Invertebrate Survey of Moorend Common 2013

Total Page:16

File Type:pdf, Size:1020Kb

Invertebrate Survey of Moorend Common 2013 Invertebrate Survey of Moorend Common 2013 Lawrence Bee December 2013 Invertebrates of Moorend Common, Buckinghamshire Prepared by Lawrence Bee* With Lane End Conservation Group Client: The Chilterns Conservation Board Part of the Chilterns Commons Project *Lawrence Bee - Ecological and Environmental Education Consultancy 7 Oakmead, Witney, Oxon OX28 1EF 07870854106 email: [email protected] Contents Introduction 1 Objectives 3 Survey methodology 4 Invertebrates recorded 8 Spiders Beetles Centipedes, Millipedes and Woodlice Other Groups Recommendations 11 Acknowledgements 14 References 15 Survey results o Spiders 16 o Beetles 19 o Centipedes, Millipedes and Woodlice 21 o Other Groups 22 Front page: The ground beetle Agonum sexpunctatum – a NotableA species in the UK (see text p.9)©entomart Introduction A view of Middle Meadow at Moorend ©Rob Rowe - Natural England Common National Grid Reference: SU 801 907 (north section) & SU802905 (south section) County: Buckinghamshire Local authority: Wycombe District Council. Parish: Lane End Area: c. 21.58 ha Moorend Common is a Site of Special Scientific Interest (SSSI) notified under Section 28 of the Wildlife and Countryside Act 1981. The full S.S.S.I. citation provided by Natural England is available online at: http://www.sssi.naturalengland.org.uk/citation/citation_photo/1001497.pdf The NE citation for Moorend Common states that, in addition to areas of secondary tree growth, scrub and wetland, the key indicators are U4 acid grassland and W10 and W14 woodland. All are encompassed within the recognised habitat types of either Lowland 1 Heathland and Acid Grassland or Woodland within the Buckinghamshire and Milton Keynes Bio-diversity Action Plan (BAP). U4 Grassland – a habitat composed of a mixture of grasses and herbs which exists on acidic soils or substrates. This grassland type is increasingly rare within the Chilterns and is diminishing as methods of land management have changed away from regular grazing or mowing. W10 Woodland – a habitat composed of oak woodland predominantly on acid soils or substrates. Typical species, in the Moorend Common SSSI, include pedunculate oak and silver birch, an understorey of hazel and hawthorn and a ground flora of bracken and bramble. W14 Woodland – a habitat composed of beech woodland on relatively base poor to acidic soils and substrates. Typical species, in the Moor Copse, include beech and an understorey of holly and bramble with a sparse ground flora owing to the dense shade created by the mature beech canopy. Detailed ecological information can be found within the ‘Heathland’ and ‘Woodland Habitat’ sections of the Buckinghamshire and Milton Keynes BAP of 2000 and the Chilterns Conservation Board’s draft BAP of 2006. (LEPC & MCCC - Surveys Brief 2012-2015/1st draft 2012). 2 Objectives The survey formed part of the Heritage Lottery funded Chilterns Commons Project managed by the Chilterns Conservation Board. The work was part of a larger project which included historical research and ecological studies alongside monitoring conservation practices to determine their effectiveness. The Lane End Parish Council and the Moorend Common Conservation Committee produced a Management Plan in 2012 and within it there is mention of survey work being carried out on butterflies, moths and aquatic macro invertebrates (LEPC & MCCC - Surveys Brief 2012-2015/1st draft 2012). Survey work on other invertebrate groups was planned in 2010 but did not actually occur. The survey reported in this document was designed to address this omission in covering invertebrate groups where little or no records existed. 