Speci C Morphological Characters in the Spider Dysdera Erythrina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Common Spiders of Antelope Island State Park
THE COMMON SPIDERS OF ANTELOPE ISLAND STATE PARK by Stephanie M Cobbold Web-building Spiders ______________________________________________________________________________ Family Araneidae (orb web spiders) Build a circular spiral web on support lines that radiate out from the center The spider is often found waiting for prey in the center of its web Typical eye pattern: 4 median eyes clustered in a square shape Eye pattern Orb web SMC SMC Neoscona (back and front views) Banded Garden Spider (Argiope) 1 ______________________________________________________________________________ Family Theridiidae (cob web spiders) Abdomen usually ball or globe-shaped Have bristles on legs called combs. These combs are used to fling silk strands over captive prey. Web is loose, irregular and 3-dimensional commons.wikimedia.org Black Widow (Latrodectus hesperus) Theridion ________________________________________________________________________ Family Linyphiidae (sheet web spiders) Build flat, sheet-like or dome-shaped webs under which the spider hangs upside- down. Abdomen is usually longer than wide SMC Sheet web spider hanging under its web 2 ________________________________________________________________________ Family Dictynidae (mesh web spiders) Make small, irregular webs of hackled threads Often found near the tips of plants SMC ________________________________________________________________________ Family Agelenidae (funnel web spiders) Web is a silk mat with a funnel-shaped retreat at one end in which the spider waits in ambush -
SEXUAL CONFLICT in ARACHNIDS Ph.D
MASARYK UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF BOTANY AND ZOOLOGY SEXUAL CONFLICT IN ARACHNIDS Ph.D. Dissertation Lenka Sentenská Supervisor: prof. Mgr. Stanislav Pekár, Ph.D. Brno 2017 Bibliographic Entry Author Mgr. Lenka Sentenská Faculty of Science, Masaryk University Department of Botany and Zoology Title of Thesis: Sexual conflict in arachnids Degree programme: Biology Field of Study: Ecology Supervisor: prof. Mgr. Stanislav Pekár, Ph.D. Academic Year: 2016/2017 Number of Pages: 199 Keywords: Sexual selection; Spiders; Scorpions; Sexual cannibalism; Mating plugs; Genital morphology; Courtship Bibliografický záznam Autor: Mgr. Lenka Sentenská Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Konflikt mezi pohlavími u pavoukovců Studijní program: Biologie Studijní obor: Ekologie Vedoucí práce: prof. Mgr. Stanislav Pekár, Ph.D. Akademický rok: 2016/2017 Počet stran: 199 Klíčová slova: Pohlavní výběr; Pavouci; Štíři; Sexuální kanibalismus; Pohlavní zátky; Morfologie genitálií; Námluvy ABSTRACT Sexual conflict is pervasive in all sexually reproducing taxa and is especially intense in carnivorous species, because the interaction between males and females encompasses the danger of getting killed instead of mated. Carnivorous arachnids, such as spiders and scorpions, are notoriously known for their cannibalistic tendencies. Studies of the conflict between arachnid males and females focus mainly on spiders because of the frequent occurrence of sexual cannibalism and unique genital morphology of both sexes. The morphology, in combination with common polyandry, further promotes the sexual conflict in form of an intense sperm competition and male tactics to reduce or avoid it. Scorpion females usually mate only once per litter, but the conflict between sexes is also intense, as females can be very aggressive, and so males engage in complicated mating dances including various components considered to reduce female aggression and elicit her cooperation. -
On the Spider Genus Rhoicinus (Araneae, Trechaleidae) in a Central Amazonian Inundation Fores T
1994. The Journal of Arachnology 22 :54—59 ON THE SPIDER GENUS RHOICINUS (ARANEAE, TRECHALEIDAE) IN A CENTRAL AMAZONIAN INUNDATION FORES T Hubert Hofer: Staatliches Museum fair Naturkunde, Erbprinzenstr . 13, 7613 3 Karlsruhe, Germany Antonio D. Brescovit: Museu de Ciencias Naturais, Fundacdo Zoobotanica do Rio Grande do Sul, C . P. 1188, 90 .001-970 Porto Alegre, Brazil ABSTRACT. The male of Rhoicinus gaujoni Simon and the new species Rhoicinus lugato are described. They co-occur in a whitewater-inundation forest in central Amazonia, Brazil, but were not found in a nearby, inten- sively studied blackwater-inundation forest . Rhoicinus gaujoni builds complex, irregular sheet webs on the ground with a silk tube as a retreat . This report enlarges the distribution of the genus from western Sout h America to the central Amazon basin . The spider genus Rhoicinus was proposed by uated on Ilha de Marchantaria (3°15'S, 59°58'W) , Simon (1898a), based on the type species R. gau- the first island in the Solimoes-Amazon river , joni, from Ecuador. Exline (1950, 1960) de- approximately 15 km above its confluence wit h scribed five new species in the genus, R. wallsi the Rio Negro . The forest is annually flooded from Ecuador and R. rothi, R. schlingeri, R . an- between February and September to a depth o f dinus, R. weyrauchi, all from Peru . The genus 3—5 m. The region is subject to a rainy season was placed in the Amaurobiidae by Lehtinen (December to May) and a dry season (June to (1967), followed by Platnick (1989) in his cata- November). -
