Orsolobidae Hickmanolobus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Spider Genus Rhoicinus (Araneae, Trechaleidae) in a Central Amazonian Inundation Fores T
1994. The Journal of Arachnology 22 :54—59 ON THE SPIDER GENUS RHOICINUS (ARANEAE, TRECHALEIDAE) IN A CENTRAL AMAZONIAN INUNDATION FORES T Hubert Hofer: Staatliches Museum fair Naturkunde, Erbprinzenstr . 13, 7613 3 Karlsruhe, Germany Antonio D. Brescovit: Museu de Ciencias Naturais, Fundacdo Zoobotanica do Rio Grande do Sul, C . P. 1188, 90 .001-970 Porto Alegre, Brazil ABSTRACT. The male of Rhoicinus gaujoni Simon and the new species Rhoicinus lugato are described. They co-occur in a whitewater-inundation forest in central Amazonia, Brazil, but were not found in a nearby, inten- sively studied blackwater-inundation forest . Rhoicinus gaujoni builds complex, irregular sheet webs on the ground with a silk tube as a retreat . This report enlarges the distribution of the genus from western Sout h America to the central Amazon basin . The spider genus Rhoicinus was proposed by uated on Ilha de Marchantaria (3°15'S, 59°58'W) , Simon (1898a), based on the type species R. gau- the first island in the Solimoes-Amazon river , joni, from Ecuador. Exline (1950, 1960) de- approximately 15 km above its confluence wit h scribed five new species in the genus, R. wallsi the Rio Negro . The forest is annually flooded from Ecuador and R. rothi, R. schlingeri, R . an- between February and September to a depth o f dinus, R. weyrauchi, all from Peru . The genus 3—5 m. The region is subject to a rainy season was placed in the Amaurobiidae by Lehtinen (December to May) and a dry season (June to (1967), followed by Platnick (1989) in his cata- November). -
PDF995, Job 12
Bull. Br. arachnol. Soc. (1998) 11 (2), 73-80 73 Possible links between embryology, lack of & Pereira, 1995; Eberhard & Huber, in press a), Cole- innervation, and the evolution of male genitalia in optera (Peschke, 1978; Eberhard, 1993a,b; Krell, 1996; Eberhard & Kariko, 1996), Homoptera (Kunze, 1957), spiders Hemiptera (Bonhag & Wick, 1953; Heming-Battum & Heming, 1986, 1989), and Hymenoptera (Roig-Alsina, William G. Eberhard 1993) (see also Snodgrass, 1935 on insects in general, Smithsonian Tropical Research Institute, and and Tadler, 1993, 1996 on millipedes). Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica It is of course difficult to present quantitative data on these points, and there are obviously exceptions to and these general statements. For example, in spiders although male pholcid genitalia have elaborate internal Bernhard A. Huber locking and bracing devices (partly in relation to the Escuela de Biología, Universidad de Costa Rica, chelicerae), most or all of the genital structures of the Ciudad Universitaria, Costa Rica* female that are contacted by the male genitalia are membranous (Uhl et al., 1995; Huber, 1994a, 1995c; Summary Huber & Eberhard, 1997). Some portions of the female sperm-receiving organs are also soft in the tetragnathids The male genitalia of spiders apparently lack innervation, Nephila and Leucauge (Higgins, 1989; Eberhard & probably because they are derived embryologically from Huber, in press b), as are the female genital structures structures that secrete the tarsal claw, a structure which lacks nerves. The resultant lack of both sensation and fine that guide the male’s embolus in Histopona torpida muscular control in male genitalia may be responsible for (C. -
Description of a Novel Mating Plug Mechanism in Spiders and the Description of the New Species Maeota Setastrobilaris (Araneae, Salticidae)
A peer-reviewed open-access journal ZooKeys 509: 1–12Description (2015) of a novel mating plug mechanism in spiders and the description... 1 doi: 10.3897/zookeys.509.9711 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Description of a novel mating plug mechanism in spiders and the description of the new species Maeota setastrobilaris (Araneae, Salticidae) Uriel Garcilazo-Cruz1, Fernando Alvarez-Padilla1 1 Laboratorio de Aracnología. Facultad de Ciencias, Universidad Nacional Autonoma de Mexico s/n Ciudad Universitaria, México D. F. Del. Coyoacán, Código postal 04510, México Corresponding author: Fernando Alvarez-Padilla ([email protected]) Academic editor: D. Dimitrov | Received 27 March 2015 | Accepted 5 June 2015 | Published 22 June 2015 http://zoobank.org/A9EA00BB-C5F4-4F2A-AC58-5CF879793EA0 Citation: Garcilazo-Cruz U, Alvarez-Padilla F (2015) Description of