3 Survey Methodology 4 locations for siting pitfall traps were identified and established on 13 May 2013. Each location comprised 4 separate pitfall traps set at corners of a square metre and it was agreed with the volunteer team that traps would be emptied and reset approximately every 2 weeks through the summer to finish around the beginning of September. For each location captures from the 4 traps would be treated together but divided into separate containers of (1) spiders & harvestmen, (2) beetles, (3) woodlice, centipedes & millipedes and (4) other miscellaneous captures. Lane End Conservation Group Volunteers setting pitfall traps 4 The 4 locations were chosen to represent different habitats and locations within the Moor End Common site as a whole and were sited as follows (see Maps 1 & 2 ): Site A – SU 80179056 – Just off the edge of the northern section of Middle Meadow amongst leaf litter under mature oak Site B – SU 80219049 – Open area of wet grassland within compartment F Site C – SU 80099075 – Open grassland within North meadow Site D – SU 79969062 – Amongst mature oaks adjacent to stream on N edge of compartment B Site A Site B Site C Site D 5 In addition to the pitfall trapping programme a number of yellow pan traps to capture flying insects was supplied to the volunteer team to set up on site when pitfall traps were being emptied and reset. As it turned out, time availability of the volunteer team made the setting and collection of pan traps impractical and none were set by the volunteers. Just one pan trap was set on a collecting visit made on 13 May 2013. Map 1 : Compartment Map of Moorend Common. (LEPC & MCCC - Surveys Brief 2012-2015/1st draft 2012). 6 C D A B Map 2 : Locations of pitfall traps on Moorend Common 7 Invertebrates Recorded Spiders 60 species of spider were recorded during the survey period. As well as the pitfall samples, other surveys were carried out on 18.10.12, 13.5.13, 5.8.13 and 18.9.13 - these consisted primarily of suction sampling sessions with some sweeping of low vegetation and beating of gorse and lower branches of oak. The pitfall samples were, surprisingly, not very productive for spiders and harvestmen. During pitfall sampling at Chimney Meadows Reserve in Oxfordshire between 2005 and 2010 the traps yielded considerably more individual spider specimens with the total number of species being e.g. 57 species recorded from 103 sample sets in 2009. At Moorend, even though the total number of species recorded was similar in 2013 (to that for Chimney Meadows quoted above), over half of these records came from collecting methods other than pitfall sampling. It is difficult to explain why the pitfall traps captured such a low number of arachnids. In conversation with other arachnologists they too had experienced low numbers of arachnids in pitfall surveys they had conducted in 2013. Possible reasons for the low numbers were the very cool temperatures recorded throughout the spring and early summer of 2013. One of the predominant spider families collected from pitfall traps is the Lycosidae. These ground moving wolf spiders tend to reach maturity in the late spring and early summer and cooler than average temperatures during this period may well compromise the successful maturing of young spiders into mature adults. Amongst the spiders recorded the following species is of interest: • The jumping spider Marpissa muscosa. National Status ‘Notable B’: uncommon in Great Britain and thought to occur in between 31 and 100 10km squares of the National Grid. Collected from underneath the bark of a fallen branch in compartment G/South Meadow. The species is recorded throughout south-eastern England with a few scattered records further 8 ©Andy Callow Jumping Spider Marpissa muscosa west and north. In Dorset it is common under flat stones on the tops of dry stone walls but elsewhere it occurs mostly underneath loose bark on trees, on posts and paling fences. Many specimens collected using the suction sampler were immature and therefore impossible to identify down to species (apart from a very few instances of immature specimens having distinctive markings enabling identification to species). These unidentified immatures indicate a richer spider fauna for Moorend which, if further funding were available, could be surveyed in the future. Beetles 41 species of beetle were recorded from the pitfall traps. Of these 22 were ground beetles and in terms of numbers of individual beetles