic de- scription of the factors that determine species’ realized distribution in simplified ecological settings. Location: Dinaric karst, Balkans, Europe. Taxon: Dysderidae spiders (Stalita taenaria, S. pretneri, S. hadzii and Parastalita stygia). Methods: We resolved phylogenetic relationships among species and modelled each species’ distribution using a set of climatic and habitat variables. We explored the climatic niche differentiation among species withn -dimensional hypervolumes and shifts in their trophic niche using morphological traits related to feeding specialization. Results: Climate was the primary abiotic factor explaining our species’ distributions, while karstic and soil fea- tures were less important.