PDF995, Job 12
Bull. Br. arachnol. Soc. (1998) 11 (2), 73-80 73 Possible links between embryology, lack of & Pereira, 1995; Eberhard & Huber, in press a), Cole- innervation, and the evolution of male genitalia in optera (Peschke, 1978; Eberhard, 1993a,b; Krell, 1996; Eberhard & Kariko, 1996), Homoptera (Kunze, 1957), spiders Hemiptera (Bonhag & Wick, 1953; Heming-Battum & Heming, 1986, 1989), and Hymenoptera (Roig-Alsina, William G. Eberhard 1993) (see also Snodgrass, 1935 on insects in general, Smithsonian Tropical Research Institute, and and Tadler, 1993, 1996 on millipedes). Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica It is of course difficult to present quantitative data on these points, and there are obviously exceptions to and these general statements. For example, in spiders although male pholcid genitalia have elaborate internal Bernhard A. Huber locking and bracing devices (partly in relation to the Escuela de Biología, Universidad de Costa Rica, chelicerae), most or all of the genital structures of the Ciudad Universitaria, Costa Rica* female that are contacted by the male genitalia are membranous (Uhl et al., 1995; Huber, 1994a, 1995c; Summary Huber & Eberhard, 1997). Some portions of the female sperm-receiving organs are also soft in the tetragnathids The male genitalia of spiders apparently lack innervation, Nephila and Leucauge (Higgins, 1989; Eberhard & probably because they are derived embryologically from Huber, in press b), as are the female genital structures structures that secrete the tarsal claw, a structure which lacks nerves. The resultant lack of both sensation and fine that guide the male’s embolus in Histopona torpida muscular control in male genitalia may be responsible for (C. -
Description of a Novel Mating Plug Mechanism in Spiders and the Description of the New Species Maeota Setastrobilaris (Araneae, Salticidae)
A peer-reviewed open-access journal ZooKeys 509: 1–12Description (2015) of a novel mating plug mechanism in spiders and the description... 1 doi: 10.3897/zookeys.509.9711 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Description of a novel mating plug mechanism in spiders and the description of the new species Maeota setastrobilaris (Araneae, Salticidae) Uriel Garcilazo-Cruz1, Fernando Alvarez-Padilla1 1 Laboratorio de Aracnología. Facultad de Ciencias, Universidad Nacional Autonoma de Mexico s/n Ciudad Universitaria, México D. F. Del. Coyoacán, Código postal 04510, México Corresponding author: Fernando Alvarez-Padilla ([email protected]) Academic editor: D. Dimitrov | Received 27 March 2015 | Accepted 5 June 2015 | Published 22 June 2015 http://zoobank.org/A9EA00BB-C5F4-4F2A-AC58-5CF879793EA0 Citation: Garcilazo-Cruz U, Alvarez-Padilla F (2015) Description of a novel mating plug mechanism in spiders and the description of the new species Maeota setastrobilaris (Araneae, Salticidae). ZooKeys 509: 1–12. doi: 10.3897/ zookeys.509.9711 Abstract Reproduction in arthropods is an interesting area of research where intrasexual and intersexual mecha- nisms have evolved structures with several functions. The mating plugs usually produced by males are good examples of these structures where the main function is to obstruct the female genitalia against new sperm depositions. In spiders several types of mating plugs have been documented, the most common ones include solidified secretions, parts of the bulb or in some extraordinary cases the mutilation of the entire palpal bulb. Here, we describe the first case of modified setae, which are located on the cymbial dorsal base, used directly as a mating plug for the Order Araneae in the species Maeota setastrobilaris sp. -
Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................ -
Howard Associate Professor of Natural History and Curator Of
INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM). -
Miranda ZA 2018.Pdf
Zoologischer Anzeiger 273 (2018) 33–55 Contents lists available at ScienceDirect Zoologischer Anzeiger jou rnal homepage: www.elsevier.com/locate/jcz Review of Trichodamon Mello-Leitão 1935 and phylogenetic ଝ placement of the genus in Phrynichidae (Arachnida, Amblypygi) a,b,c,∗ a Gustavo Silva de Miranda , Adriano Brilhante Kury , a,d Alessandro Ponce de Leão Giupponi a Laboratório de Aracnologia, Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro-RJ, CEP 20940-040, Brazil b Entomology Department, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave NW, Washington, DC, 20560, USA c Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark (Zoological Museum), University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark d Servic¸ o de Referência Nacional em Vetores das Riquetsioses (LIRN), Colec¸ ão de Artrópodes Vetores Ápteros de Importância em Saúde das Comunidades (CAVAISC), IOC-FIOCRUZ, Manguinhos, 21040360, Rio de Janeiro, RJ, Brazil a r t i c l e i n f o a b s t r a c t Article history: Amblypygi Thorell, 1883 has five families, of which Phrynichidae is one of the most diverse and with a Received 18 October 2017 wide geographic distribution. The genera of this family inhabit mostly Africa, India and Southeast Asia, Received in revised form 27 February 2018 with one genus known from the Neotropics, Trichodamon Mello-Leitão, 1935. Trichodamon has two valid Accepted 28 February 2018 species, T. princeps Mello-Leitão, 1935 and T. froesi Mello-Leitão, 1940 which are found in Brazil, in the Available online 10 March 2018 states of Bahia, Goiás, Minas Gerais and Rio Grande do Norte. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Taxonomic Revision and Insights Into the Speciation Mode of the Spider Dysdera Erythrina Species-Complex (Araneae&Thinsp;:&A