collected were by far the most dominant group. The three commonest species were Pterostichus madidus with 393 specimens, Abax parallelepipedus with 241 specimens and Carabus problematicus with 116 specimens. Of particular interest was the green and bronze ground beetle Agonum sexpunctatum. The national status for this species is ‘Notable A’ - uncommon in Great Britain and thought to occur in 30 or fewer 10km squares of the National Grid. The preferred habitat for this species is ‘On damp open ground near water, on sandy soils in heaths and open woodland’ (Luff 2007) which corresponds well with the location of site B – the 9 only pitfall trap site where it was found. This record caused some excitement when it was identified by Lloyd Garvey at the University Natural History Museum in Oxford where Lloyd was identifying the beetles. Unfortunately, due to prolonged immersion in the propylene glycol solution many of the beetles began to disintegrate and so preserving specimens was not possible. Lloyd did a great job in identifying the material and only had problems distinguishing between 2 very similar species. The entry in the species list for Pterostichus nigrita/rhaeticus is the one record where it was impossible to distinguish between the 2 species – they are only separable by examination of the genitalia and the fragmented state of the specimens made this impossible. Centipedes, Millipedes and Woodlice All but one of the centipede and millipede species recorded from the pitfall traps have the national status of ‘Common’. The exception, the stone centipede Lithobius muticus, has a national status of Notable B and is regarded as scarce nationally. In the Chilterns, however, it is a locally common species, Moorend providing a suitable deciduous woodland habitat. Five species of woodlice were recorded. The Carr Slater Ligidium hypnorum is locally common in the Chilterns but is nationally only found in the south east and south central regions - not being recorded north of a line between the Wash and the Bristol Channel.
Recommended publications
  • Cylindroiulus Truncorum (Silvestri): a New Milliped for Virginia (USA), with Natural History Observations (Julida: Julidae)
    Banisteria, Number 20, 2002 © 2002 by the Virginia Natural History Society Cylindroiulus truncorum (Silvestri): A New Milliped for Virginia (USA), with Natural History Observations (Julida: Julidae) Jorge A. Santiago-Blay Department of Paleobiology, MRC-121 National Museum of Natural History 10th and Constitution Avenue Smithsonian Institution P.O. Box 37012 Washington, DC 20013-7012 Richard L. Hoffman Virginia Museum of Natural History Martinsville, Virginia 24112 Joseph B. Lambert and Yuyang Wu Department of Chemistry Northwestern University 2145 Sheridan Road Evanston, Illinois 60208-3113 INTRODUCTION truncorum for Raleigh, North Carolina, about 320 km SSE of Salem (Shelley, 1978) is the southernmost In the fall 2000, author SB cleared the underbrush known occurrence of this species in the United States. of an Eastern White Pine (Pinus strobus L.) grove in his This milliped has also been documented for Brazil backyard located in an urban area of Salem, Virginia (Chamberlin & Hoffman, 1958; Hoffman, 1999). (USA) by cutting and removing the lower branches. About a year later, he revisited the same trees and Natural History Observations noticed copious resinous exudations originating from the branch stumps, particularly on five of the trees. Berlese extractions from P. strobus leaf litter were There, he observed about twenty millipeds, later conducted in November 2001 and yielded a maximum identified as Cylindroiulus truncorum (Silvestri, 1896; of about 50 C. truncorum per 0.25 m2 (= 200 C. species group reviewed by Korsós & Enghoff, 1990), truncorum per m2). In his many years of studying soil attached to the resin, 1-2 meters above ground (Fig. 1). invertebrates and running numerous Berlese samples, Voucher specimens of Cylindroiulus truncorum are particularly in southwestern Virginia, RLH has seldom deposited at the Virginia Museum of Natural History encountered millipeds under pine litter.