a novel mating plug mechanism in spiders and the description of the new species Maeota setastrobilaris (Araneae, Salticidae). ZooKeys 509: 1–12. doi: 10.3897/ zookeys.509.9711 Abstract Reproduction in arthropods is an interesting area of research where intrasexual and intersexual mecha- nisms have evolved structures with several functions. The mating plugs usually produced by males are good examples of these structures where the main function is to obstruct the female genitalia against new sperm depositions. In spiders several types of mating plugs have been documented, the most common ones include solidified secretions, parts of the bulb or in some extraordinary cases the mutilation of the entire palpal bulb. Here, we describe the first case of modified setae, which are located on the cymbial dorsal base, used directly as a mating plug for the Order Araneae in the species Maeota setastrobilaris sp. -
Psalmopoeus Cambridgei (Trinidad Chevron Tarantula)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Psalmopoeus cambridgei (Trinidad Chevron Tarantula) Order: Araneae (Spiders) Class: Arachnida (Spiders and Scorpions) Phylum: Arthropoda (Arthropods) Fig. 1. Trinidad chevron tarantula, Psalmopoeus cambridgei. [http://www.exoreptiles.com/my/index.php?main_page=product_info&products_id=1127, downloaded 30 April 2015] TRAITS. A large spider, maximum size 11-14cm across the legs, with chevrons (V-shaped marks) on the abdomen (Fig. 1). Males are either grey or brown in colour, and females vary from green to brown with red or orange markings on the legs (Wikipedia, 2013). The Trinidad chevron tarantula is hairy in appearance, has eight legs, and its body is divided into two parts, the cephalothorax and the abdomen which are connected by a pedicel that looks like a narrow stalk (Fig. 2). The cephalothorax has eight legs plus a pair of smaller leg-like appendages (pedipalps) used to catch prey; in males these have palpal bulbs attached to the ends for holding sperm (Fig. 3). The mouth has chelicerae with fangs at the ends and swollen bases that house the venom glands, and there are eight small eyes (Foelix, 2010). However, even with eight eyes the Trinidad chevron tarantula can hardly see and so depends mostly on touch, smell, and taste to find its way. There are organs on their feet to detect changes in the environment and special type of hair on their legs and pedipalps for taste. The second part, the abdomen attached to a narrow waist, can UWI The Online Guide to the Animals of Trinidad and Tobago Ecology expand and contract to accommodate food and eggs; two pairs of spinnerets are located at the end of the abdomen (Fig. -
A Summary List of Fossil Spiders
A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature. -
American Museum Novitates
AMERICAN MUSEUM NOVITATES Number 3791, 66 pp. December 11, 2013 The Neotropical goblin spiders of the new genus Varioonops (Araneae, Oonopidae) ANGELO BOLZERN1 AND NORMAN I. PLATNICK1 ABSTRACT A new genus, Varioonops, is established for a group of species characterized by sexual dimorphism in abdomen morphology (with a dorsal scutum present in males but not females), male palps with a separate cymbium and bulb, and a patterned abdomen. The closest relatives of the new genus appear to be three similar, but as yet undescribed, Neotropical genera that share those characters, but the members of Varioonops are united by a putative synapomorphy that does not seem to occur in those undescribed groups: a granulated sternum. Attention is drawn to the cymbial cone, a structure (possibly a receptor) found near the tip of the cymbium in Varioonops, members of the Orchestininae, and at least some soft-bodied members of the Oonopinae. A total of 23 new species are described: V. cafista (the type species), V. velsala, V. montesta, V. spatharum, V. poas, V. varablanca, V. tortuguero, V. veragua, V. heredia, and V. girven from Costa Rica, V. ramila and V. sansidro from Costa Rica and Panama, V. funator and V. cerrado from Panama, V. edvardi and V. sinesama from Colombia, and V. yacambu, V. trujillo, V. pittieri, V. chordio, V. parlata, V. potaguo, and V. grancho from Venezuela. INTRODUCTION Through focused investigations of the spider family Oonopidae by the many participants in the goblin spider Planetary Biodiversity Inventory (PBI) project, several new genera and numerous new species have recently been described from the Neotropics. -
Araneae: Salticidae)