AUTHORS’ PAGE PROOFS: NOT FOR CIRCULATION CSIRO PUBLISHING Invertebrate Systematics http://dx.doi.org/10.1071/IS16071 Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae : Dysderidae): sibling species with sympatric distributions Milan Rezá cA,G, Miquel A. Arnedo B, Vera Opatova B,C,D, Jana MusilováA,E, Veronika Rezá cová F and Jirí Král D ABiodiversity Lab, Crop Research Institute, Drnovská 507, CZ-161 06 Prague 6-Ruzyne, Czechia. BDepartment of Animal Biology & Biodiversity Research Institute, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain. CDepartment of Zoology, Faculty of Science, Charles University in Prague, Vinicná 7, CZ-128 44 Prague 2, Czechia. DDepartment of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA. ELaboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicná 5, CZ-128 44 Prague 2, Czechia. FLaboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czechia. GCorresponding author. Email: [email protected] ONLY Abstract. The genus Dysdera Latreille, 1804, a species-rich group of spiders that includes specialised predators of woodlice, contains several complexes of morphologically similar sibling species. Here we investigate species limits in the D. erythrina (Walckenaer, 1802) complex by integrating phenotypic, cytogenetic and molecular data, and use this information to gain further knowledge on its origin and evolution. We describe 16 new species and redescribe four 5 poorly known species belonging to this clade. The distribution of most of the species in the complex is limited to southern France and thenorth-eastern Iberian Peninsula. -
The Study of Hidden Habitats Sheds Light on Poorly Known Taxa: Spiders of the Mesovoid Shallow Substratum
A peer-reviewed open-access journal ZooKeys 841: 39–59 (2019)The study of hidden habitats sheds light on poorly known taxa... 39 doi: 10.3897/zookeys.841.33271 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum Enrique Ledesma1, Alberto Jiménez-Valverde1, Alberto de Castro2, Pablo Aguado-Aranda1, Vicente M. Ortuño1 1 Research Team on Soil Biology and Subterranean Ecosystems, Department of Life Science, Faculty of Science, University of Alcalá, Alcalá de Henares, Madrid, Spain 2 Entomology Department, Aranzadi Science Society, Donostia - San Sebastián, Gipuzkoa, Spain Corresponding author: Enrique Ledesma ([email protected]); Alberto Jiménez-Valverde ([email protected]) Academic editor: P. Michalik | Received 22 January 2019 | Accepted 5 March 2019 | Published 23 April 2019 http://zoobank.org/52EA570E-CA40-453D-A921-7785A9BD188B Citation: Ledesma E, Jiménez-Valverde A, de Castro A, Aguado-Aranda P, Ortuño VM (2019) The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. ZooKeys 841: 39–59. https:// doi.org/10.3897/zookeys.841.33271 Abstract The scarce and biased knowledge about the diversity and distribution of Araneae species in the Iberian Peninsula is accentuated in poorly known habitats such as the Mesovoid Shallow Substratum (MSS). The aim of this study was to characterize the spiders inventory of the colluvial MSS of the Sierra de Guadar- rama National Park, and to assess the importance of this habitat for the conservation of the taxon. Thirty-three localities were selected across the high peaks of the Guadarrama mountain range and they were sampled for a year using subterranean traps specially designed to capture arthropods in the MSS. -
Selection for Imperfection: a Review of Asymmetric Genitalia 2 in Araneomorph Spiders (Araneae: Araneomorphae)
bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Selection for imperfection: A review of asymmetric genitalia 2 in araneomorph spiders (Araneae: Araneomorphae). 3 4 5 6 F. ANDRES RIVERA-QUIROZ*1, 3, MENNO SCHILTHUIZEN2, 3, BOOPA 7 PETCHARAD4 and JEREMY A. MILLER1 8 1 Department Biodiversity Discovery group, Naturalis Biodiversity Center, 9 Darwinweg 2, 2333CR Leiden, The Netherlands 10 2 Endless Forms Group, Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, 11 The Netherlands 12 3 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE 13 Leiden, The Netherlands. 14 4 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 15 12121 Thailand. 16 17 18 19 Running Title: Asymmetric genitalia in spiders 20 21 *Corresponding author 22 E-mail: [email protected] (AR) 23 bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Abstract 25 26 Bilateral asymmetry in the genitalia is a rare but widely dispersed phenomenon in the 27 animal tree of life. In arthropods, occurrences vary greatly from one group to another 28 and there seems to be no common explanation for all the independent origins.