    [Show full text]
  • Millipedes (Diplopoda) from Caves of Portugal
    A.S.P.S. Reboleira and H. Enghoff – Millipedes (Diplopoda) from caves of Portugal. Journal of Cave and Karst Studies, v. 76, no. 1, p. 20–25. DOI: 10.4311/2013LSC0113 MILLIPEDES (DIPLOPODA) FROM CAVES OF PORTUGAL ANA SOFIA P.S. REBOLEIRA1 AND HENRIK ENGHOFF2 Abstract: Millipedes play an important role in the decomposition of organic matter in the subterranean environment. Despite the existence of several cave-adapted species of millipedes in adjacent geographic areas, their study has been largely ignored in Portugal. Over the last decade, intense fieldwork in caves of the mainland and the island of Madeira has provided new data about the distribution and diversity of millipedes. A review of millipedes from caves of Portugal is presented, listing fourteen species belonging to eight families, among which six species are considered troglobionts. The distribution of millipedes in caves of Portugal is discussed and compared with the troglobiont biodiversity in the overall Iberian Peninsula and the Macaronesian archipelagos. INTRODUCTION All specimens from mainland Portugal were collected by A.S.P.S. Reboleira, while collectors of Madeiran speci- Millipedes play an important role in the decomposition mens are identified in the text. Material is deposited in the of organic matter, and several species around the world following collections: Zoological Museum of University of have adapted to subterranean life, being found from cave Copenhagen, Department of Animal Biology, University of entrances to almost 2000 meters depth (Culver and Shear, La Laguna, Spain and in the collection of Sofia Reboleira, 2012; Golovatch and Kime, 2009; Sendra and Reboleira, Portugal. 2012). Although the millipede faunas of many European Species were classified according to their degree of countries are relatively well studied, this is not true of dependence on the subterranean environment, following Portugal.
    [Show full text]
  • "Philosciidae" (Crustacea: Isopoda: Oniscidea)
    Org. Divers. Evol. 1, Electr. Suppl. 4: 1 -85 (2001) © Gesellschaft für Biologische Systematik http://www.senckenberg.uni-frankfurt.de/odes/01-04.htm Phylogeny and Biogeography of South American Crinocheta, traditionally placed in the family "Philosciidae" (Crustacea: Isopoda: Oniscidea) Andreas Leistikow1 Universität Bielefeld, Abteilung für Zoomorphologie und Systematik Received 15 February 2000 . Accepted 9 August 2000. Abstract South America is diverse in climatic and thus vegetational zonation, and even the uniformly looking tropical rain forests are a mosaic of different habitats depending on the soils, the regional climate and also the geological history. An important part of the nutrient webs of the rain forests is formed by the terrestrial Isopoda, or Oniscidea, the only truly terrestrial taxon within the Crustacea. They are important, because they participate in soil formation by breaking up leaf litter when foraging on the fungi and bacteria growing on them. After a century of research on this interesting taxon, a revision of the terrestrial isopod taxa from South America and some of the Antillean Islands, which are traditionally placed in the family Philosciidae, was performed in the last years to establish monophyletic genera. Within this study, the phylogenetic relationships of these genera are elucidated in the light of phylogenetic systematics. Several new taxa are recognized, which are partially neotropical, partially also found on other continents, particularly the old Gondwanian fragments. The monophyla are checked for their distributional patterns which are compared with those patterns from other taxa from South America and some correspondence was found. The distributional patterns are analysed with respect to the evolution of the Oniscidea and also with respect to the geological history of their habitats.