Belgian Journal of Entomology 67: 1–27 (2018) ISSN: 2295-0214 www.srbe-kbve.be urn:lsid:zoobank.org:pub:6D151CCF-7DCB-4C97-A220-AC464CD484AB Belgian Journal of Entomology New Species, Combinations, and Records of Jumping Spiders in the Galápagos Islands (Araneae: Salticidae) 1 2 G.B. EDWARDS & L. BAERT 1 Curator Emeritus: Arachnida & Myriapoda, Florida State Collection of Arthropods, FDACS, Division of Plant Industry, P. O. Box 147100, Gainesville, FL 32614-7100 USA (e-mail: [email protected] – corresponding author) 2 O.D. Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium (e-mail: [email protected]) Published: Brussels, March 14, 2018 Citation: EDWARDS G.B. & BAERT L., 2018. - New Species, Combinations, and Records of Jumping Spiders in the Galápagos Islands (Araneae: Salticidae). Belgian Journal of Entomology, 67: 1–27. ISSN: 1374-5514 (Print Edition) ISSN: 2295-0214 (Online Edition) The Belgian Journal of Entomology is published by the Royal Belgian Society of Entomology, a non-profit association established on April 9, 1855. Head office: Vautier street 29, B-1000 Brussels. The publications of the Society are partly sponsored by the University Foundation of Belgium. In compliance with Article 8.6 of the ICZN, printed versions of all papers are deposited in the following libraries: - Royal Library of Belgium, Boulevard de l’Empereur 4, B-1000 Brussels. - Library of the Royal Belgian Institute of Natural Sciences, Vautier street 29, B-1000 Brussels. - American Museum of Natural History Library, Central Park West at 79th street, New York, NY 10024-5192, USA. - Central library of the Museum national d’Histoire naturelle, rue Geoffroy Saint- Hilaire 38, F-75005 Paris, France. -
A Taxonomic Review of the Trapdoor Spider Genus Myrmekiaphila (Araneae, Mygalomorphae, Cyrtaucheniidae)
PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3596, 30 pp., 106 figures December 12, 2007 A Taxonomic Review of the Trapdoor Spider Genus Myrmekiaphila (Araneae, Mygalomorphae, Cyrtaucheniidae) JASON E. BOND1 AND NORMAN I. PLATNICK2 ABSTRACT The mygalomorph spider genus Myrmekiaphila comprises 11 species known only from the southeastern United States. The type species, M. foliata Atkinson, is removed from the synonymy of M. fluviatilis (Hentz) and placed as a senior synonym of M. atkinsoni Simon. A neotype is designated for M. fluviatilis and males of the species are described for the first time. Aptostichus flavipes Petrunkevitch is transferred to Myrmekiaphila. Six new species are described: M. coreyi and M. minuta from Florida, M. neilyoungi from Alabama, M. jenkinsi from Tennessee and Kentucky, and M. millerae and M. howelli from Mississippi. INTRODUCTION throughout the southeastern United States (fig. 1), ranging from northern Virginia along The trapdoor spider genus Myrmekiaphila the Appalachian Mountains southward (Cyrtaucheniidae, Euctenizinae) has long re- through West Virginia, Kentucky, North and mained in relative obscurity. Aside from South Carolina, Tennessee, and northern occasional species descriptions, no significant Georgia into the Southeastern Plains and taxonomic work on the group has appeared. Southern Coastal Plain of Alabama, Mis- Members of the genus are widely distributed sissippi, and Florida. The range of the genus 1 Research Associate, Division -
Description of Two New Species of Plesiopelma (Araneae, Theraphosidae, Theraphosinae) from Argentina
374 Ferretti & Barneche Description of two new species of Plesiopelma (Araneae, Theraphosidae, Theraphosinae) from Argentina Nelson Ferretti & Jorge Barneche Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT- CONICET- La Plata) (UNLP), Calle 2 n°584, La Plata, Argentina. ([email protected]; [email protected]) ABSTRACT. Two new species of Plesiopelma Pocock, 1901 from northern Argentina are described and diagnosed based on males and habitat descriptions are presented. Males of Plesiopelma paganoi sp. nov. differ from most of species by the absence of spiniform setae on the retrolateral face of cymbium, aspect of the palpal bulb. Plesiopelma aspidosperma sp. nov. differs from most species of the genus by the presence of spiniform setae on the retrolateral face of cymbium and it can be distinguished from P. myodes Pocock, 1901, P. longisternale (Schiapelli & Gerschman, 1942) and P. rectimanum (Mello-Leitão, 1923) by the separated palpal bulb keels and basal nodule of metatarsus I very developed. It differs from P. minense (Mello-Leitão, 1943) by the shape of the palpal bulb and basal nodule on