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Higher-Level Phylogenetics of Linyphiid Spiders (Araneae, Linyphiidae) Based on Morphological and Molecular Evidence
    Cladistics Cladistics 25 (2009) 231–262 10.1111/j.1096-0031.2009.00249.x Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence Miquel A. Arnedoa,*, Gustavo Hormigab and Nikolaj Scharff c aDepartament Biologia Animal, Universitat de Barcelona, Av. Diagonal 645, E-8028 Barcelona, Spain; bDepartment of Biological Sciences, The George Washington University, Washington, DC 20052, USA; cDepartment of Entomology, Natural History Museum of Denmark, Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark Accepted 19 November 2008 Abstract This study infers the higher-level cladistic relationships of linyphiid spiders from five genes (mitochondrial CO1, 16S; nuclear 28S, 18S, histone H3) and morphological data. In total, the character matrix includes 47 taxa: 35 linyphiids representing the currently used subfamilies of Linyphiidae (Stemonyphantinae, Mynogleninae, Erigoninae, and Linyphiinae (Micronetini plus Linyphiini)) and 12 outgroup species representing nine araneoid families (Pimoidae, Theridiidae, Nesticidae, Synotaxidae, Cyatholipidae, Mysmenidae, Theridiosomatidae, Tetragnathidae, and Araneidae). The morphological characters include those used in recent studies of linyphiid phylogenetics, covering both genitalic and somatic morphology. Different sequence alignments and analytical methods produce different cladistic hypotheses. Lack of congruence among different analyses is, in part, due to the shifting placement of Labulla, Pityohyphantes,
    [Show full text]
  • First Records and Three New Species of the Family Symphytognathidae
    ZooKeys 1012: 21–53 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1012.57047 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research First records and three new species of the family Symphytognathidae (Arachnida, Araneae) from Thailand, and the circumscription of the genus Crassignatha Wunderlich, 1995 Francisco Andres Rivera-Quiroz1,2, Booppa Petcharad3, Jeremy A. Miller1 1 Department of Terrestrial Zoology, Understanding Evolution group, Naturalis Biodiversity Center, Darwin- weg 2, 2333CR Leiden, the Netherlands 2 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands 3 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 12121 Thailand Corresponding author: Francisco Andres Rivera-Quiroz ([email protected]) Academic editor: D. Dimitrov | Received 29 July 2020 | Accepted 30 September 2020 | Published 26 January 2021 http://zoobank.org/4B5ACAB0-5322-4893-BC53-B4A48F8DC20C Citation: Rivera-Quiroz FA, Petcharad B, Miller JA (2021) First records and three new species of the family Symphytognathidae (Arachnida, Araneae) from Thailand, and the circumscription of the genus Crassignatha Wunderlich, 1995. ZooKeys 1012: 21–53. https://doi.org/10.3897/zookeys.1012.57047 Abstract The family Symphytognathidae is reported from Thailand for the first time. Three new species: Anapistula choojaiae sp. nov., Crassignatha seeliam sp. nov., and Crassignatha seedam sp. nov. are described and illustrated. Distribution is expanded and additional morphological data are reported for Patu shiluensis Lin & Li, 2009. Specimens were collected in Thailand between July and August 2018. The newly described species were found in the north mountainous region of Chiang Mai, and Patu shiluensis was collected in the coastal region of Phuket.
    [Show full text]
  • Diplopoda, Julidae) in the Northern Atlanticinternat Region...Ional Journal69 of Doi: 10.3897/Ijm.7.3064 Data Paper Myriapodology
    IJM 7: 62–91 (2012) A peer-reviewed open-access journal Phoretic mite associates of millipedes (Diplopoda, Julidae) in the northern AtlanticINTERNAT region...IONAL JOURNAL69 OF doi: 10.3897/ijm.7.3064 DATA PAPER www.pensoft.net/journals/ijm Myriapodology Phoretic mite associates of millipedes (Diplopoda, Julidae) in the northern Atlantic region (North America, Europe) Monica A. Farfan1,2, Hans Klompen2 1 Acarology Laboratory, Ohio State University, Columbus, Ohio, 43212, USA 2 Dept. of Biological Sciences, Univ. Illinois at Chicago, Chicago, Illinois, 60607, USA Corresponding author: Monica Farfan ([email protected]) Academic editor: Pavel Stoev | Received 10 March 2012 | Accepted 22 May 2012 | Published 5 June 2012 Citation: Farfan MA, Klompen H (2012) Phoretic mite associates of millipedes (Diplopoda, Julidae) in the northern Atlantic region (North America, Europe). International Journal of Myriapodology 7: 69–91. doi: 10.3897/ijm.7.3064 Abstract Introduced millipede species in the family Julidae are common in the U.S. but little is known about how they interact with other organisms, such as mites. To start to determine the nature of the relationship, millipedes were sampled from across the eastern U.S.A. and the United Kingdom in 2008–2009. Sixteen morphospecies of mites (Acari: Astigmata, Mesostigmata) were collected from these millipedes, 12 of which from a total of 13 species of julid millipedes. None of these 12 species was restricted to a single host species. However, 12 of the 16 mite species collected were restricted to either the U.S.A. or the U.K. These results are consistent with locality, rather than host, specificity.
    [Show full text]
  • Terrestrial Isopods and Myriapods in a Forested Scree Slope
    JOURNAL OF NATURAL HISTORY, 2016 http://dx.doi.org/10.1080/00222933.2016.1193642 Terrestrial isopods and myriapods in a forested scree slope: subterranean biodiversity, depth gradient and annual dynamics Michal Rendoša, Andrej Mocka and Dana Miklisováb aInstitute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia; bInstitute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia ABSTRACT ARTICLE HISTORY Diversity, depth distribution and seasonal activity of isopods and Received 19 February 2015 myriapods were studied using subterranean traps buried in a Accepted 20 May 2016 Č forested limestone scree slope in the ierna Hora Mts, Western KEYWORDS Carpathians, Slovakia, throughout the depth gradient from 5 to Superficial subterranean 95 cm. A total of five isopod, 13 diplopod and 11 chilopod species habitat; Oniscidea; were identified. Most edaphic species strongly preferred the Myriapoda; depth uppermost organic soil layers. Among the species captured, distribution; community some represented rare stenoecous Carpathian endemics, namely dynamics; the Western the isopod Trichoniscus carpaticus, and diplopods Julus curvicornis Carpathians and Leptoiulus mariae. Others were subterranean forms, partly adapted to hypogean conditions: the isopod Mesoniscus graniger, and diplopods Mecogonopodium carpathicum and Trachysphaera costata. The annual activity in the vast majority of the species ceased completely in winter, and was gradually relaunched in spring. In evaluating the age structure of two predominant diplo- pods Polydesmus denticulatus and Mecogonopodium carpathicum, both widespread across the depth gradient, a vertical segregation of early post-embryonic stages was found. While P. denticulatus tended to undergo the early stages of development in the soil- filled topmost levels, the early juvenile stage of M.
    [Show full text]
  • Centre International De Myriapodologie
    N° 28, 1994 BULLETIN DU ISSN 1161-2398 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE [Mus6umNationald'HistoireNaturelle,Laboratoire de Zoologie-Arthropodes, 61 rue de Buffon, F-75231 ParisCedex05] LISTE DES TRAVAUX PARUS ET SOUS-PRESSE LIST OF WORKS PUBLISHED OR IN PRESS MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS PUBLICATION ET LISIES REPE&TORIEES PANS LA BASE PASCAL DE L' INIST 1995 N° 28, 1994 BULLETIN DU ISSN 1161-2398 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE [Museum National d'Histoire N aturelle, Laboratoire de Zoologie-Arthropodes, 61 rue de Buffon, F-7 5231 Paris Cedex 05] LISTE DES TRAVAUX PARUS ET SOUS-PRESSE LIST OF WORKS PUBLISHED OR IN PRESS MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS PUBLICATION ET LISTES REPERTORIEES DANS LA BASE PASCAL DE L' INIST 1995 SOMMAIRE CONTENTS ZUSAMMENFASSUNG Pages Seite lOth INTERNATIONAL CONGRESS OF MYRIAPODOLOGY .................................. 1 9th CONGRES INTERNATIONAL DE MYRIAPODOLOGIE.................................................... 1 Contacter le Secretariat permanent par E-M AIL & FA X............................................................ 1 The Proceedings of the 9th International Congress of Myriapodology...................... 2 MILLEPATTIA, sommaire .du prochain bulletin....................................................................... 2 Obituary: Colin Peter FAIRHURST (1942-1994) ............................................................. 3 BULLETIN of the
    [Show full text]
  • Taxonomic Revision and Insights Into the Speciation Mode of the Spider Dysdera Erythrina Species-Complex (Araneae&Thinsp;:&A