metatarsus I well developed. Specimens were captured in Salta province, Argentina, inhabiting high cloud forests of Yungas eco-region. KEYWORDS. Taxonomy, spiders, natural history, Neotropical, Yungas. RESUMEN. Descripción de dos nuevas especies de Plesiopelma (Araneae, Theraphosidae, Theraphosinae) de Argentina. Dos nuevas especies de Plesiopelma Pocock, 1901 del norte de Argentina son diferenciadas y se describen en base a ejemplares machos y se presentan descripciones de los ambientes. Machos de Plesiopelma paganoi sp. nov. difieren de la mayoría de las especies por la ausencia de setas espiniformes en la cara retrolateral del cymbium, por la forma del órgano palpar. -
Five Papers on Fossil and Extant Spiders
BEITR. ARANEOL., 13 (2020) Joerg Wunderlich FIVE PAPERS ON FOSSIL AND EXTANT SPIDERS BEITR. ARANEOL., 13 (2020: 1–176) FIVE PAPERS ON FOSSIL AND EXTANT SPIDERS NEW AND RARE FOSSIL SPIDERS (ARANEAE) IN BALTIC AND BUR- MESE AMBERS AS WELL AS EXTANT AND SUBRECENT SPIDERS FROM THE WESTERN PALAEARCTIC AND MADAGASCAR, WITH NOTES ON SPIDER PHYLOGENY, EVOLUTION AND CLASSIFICA- TION JOERG WUNDERLICH, D-69493 Hirschberg, e-mail: [email protected]. Website: www.joergwunderlich.de. – Here a digital version of this book can be found. © Publishing House, author and editor: Joerg Wunderlich, 69493 Hirschberg, Germany. BEITRAEGE ZUR ARANEOLOGIE (BEITR. ARANEOL.), 13. ISBN 978-3-931473-19-8 The papers of this volume are available on my website. Print: Baier Digitaldruck GmbH, Heidelberg. 1 BEITR. ARANEOL., 13 (2020) Photo on the book cover: Dorsal-lateral aspect of the male tetrablemmid spider Elec- troblemma pinnae n. sp. in Burmit, body length 1.5 mm. See the photo no. 17 p. 160. Fossil spider of the year 2020. Acknowledgements: For corrections of parts of the present manuscripts I thank very much my dear wife Ruthild Schöneich. For the professional preparation of the layout I am grateful to Angelika and Walter Steffan in Heidelberg. CONTENTS. Papers by J. WUNDERLICH, with the exception of the paper p. 22 page Introduction and personal note………………………………………………………… 3 Description of four new and few rare spider species from the Western Palaearctic (Araneae: Dysderidae, Linyphiidae and Theridiidae) …………………. 4 Resurrection of the extant spider family Sinopimoidae LI & WUNDERLICH 2008 (Araneae: Araneoidea) ……………………………………………………………...… 19 Note on fossil Atypidae (Araneae) in Eocene European ambers ………………… 21 New and already described fossil spiders (Araneae) of 20 families in Mid Cretaceous Burmese amber with notes on spider phylogeny, evolution and classification; by J. -
Southern House Spider Understanding One of the Most Common Spiders, Often Confused with Recluse Spiders
G U A T E M A L A Kukulcania hibernalis Southern house spider Understanding one of the most common spiders, often confused with recluse spiders. Southern house spider Understanding one of the most common spiders, often confused with recluse spiders. Photographs: Katherinne Herrera (FLAAR), Nicholas Hellmut (FLAAR) and Sofía Monzón (FLAAR). Layout and graphic design of the PDF: Katherinne Herrera (FLAAR) Illustrations: Katherinne Herrera (FLAAR) Species identification: Katherinne Herrera (FLAAR) FLAAR MESOAMERICA 2020 Southern house spider or Recluse spider? Southern House Spiders and Recluse Spiders are species that you can usually find near humans. One of them (Southern house spider) belongs to the Filistatidae family and the other one (Recluse spider) belongs to the Sicariidae family. Knowing that they belong to different families helps a lot, mostly, to identify each of them more easily, and to know when to avoid direct contact with them. How could you tell which one is which? Trust the eye arrangement We know most spiders have a total of eight eyes, but that is one of the main differences between Southern House Spiders and Recluse Spiders. The inofensive Southern House Spiders (Kukulcania hibernalis on Guatemala) have a total of eight eyes arranged in a small group at the front center of the carapace (Cephalotorax/Prosoma), which resembles a small tarantula. Six of these eyes are secondary eyes, which means those only capture different intensities of light. Only two eyes are primary, capable of receiving images and shapes; this makes these spiders almost blind. Female Kukulcania hibernalis. Photographer: Katherinne Herrera. FLAAR Mesoamerica. May, 2020. Chinautla, Guatemala. -
Araneae (Spider) Photos
Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.