    AUTHORS’ PAGE PROOFS: NOT FOR CIRCULATION CSIRO PUBLISHING Invertebrate Systematics http://dx.doi.org/10.1071/IS16071 Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae : Dysderidae): sibling species with sympatric distributions Milan Rezá cA,G, Miquel A. Arnedo B, Vera Opatova B,C,D, Jana MusilováA,E, Veronika Rezá cová F and Jirí Král D ABiodiversity Lab, Crop Research Institute, Drnovská 507, CZ-161 06 Prague 6-Ruzyne, Czechia. BDepartment of Animal Biology & Biodiversity Research Institute, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain. CDepartment of Zoology, Faculty of Science, Charles University in Prague, Vinicná 7, CZ-128 44 Prague 2, Czechia. DDepartment of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA. ELaboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicná 5, CZ-128 44 Prague 2, Czechia. FLaboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czechia. GCorresponding author. Email: [email protected] ONLY Abstract. The genus Dysdera Latreille, 1804, a species-rich group of spiders that includes specialised predators of woodlice, contains several complexes of morphologically similar sibling species. Here we investigate species limits in the D. erythrina (Walckenaer, 1802) complex by integrating phenotypic, cytogenetic and molecular data, and use this information to gain further knowledge on its origin and evolution. We describe 16 new species and redescribe four 5 poorly known species belonging to this clade. The distribution of most of the species in the complex is limited to southern France and thenorth-eastern Iberian Peninsula.
    [Show full text]
  • Woodlice in Britain and Ireland: Distribution and Habitat Is out of Date Very Quickly, and That They Will Soon Be Writing the Second Edition
    • • • • • • I att,AZ /• •• 21 - • '11 n4I3 - • v., -hi / NT I- r Arty 1 4' I, • • I • A • • • Printed in Great Britain by Lavenham Press NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS ISBN 0 904282 85 6 COVER ILLUSTRATIONS Top left: Armadillidium depressum Top right: Philoscia muscorum Bottom left: Androniscus dentiger Bottom right: Porcellio scaber (2 colour forms) The photographs are reproduced by kind permission of R E Jones/Frank Lane The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to, and draws upon, the collective knowledge of the 13 sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. One quarter of ITE's work is research commissioned by customers, such as the Department of Environment, the European Economic Community, the Nature Conservancy Council and the Overseas Development Administration. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organizations in overseas projects and programmes of research.
    [Show full text]
  • Report on the Bmig Field Meeting at Haltwhistle 2014
    Bulletin of the British Myriapod & Isopod Group Volume 30 (2018) REPORT ON THE BMIG FIELD MEETING AT HALTWHISTLE 2014 Paul Lee1, A.D. Barber2 and Steve J. Gregory3 1 Little Orchard, Bentley, Ipswich, Suffolk, IP9 2DW, UK. E-mail: [email protected] 2 7 Greenfield Drive, Ivybridge, Devon, PL21 0UG. E-mail: [email protected] 3 4 Mount Pleasant Cottages, Church Street, East Hendred, Oxfordshire, OX12 8LA, UK. E-mail: [email protected] INTRODUCTION The 2014 BMIG field weekend, held from 24th to 27th April, was based at Saughy Rigg, half a mile north of Hadrian’s Wall, near Haltwhistle in Northumberland but very close to the border with Cumbria to the west and Scotland to the north. The main aim of the meeting was to record in central areas of northern England (VC 66, 67 and 70) where few records existed previously but many attendees were drawn also to sites on the east coast of England (VC 66) and to the Scottish coast on the Solway Firth (VC 73). All these vice counties had been visited by BMG/BISG or BMIG in the previous twenty years but large parts of them remained under-recorded. The annual joint field meeting of BMG and BISG in 1995 was held at Rowrah Hall near Whitehaven (VC 70). Gregory (1995) reports 24 millipede species found during the weekend including Choneiulus palmatus new to VC 70. A list of the centipede appears not to have been published. Bilton (1995) reports 14 woodlouse species including Eluma caelata found at Maryport, its most northerly global location, and Armadillidium pictum in the Borrowdale oakwoods.
    [Show full text]